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Motivations

• Correlation physics: Mott insulator, superconductivity...

• Spin-orbit coupling: topological insulators, Majorana fermions...

• Coulomb interaction+spin-orbit coupling →  new physics?

• Iridates: U(correlation)~W(band width)~λ(spin-orbit)
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of degeneracies and the consequent generation of multiple narrow bands from relatively mixed

ones. The narrow bands generated by SOC are more susceptible to Mott localization by U , which

implies that the horizontal boundary in Figure 1 shifts downward with increasing �. If we include

correlations first, the U tends to localize electrons, diminishing their kinetic energy. Consequently

the on-site SOC �, which is insensitive to or even reduced by delocalization, is relatively enhanced.

Indeed, in the strong Mott regime U/t � 1, one should compare � with the spin exchange coupling

J / t2/U , rather than t. As a result, the vertical boundary shifts to the left for large U/t. We see

that there is an intermediate regime in which insulating states are obtained only from the combined

influence of SOC and correlations – these may be considered spin-orbit assisted Mott insulators.

Here we are using the term “Mott insulator” to denote any state which is insulating by virtue

of electron-electron interactions. In Sec. IV, we will remark briefly on a somewhat philosophical

debate as to what should “properly” be called a Mott insulator.

Terminology aside, an increasing number of experimental systems have appeared in recent

years in this interesting correlated SOC regime. Most prolific are a collection of iridates, weakly

conducting or insulating oxides containing iridium, primarily in the Ir4+ oxidation state. This in-

cludes a Ruddlesdon-Popper sequence of pseudo-cubic and planar perovskites Sr
n+1

Ir
n

O
3n+1

(n =

1, 2,1),8–15 hexagonal insulators (Na/Li)
2

IrO
3

,16–21 a large family of pyrochlores, R
2

Ir
2

O
7

,22–24 and

some spinel-related structures.25,26 Close to iridates in the periodic table are several osmium oxides

such as NaOsO
3

27 and Cd
2

Os
2

O
7

,28 which experimentally display MITs. Apart from these mate-

FIG. 1. Sketch of a generic phase diagram for electronic materials, in terms of the interaction strength
U/t and SOC �/t. The materials in this review reside on the right half of the figure.

W. Witczak-Krempa et al, ARCMP 2013
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin

205101-2
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Review on Pyrochlore Iridates R2Ir2O7

• Magnetic ordering transition, 2nd order transition
• Magnetic transition and metal-insulator transition coincides for 

relatively larger  rare earth radius compound
• As rare earth ionic radius decreases, TMI increases and gap increases
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those

K. Matsuhira et al, JPSJ 2011
W. Witczak-Krempa et al, ARCMP 2013

K.Ueda et al, PRL 2012

As is reported in ref. 15, we were unable to prepare
samples free from impurity phases by a solid-state reaction
in air because of the volatility of IrO2. Furthermore, their
reflection peaks in XRD patterns were much broader. This
result indicates that the samples prepared in air have poorer
crystallinity or deviate from their stoichiometry. Note that
before our study in ref. 15, all polycrystalline samples were
prepared by a solid-state reaction in air.20,22–26)

3. Results and Discussion

3.1 Resistivity
Figure 1 shows the temperature dependence of the

electrical resistivities !ðT Þ of Ln2Ir2O7 for Ln = Pr, Nd,
Sm, Eu, Gd, Tb, Dy, and Ho. When Ln is changed from Pr to
Dy, !ðT Þ at room temperature gradually increases; !ðT Þ for
Ln = Ho at room temperature is lower than that for Dy.27)

The gradient of !ðT Þ at room temperature gradually changes
from a positive value to a negative value. For Ln = Pr and
Nd, Ln2Ir2O7 is metallic. For Ln = Sm, Eu, and Gd,
Ln2Ir2O7 is semimetallic. For Ln = Tb, Dy, and Ho,
Ln2Ir2O7 is semiconducting. We found that, for Ln = Nd,

Sm, Eu, Gd, Tb, Dy, and Ho, Ln2Ir2O7 exhibits MITs at 33,
117, 120, 127, 132, 134, and 141K, respectively, while
Pr2Ir2O7 exhibits no MIT down to 0.3K; it should be noted
that TMI for Ln = Nd is revised to 33K.28,29) Now, although
the conductivity of Ln2Ir2O7 for Ln = Tb, Dy, and Ho is
semiconducting with a small energy gap at room tempera-
ture, we have adopted MIT for convenience because a
common feature in their transition is observed. TMI increases
monotonically as the ionic radius of Ln decreases. The ionic
radius boundary for MITs in Ln2Ir2O7 lies between Ln = Pr
and Nd. For Ln = Gd, Tb, Dy, and Ho, a clear upturn due to
MIT is shown in Fig. 1(b). Discontinuities and thermal
hysteresis were not observed at approximately TMI, indicat-
ing that these MITs are second-order transitions. It should be
noted that !ðT Þ below TMI continues to increase without
saturation on cooling. This implies that MITs in Ln2Ir2O7

are not of accidental origin but of essential one.
We then attempted the order estimation of the energy gap

in the insulating state from the data. For the data just below
TMI, we tried to estimate the energy gap by assuming the
equation !ðT Þ ¼ !0 expðEg=T Þ, where Eg is the energy gap.
The estimated Eg is about 300–600K; Eg for Ln = Nd, Sm,
Eu, Gd, Tb, Dy, and Ho is estimated to be 405, 493, 429,
330, 517, 569, and 463K, respectively. We found that the
energy gap for Ln = Tb, Dy, and Ho increases by about
100–200K below TMI. These values may roughly correspond
to the energy gap, although no systematic change has been
confirmed. The band gap in the insulated state is small in
comparison with that in 3d electron system.30) Below TMI,
!ðT Þ cannot be described by the thermal activation
conduction form !ðT Þ ¼ !0 expðEg=T Þ. In addition, !ðT Þ
below TMI cannot be expressed in terms of the variable range
hopping except for Ln = Eu.31) Further investigation on the
unconventional temperature dependence of resistivity in the
insulating state is required to verify the origin.

3.2 Thermoelectric power
Figure 2 shows the temperature dependences of the

thermoelectric powers SðT Þ of Ln2Ir2O7 for Ln = Pr, Nd,
Sm, Eu, and Gd. When Ln is changed from Pr to Gd, the sign

Fig. 1. (Color online) (a) Electrical resistivities of Ln2Ir2O7 for Ln = Pr,
Nd, Sm, Eu, Gd, Tb, Dy, and Ho. (b) Enlarged view of electrical resistivities
of Ln2Ir2O7 for Ln = Gd, Tb, Dy, and Ho.

Fig. 2. (Color online) Thermoelectric powers of Ln2Ir2O7 for Ln = Pr,
Nd, Sm, Eu, and Gd.

K. MATSUHIRA et al.J. Phys. Soc. Jpn. 80 (2011) 094701 FULL PAPERS
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Review on Pyrochlore Iridates R2Ir2O7

• Magnetic ordering transition, 2nd order transition
• Magnetic transition and metal-insulator transition coincides for 

relatively larger  rare earth radius compound
• As rare earth ionic radius decreases, TMI increases and gap increases
• Energy gap is small comparing to 3d materials

K. Matsuhira et al, JPSJ 2011
W. Witczak-Krempa et al, ARCMP 2013

Optical conductivity
gap~0.045eV

[10,12–14], while Pr2Ir2O7 is metallic down to 0.3 K and
shows no long-range magnetic ordering except for the
freezing of Pr-4f or Ir-5d moments at 0.12 K [15].
Despite these experimental investigations on the electronic
or magnetic properties for these systems, the origin of MIT
has been left elusive.

In this study, we have systematically investigated the
evolution of the charge dynamics as well as the transport,
magnetic, and thermal properties in the course of MIT for
the pyrochlore-type Nd2Ir2O7 and its Rh-doped analogs
Nd2ðIr1"xRhxÞ2O7. Rh doping is done to finely tune the
interplay between the SOI and the electron correlation, and
hence to drive the insulator-metal transition at the ground
state. The observed features suggest that the MITs for the
present system can be viewed as the phase changes among
the correlated metal, the Weyl semimetal, and the narrow
gap Mott insulator, as characterized by the strong SOI and
electron correlation.

The high-quality polycrystalline samples of
Nd2ðIr1"xRhxÞ2O7 with x ¼ 0, 0.02, 0.05, and 0.10 were
prepared by a solid-state reaction under high pressure
(3 GPa and 1200 %C). The dense and hard samples with
least grain-boundary effect as prepared by the high-
pressure method are particularly suitable for the optical
reflectance and transport measurements. We have con-
firmed by powder x-ray diffraction that all the samples
imply no detectable impurity phase, and the lattice con-
stant of the Rh-doped compounds satisfies Vegard’s law, as
shown in Fig. 1(f). The resistivity, specific heat, and mag-
netization were measured with the physical property mea-
surement system (Quantum Design). Reflectivity spectra in
the temperature range from 5 to 290 K were measured
between 0.005 and 5 eV by Fourier transform- and grating-
type spectrometers. The spectra above 5 eV were measured
at room temperature with the use of synchrotron radiation
at UV-SOR, Institute for Molecular Science. The optical
conductivity spectra were obtained by Kramers-Kronig
(KK) analysis with suitable extrapolation procedures.
The optical conductivity spectra below 10 meV were ob-
tained by terahertz (THz) time-domain spectroscopy
(TDS) in a transmission configuration [16] without resort-
ing to KK analysis (for details of the experimental setup for
the present THz TDS, see Sec. II Ref. [16]).

The temperature dependence of resistivity for Nd2Ir2O7

(x ¼ 0) is shown in Fig. 1(a), along with those for x¼0:02,
0.05, and 0.10. First, we focus on the MIT in Nd2Ir2O7

(x ¼ 0). With lowering temperature, the resistivity for
x ¼ 0 monotonically decreases down to 50 K and then
shows a divergent behavior below 30 K. In Fig. 1(b), we
show the temperature dependence of magnetization mea-
sured by field-cooling (FC) and zero-field-cooling (ZFC)
processes. The magnetization curve measured in the FC
process shows an upturn at TN, while that measured in the
ZFC process shows no clear anomaly with previous reports
[10]. As shown in Fig. 1(g), the ordering of the Ir-5d

moment manifests itself as a !-type peak at TN in the
specific heat curve for x ¼ 0. A recent neutron scattering
study indicates that the Nd-4f moment starts to order
below 15 K [11]. Since the energy of the crystal field
(CF) splitting between the ground state and the first excited
state is estimated to be 26 meV (& 300 K) [11], a broad
hump-like structure around 10 K may be attributed not to
CF excitation but to the magnetic ordering of Nd-4f mo-
ments. We note that the entropy change except the contri-
bution from phonon below 20 K is larger than R ln2, the
value corresponding to the entropy released by the mag-
netic ordering of Nd-4f moments as observed in spin-ice
systems [17]. The excess entropy change may originate
from the coupled Ir-5d moments, reflecting the exchange
interaction between Nd-4f and Ir-5d moments.
Figure 2(a) displays the optical conductivity spectra for

Nd2Ir2O7 (x ¼ 0) at various temperatures above 50 K as
well as at 10 K. At 290 K, a broad absorption band is
observed around 1 eV, as shown in the inset to Fig. 2(a).
Since the optical conductivity spectra above 1 eV show
minimal temperature dependence, we henceforth focus on
the low energy range below 1 eV. At room temperature, the
spectral shape below 0.5 eV is fairly flat except for the
sharp peaks due to the optical phonons below 0.08 eV,

FIG. 2 (color online). (a) Optical conductivity spectra at vari-
ous temperatures for Nd2Ir2O7. The filled circles denote dc
conductivities. The inset shows the spectra at 290 K and 50 K
up to 2 eV. The triangle indicates the absorption band around
1 eV. (b) Optical conductivity spectra below 50 K. The inset
show the magnified view of the spectra in the far-infrared region
as deduced by time-domain terahertz spectroscopy.

PRL 109, 136402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those



Motivations

• What is the minimum low energy electronic structure of R2Ir2O7? Especially for 
more metallic ones.

• Quadratic Fermi node in Pr2Ir2O7  (ab initio electronic structure calculation and 
APRES data)

spontaneously broken at the edge. The stability
of the helical edge states has been confirmed in
extensive numerical calculations (13, 14). The
time-reversal property leads to the Z2 classifica-
tion (10) of the QSH state.

States of matter can be classified according
to their topological properties. For example,
the integer quantum Hall effect is characterized
by a topological integer n (15), which deter-
mines the quantized value of the Hall con-
ductance and the number of chiral edge states.
It is invariant under smooth distortions of the
Hamiltonian, as long as the energy gap does
not collapse. Similarly, the number of helical
edge states, defined modulo 2, of the QSH state
is also invariant under topologically smooth
distortions of the Hamiltonian. Therefore, the
QSH state is a topologically distinct new state
of matter, in the same sense as the charge
quantum Hall effect.

Unfortunately, the initial proposal of the
QSH in graphene (7) was later shown to be
unrealistic (16, 17), as the gap opened by the
spin-orbit interaction turns out to be extremely
small, on the order of 10−3 meV. There are also
no immediate experimental systems available
for the proposals in (8, 18). Here, we present
theoretical investigations of the type III semi-
conductor quantum wells, and we show that the
QSH state should be realized in the “inverted”
regime where the well thickness d is greater
than a certain critical thickness dc. On the basis
of general symmetry considerations and the
standard band perturbation theory for semi-
conductors, also called k · p theory (19), we
show that the electronic states near the Γ point
are described by the relativistic Dirac equation in
2 + 1 dimensions. At the quantum phase
transition at d = dc, the mass term in the Dirac
equation changes sign, leading to two distinct U
(1)-spin and Z2 topological numbers on either
side of the transition. Generally, knowledge of
electronic states near one point of the Brillouin
zone is insufficient to determine the topology of
the entire system; however, it does allow robust
and reliable predictions on the change of
topological quantum numbers. The fortunate
presence of a gap-closing transition in the HgTe-
CdTe quantum wells therefore makes our theoret-
ical prediction of the QSH state conclusive.

The potential importance of inverted band-
gap semiconductors such as HgTe for the spin
Hall effect was pointed out in (6, 9). The central
feature of the type III quantum wells is band
inversion: The barrier material (e.g., CdTe) has a
normal band progression, with the s-type Γ6

band lying above the p-type Γ8 band, and the
well material (HgTe) having an inverted band
progression whereby the Γ6 band lies below the
Γ8 band. In both of these materials, the gap is
smallest near the Γ point in the Brillouin zone
(Fig. 1). In our discussion we neglect the bulk
split-off Γ7 band, as it has negligible effects on
the band structure (20, 21). Therefore, we re-
strict ourselves to a six-band model, and we start

with the following six basic atomic states per
unit cell combined into a six-component spinor:

Y ¼ jΓ6, 1 2〉, jΓ6, −1
2〉, jΓ8, 3 2〉,=
!!"

jΓ8, 1 2〉, jΓ8, −1
2〉, jΓ8, −3

2〉=
#!!

ð1Þ

In quantum wells grown in the [001] direc-
tion, the cubic or spherical symmetry is broken
down to the axial rotation symmetry in the plane.
These six bands combine to form the spin-up
and spin-down (±) states of three quantum well
subbands: E1, H1, and L1 (21). The L1 subband
is separated from the other two (21), and we
neglect it, leaving an effective four-band model.
At the Γ point with in-plane momentum k|| =
0, mJ is still a good quantum number. At this
point the |E1, mJ〉 quantum well subband state
is formed from the linear combination of the
|Γ6, mJ = ±1 2= 〉 and |Γ8, mJ = ±1 2= 〉 states, while
the |H1, mJ〉 quantum well subband state is
formed from the |Γ8, mJ = ± 3

2= 〉 states. Away
from the Γ point, the E1 and H1 states can mix.
Because the |Γ6, mJ = ±1 2= 〉 state has even par-
ity, whereas the |Γ8, mJ = ±3

2= 〉 state has odd
parity under two-dimensional spatial reflection,
the coupling matrix element between these two
states must be an odd function of the in-plane
momentum k. From these symmetry consid-
erations, we deduce the general form of the ef-
fective Hamiltonian for the E1 and H1 states,
expressed in the basis of |E1, mJ = 1

2= 〉, |H1,
mJ = 3

2= 〉 and |E1,mJ = – 1
2= 〉, |H1,mJ = – 3

2= 〉:

Heff ðkx, kyÞ ¼
HðkÞ 0
0 H*ð−kÞ

$ %
,

HðkÞ ¼ eðkÞ þ diðkÞsi ð2Þ

where si are the Pauli matrices. The form of
H*(−k) in the lower block is determined from
time-reversal symmetry, and H*(−k) is uni-
tarily equivalent to H*(k) for this system (22).
If inversion symmetry and axial symmetry
around the growth axis are not broken, then
the interblock matrix elements vanish, as
presented.

We see that, to the lowest order in k, the
Hamiltonian matrix decomposes into 2 × 2
blocks. From the symmetry arguments given
above, we deduce that d3(k) is an even function
of k, whereas d1(k) and d2(k) are odd functions
of k. Therefore, we can generally expand them
in the following form:

d1 þ id2 ¼ Aðkx þ ikyÞ ≡ Akþ

d3 ¼ M − Bðk2x þ k2yÞ, eðkÞ ¼ C − Dðk2x þ k2yÞ
ð3Þ

where A, B, C, and D are expansion parameters
that depend on the heterostructure. The
Hamiltonian in the 2 × 2 subspace therefore
takes the form of the (2 + 1)-dimensional Dirac
Hamiltonian, plus an e(k) term that drops out
in the quantum Hall response. The most im-
portant quantity is the mass or gap parameter
M, which is the energy difference between the
E1 and H1 levels at the Γ point. The overall
constant C sets the zero of energy to be the
top of the valence band of bulk HgTe. In a
quantum well geometry, the band inversion in
HgTe necessarily leads to a level crossing at
some critical thickness dc of the HgTe layer.
For thickness d < dc (i.e., for a thin HgTe

Fig. 1. (A) Bulk energy
bands of HgTe and CdTe
near the G point. (B)
The CdTe-HgTe-CdTe
quantum well in the
normal regime E1 > H1
with d < dc and in the
inverted regime H1 >
E1 with d > dc. In this
and other figures, G8/H1
symmetry is indicated in
red and G6/E1 symmetry
is indicated in blue.
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pure 2D surface effect and only as a consequence of bulk
topology.

It is useful to try to understand this result from a con-
tinuum k ·P perspective. HgTe has a nontrivial topological
structure because the band structure is only “inverted” near
the ! point. The fact that an occupied band at this point has
!6 character means that the Z2 invariant picks up an extra
factor of −1 !if we ignore the small BIA" when compared to
CdTe !or vacuum", making it nontrivial. Due to the strong
orbital mixing, the !6 character is washed out as one moves
away from the ! point, and at the other special TR invariant
points, the inverted structure is absent. Therefore, we should
be able to understand the topological properties from the
band structure only near the ! point. The key point is to
consider the six-band Kane model24 instead of just the re-
duced four-band Luttinger model. If we only keep the bands
in the Luttinger model, the topological structure is absent
because the inclusion of the !6 band is essential. In the pres-
ence of uniaxial compressive strain along the !001" direction,
an insulating gap opens between the heavy-hole !HH" and
light-hole !LH" bands by pushing the HH band downward in

energy. For a moment, we will ignore the HH band and focus
only on the LH and !6 !E" band. From the form of the Kane
model, the coupling of the LH and E bands near the ! point
is exactly a 3D anisotropic massive Dirac Hamiltonian !if we
ignore BIA and keep the leading order in k". The Dirac
Hamiltonian preserves parity symmetry and we can label the
bands by parity eigenvalues. Since the coupling is linear,
there must be one even !doubly degenerate" and one odd
!doubly degenerate" band. We expect that when the odd par-
ity band lies below the even band, then there will be a non-
trivial Z2 invariant which indicates an odd number of pairs of
surface states that cross at TR invariant points.13 The pres-
ence of the HH band will change the features of the spectrum
but it does not change the presence of the surface states, or
their protected crossing, as long as the strain gap is open.
The system will remain a 3D topological insulator when the
HH band is coupled and when BIA terms are added, as long
as the bulk gap does not close. To show evidence of our
statements, we solve the six-band Kane model on a cylinder.
First, we solve the model with the HH band completely de-
coupled from the LH and E bands #Fig. 6!a"$. Here, the HH
band remains flat and is split from the LH band by the strain
gap. In the gap, there are clear, linearly dispersing surface
states which traverse the gap between the LH and E bands.
Nothing occurs at the other special points in the BZ so this is
a strong topological insulator. Turning on the coupling to the
HH band changes features of the band structure but does not
change the topology of the state since the gap between the
LH and HH bands never closes. It is clear from Fig. 6!b" that
even when the HH band is fully coupled, the system is still a
strong topological insulator with surface states crossing at !.

More rigorously, the nontrivial bulk topology leading to
the surface states is characterized by four Z2 invariants.5,6,13

According to Ref. 13, the Z2 invariants can be understood in
terms of “time-reversal polarization,” "a= #1, which is de-
fined for the four TR symmetric momenta $a, a=1,2 ,3 ,4, in
a certain 2D projection of the BZ. Along a path from $a to
$b, the surface state Kramer pairs will switch partners if and
only if "a"b=−1, as shown in Figs. 7!a" and 7!b". From the
surface state dispersion of HgTe shown in Fig. 3, one can see
that a pair of surface states at the ! point splits and merges
separately into bulk bands at finite momentum, which means
that they become Kramers partners of other states at the other

FIG. 5. !Color online" Intensity color plot in the energy-
momentum plane for the density of states at the HgTe /CdTe inter-
face. The uniaxial strain is applied along the #001$ direction by
choosing the c /a ratio to be 0.98, and the HgTe /CdTe interface is
chosen along the #100$ direction. We have taken the logarithm of
the intensity so that nonzero intensity clearly stands out.
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FIG. 6. !Color online" Band structure near the ! point for !a" decoupled HH band and !b" full HH band coupling. Surface sates are
located in the bulk gap in both subfigures and are shown in red. Gap due to strain is artificially large so that surface states are clearly visible.
However, the states will exist for any finite compressive strain.
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Quadratic band touching:
HgTe

With pressure/strain:
Gapped bulk phase
Gapless HgTe/CdTe interfacial state

HgTe quantum wells:
Analogy with negligible correlation.

Strain/Pressure

B.A. Bernevig, et al. Science 2006



Motivations

• Tune the ground state ? If so, how?
     Goal: Topological insulators, quantum anomalous Hall effect, Weyl semimetal
• Growing techniques such as MBE and PLD,  magnetic and pressure 

measurement have made tuning more accessible.

�	����
���

AF Weyl 
semimetal

Topological 
insulator

Quantum 
spin HallU>Uc

strain

confinement

quadratic band touching

Coulomb

(HgTe)

(Pr2Ir2O7)

Strong Correlations

!"#$%&'()*$##+',"+-�

./�

./�

ky (kz )

kx

E 

Fermi node
Γ

Fig. 1. Schematic diagram illustrating the quadratic Fermi node state of Pr2Ir2O7, and its role

as a parent of interacting topological phases. In the lower part of the diagram, the bottom half

of the blue circle and its reflection form a caricature of the quadratically dispersion conduction

and valence bands touching at the zone center, while at the same time the darker blue upper cir-

cle suggests how Pr2Ir2O7, with non-negligible Coulomb interactions, is a strongly correlated

non-Fermi liquid analog of HgTe, shown as a pale blue reflection. Arrows indicate the pertur-

bations which convert the nodal non-Fermi liquid state to diverse topological phases: uniaxial

9

Moon et al, PRL 2013



Motivations

• What are the important microscopic parameters which drive the 
metal-insulator transition? What drives MIT?

11

(a)

⇥
⇥

⇥
⇥ ⇥ ⇥

⇥ ⇥

⇥

⇥

��

LuYb
Ho
Y
DyTbGdEu Sm

Nd

Pr

MetalNon⇥Metal

Magnetic Ins.

100 105 110 115
0

50

100

150

200

R3� ionic radius �pm⇥

T
�K⇥

MetalMetalNon

Pr

Nd

Sm
GdTbDyHoYbLu

Y

Eu

Magnetic Ins.

(b)

FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those

K. Matsuhira et al, JPSJ 2011
W. Witczak-Krempa et al, ARCMP 2013

S210 J. B. TORRANCE et al.

10-4—
403K

O
C0
N 10—5N

CL

10 6

RNiOg

(a)

1.005—

1.000
Nd

0.995
o 1.0cC:OQe0 oEa
OL
0
CL

0
0

I
I

Pyl
1

I I I I

100 200 300 400
Temperature (K)

(b)

(c)

500

FIG. I. (u) The resistivity of Lu-, Pr-, Nd-, and SmNi03
showing their insulator-metal transitions [after Lacorre et al.
(Ref. 13)]; (b) the temperature dependence of the unit-cell
volume for Pr-, Nd-, and SmNi03 showing the extra contraction
occurring upon entering the metallic state [after Garcia-Munoz
eral. (Ref. I5)]; and (c) the paramagnetic fraction as deter-
mined from muon -spin-rotation experiments, which drops sud-
denly at the antiferromagnetic ordering temperature.

ln order to study the relation between the magnetic-
ordering temperatures and the insulator-metal transition,
we have carried out positive muon-spin relaxation
(@+SR)experiments at TRIUMF on several members of
this series. From these experiments, one can determine'
the volume fraction of the sample that is paramagnetic,
which is shown as a function of temperature in Fig. 1(c)
for the Pr, Nd, Sm, and Eu compounds. (The large back-
ground for EuNi03 occurred because the small sample al-
lowed -40% of the muon beam to be stopped in the sub-
strate. ) Similar data are obtained for the solid solutions.
The initial drop in the paramagnetic fraction measures the
antiferromagnetic ordering temperature, TN. The temper-
atures' (135 and 195 K) found for the Pr and Nd com-
pounds are in excellent agreement with those from con-
ductivity' and neutron measurements of the change in
lattice constants. ' ' In sharp contrast, the antiferromag-
netic transition temperatures (225 and 205 K) found for
the Srn and Eu compounds are dramatically lower than
those found (at 400 and 480 K) for their respective
insulator-metal transitions.
The general phase diagram for the series RNi03 is
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FIG. 2. Insulator-metal-antiferromagnetic phase diagram for
RNiO& as a function of the tolerance factor and (equivalently)
the ionic radius of the rare earth (R).

shown in Fig. 2, where the observed transition tempera-
tures are plotted as a function of the tolerance factor, t,
where t —= (dR o)/J2(dN; o). As discussed below, the
variation of t in Fig. 2 for the series RNi03 is caused by
changes in the size of the rare-earth ion: increasing size
gives rise to increasing t. Concentrating first on the con-
ductivity behavior, the insulator-metal transition tempera-
tures found by Lacorre etal. ' are shown as large open
squares in Fig. 2, along with the data point (large trian-
gle) for metallic'' LaNi03. The data reported here for
EuNi03 and the solid solutions Sml —,Nd, Ni03 and
Ndi —„La„Ni03 are plotted as the large open circles in
Fig. 2. The data for the solid solution Prl —,La, Ni03
(not shown) fall near the same curve. The magnetic tran-
sitions from p+SR measurements are also plotted in Fig.
2 as the small solid circles, together with earlier ' ' data.
It is evident from Fig. 2 that the transitions observed in

RNi03 form a coherent pattern as a function of the toler-
ance factor (t). These transitions separate three distinct
regimes: an antiferromagnetic insulator, a paramagnetic
insulator, and a metal. These three regimes of this ma-
terials system are all found in SmNi03, for example. At
room temperature, it is a paramagnetic insulator, but
loses its paramagnetism below 225 K [Fig. 1(c)] as it
enters the antiferromagnetic phase. ' Above 400 K it
loses its insulating character [Fig. 1(a)l as it crosses the
insulator-metal transition into the metallic phase. At low
temperatures, the Ni spins in NdNi03 (and PrNi03) are
also antiferromagnetically ordered, but with increasing
temperature this order disappears before the expected Tiv
because the electrons become delocalized at the (low)
insulator-metal transition. The insulating and metallic re-
gimes in Fig. 2 are separated by a well-defined boundary
or transition, the temperature of which decreases almost
linearly with t (or rare-earth radius). On the other hand,
the magnetic-phase boundary rises as t increases, until it
reaches the insulator-metal transition, beyond which the
antiferromagnetic order appears not to persist.
The GdFe03 structure of the RNi03 compounds "is

shown schematically in the inset of Fig. 2. Regular Ni06
R2Ir2O7

RNiO3

RTiO3

Lacorre et al, PRB 1992
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• Ir-O-Ir bonds are distorted, compressed along 111 direction
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• Ir-O-Ir bonds are distorted, compressed along 111 direction

• Ir-O-Ir bond angle   Y: ~129˚;  Pr: ~132˚
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• Structure of pyrocholre iridate R2Ir2O7 :
     FCC corner sharing tetrahedra

• Ir-O-Ir bonds are distorted, compressed along 111 direction
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S210 J. B. TORRANCE et al.

10-4—
403K

O
C0
N 10—5N

CL

10 6

RNiOg

(a)

1.005—

1.000
Nd

0.995
o 1.0cC:OQe0 oEa
OL
0
CL

0
0

I
I

Pyl
1

I I I I

100 200 300 400
Temperature (K)

(b)

(c)

500

FIG. I. (u) The resistivity of Lu-, Pr-, Nd-, and SmNi03
showing their insulator-metal transitions [after Lacorre et al.
(Ref. 13)]; (b) the temperature dependence of the unit-cell
volume for Pr-, Nd-, and SmNi03 showing the extra contraction
occurring upon entering the metallic state [after Garcia-Munoz
eral. (Ref. I5)]; and (c) the paramagnetic fraction as deter-
mined from muon -spin-rotation experiments, which drops sud-
denly at the antiferromagnetic ordering temperature.

ln order to study the relation between the magnetic-
ordering temperatures and the insulator-metal transition,
we have carried out positive muon-spin relaxation
(@+SR)experiments at TRIUMF on several members of
this series. From these experiments, one can determine'
the volume fraction of the sample that is paramagnetic,
which is shown as a function of temperature in Fig. 1(c)
for the Pr, Nd, Sm, and Eu compounds. (The large back-
ground for EuNi03 occurred because the small sample al-
lowed -40% of the muon beam to be stopped in the sub-
strate. ) Similar data are obtained for the solid solutions.
The initial drop in the paramagnetic fraction measures the
antiferromagnetic ordering temperature, TN. The temper-
atures' (135 and 195 K) found for the Pr and Nd com-
pounds are in excellent agreement with those from con-
ductivity' and neutron measurements of the change in
lattice constants. ' ' In sharp contrast, the antiferromag-
netic transition temperatures (225 and 205 K) found for
the Srn and Eu compounds are dramatically lower than
those found (at 400 and 480 K) for their respective
insulator-metal transitions.
The general phase diagram for the series RNi03 is
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FIG. 2. Insulator-metal-antiferromagnetic phase diagram for
RNiO& as a function of the tolerance factor and (equivalently)
the ionic radius of the rare earth (R).

shown in Fig. 2, where the observed transition tempera-
tures are plotted as a function of the tolerance factor, t,
where t —= (dR o)/J2(dN; o). As discussed below, the
variation of t in Fig. 2 for the series RNi03 is caused by
changes in the size of the rare-earth ion: increasing size
gives rise to increasing t. Concentrating first on the con-
ductivity behavior, the insulator-metal transition tempera-
tures found by Lacorre etal. ' are shown as large open
squares in Fig. 2, along with the data point (large trian-
gle) for metallic'' LaNi03. The data reported here for
EuNi03 and the solid solutions Sml —,Nd, Ni03 and
Ndi —„La„Ni03 are plotted as the large open circles in
Fig. 2. The data for the solid solution Prl —,La, Ni03
(not shown) fall near the same curve. The magnetic tran-
sitions from p+SR measurements are also plotted in Fig.
2 as the small solid circles, together with earlier ' ' data.
It is evident from Fig. 2 that the transitions observed in

RNi03 form a coherent pattern as a function of the toler-
ance factor (t). These transitions separate three distinct
regimes: an antiferromagnetic insulator, a paramagnetic
insulator, and a metal. These three regimes of this ma-
terials system are all found in SmNi03, for example. At
room temperature, it is a paramagnetic insulator, but
loses its paramagnetism below 225 K [Fig. 1(c)] as it
enters the antiferromagnetic phase. ' Above 400 K it
loses its insulating character [Fig. 1(a)l as it crosses the
insulator-metal transition into the metallic phase. At low
temperatures, the Ni spins in NdNi03 (and PrNi03) are
also antiferromagnetically ordered, but with increasing
temperature this order disappears before the expected Tiv
because the electrons become delocalized at the (low)
insulator-metal transition. The insulating and metallic re-
gimes in Fig. 2 are separated by a well-defined boundary
or transition, the temperature of which decreases almost
linearly with t (or rare-earth radius). On the other hand,
the magnetic-phase boundary rises as t increases, until it
reaches the insulator-metal transition, beyond which the
antiferromagnetic order appears not to persist.
The GdFe03 structure of the RNi03 compounds "is

shown schematically in the inset of Fig. 2. Regular Ni06

RNiO3

159˚147˚
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• Structure of pyrocholre iridate R2Ir2O7 :
     FCC corner sharing tetrahedra

• Ir-O-Ir bond are distorted, compressed along 111 direction

• Ir-O-Ir bond angle   Y: ~129˚;  Pr: ~132˚

• Ir-O bond length     Y: 1.997Å ;  Pr: 2.014Å 

• Ir-Ir bond length     Y: 3.599Å ;  Pr: 3.677Å 



Review on Pyrochlore Iridates R2Ir2O7

• Ionic picture: Ir4+ 5d5

• Jeff=1/2 doublet

!ð!Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5# 10$10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  ml¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  ml¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO ) 0:4 eV) is insulat-
ing while Sr2RhO4 (#SO ) 0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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Paramagnetic band structure calculation

• Focus on Pr, Nd, Y

• Various functional to explore the trend: GGA+SO, LDA+SO, mBJ+SO

• All electronic potential Wien2k
11
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FIG. 3. a) The main panel shows the resistivity, and field cooled (FC) and zero field cooled (ZFC)
susceptibilities for Eu-227, while the insert the spontaneous muon oscillation frequency. Data adapted
from Refs. 80 and 81. b) Phase diagram for the pyrochlore iridates R-227 based on transport and
magnetism measurements. (This is a supplemented and modified version of the diagram found in Ref. 78.)
The R-elements that do not have a local magnetic moment are emphasized in bold magenta. The only
non-lanthanide, R = Y, is denoted by a square.

manifold. Therefore, the SOC � splits the t
2g

spinful manifold into a higher energy J
e↵

= 1/2

doublet and a lower J
e↵

= 3/2 quadruplet. In an ionic picture, since Ir4+ has 5 d-electrons, the

J
e↵

= 1/2 doublet is half-filled, and only this orbital is involved in the low energy electronic

structure. More generally, if trigonal splitting is included, the J
e↵

= 3/2 levels are split and mixed

with the J
e↵

= 1/2 ones. In the general case, there is a highest Kramers doublet, whose character

varies with the ratio of SOC to trigonal splitting, between a J
e↵

= 1/2 doublet and a S = 1/2 one.

A band structure view is complementary to the ionic picture as we now discuss. If only the

highest doublet is involved, we expect 4 two-fold degenerate bands near the Fermi energy, as

there are 4 Ir per unit cell. As discussed by Wan et al.

46 and Yang et al.,51 it is instructive to

consider their structure at the � point. Due to cubic symmetry, the 8 Bloch states at this point

decompose into 2 two-dimensional irreducible representations (irreps) and 1 four-dimensional irrep.

By electron counting, these bands should be half-filled, so that if the order of these irreps, in terms

of degeneracies, is 2-2-4 or 4-2-2, a band insulating state may occur, while if the order is 2-4-2,

the 4-dimensional irrep must be half-filled and hence the system cannot be gapped at the band

structure level (see the lowest panel of Figure 5(b)). The former situation was obtained by Ref. 7

based on a phenomenological but ad-hoc Hubbard model for small U . They found a transition from

a semi-metallic ground state to a TI one with increasing the ratio of SOC to hopping. Subsequently,

by ab initio methods, Wan et al. found46 the latter, 2-4-2, ordering of irreps in Y-227. In this case,

a TI is impossible, but other topological phases can occur with increasing correlations. For those

K. Matsuhira et al, JPSJ 2011
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Comparison: Pr2Ir2O7 and Y2Ir2O7
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4-fold quadratic band touching is protected by TR and cubic symmetry.
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•Not band width 
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•Very subtle changes 
near Ef
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The bigger the rare earth 
ionic radius is, the smaller 
the electron and hole pocket 
Fermi surface is.

Why is Pr metallic and Y not?
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• GGA+SO calculations show Pr2Ir2O7 is 
very close to quadratic band touching at the 
Fermi level.

• 4-fold degeneracy at the Γ point is 
protected by the cubic lattice symmetry, 
everywhere else gapped.

•GGA/LDA is well known for 
underestimating gaps. 

•Modified Becke-Johnson potential gives band 
gap very close to experiments/GW 
calculation.

•Widely used for small gap semiconductor, 
topological insulator.
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•Quadratic band 
touching at the 
Fermi level!

•Universal trend： 
larger R 
corresponds to 
smaller FS and 
closer to quadratic 
band touching at 
Ef regardless of 
methods
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• Direct experimental evidence is strongly desired.

• ARPES result confirms the quadratic Fermi node!

Quadratic Band Touching State
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• Direct experimental evidence is strongly desired.

• ARPES result confirms the quadratic Fermi node!

Quadratic Band Touching State
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• k.p theory, Luttinger Hamiltonian around Γ point with cubic 

symmetry

• Jeff= 3/2 matrix

• Similar to electronic structure of semiconductors with diamond 

structure and zinc blende structure in terms of the k·p 

perturbation theory

• Effective mass fitting to the band structure:
         M0 = 19.97 me, m = 6.30 me , Mc = 7.44 me
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FIG. 1. Phase diagram of the perturbed LAB in the space
of renormalized strain to Zeeman field ratio, � ⌘ (�/H)

R

,
versus cubic Zeeman angle, ✓. Here“Weyl” denotes the (dou-
ble) Weyl semimetal, “Ins.” insulator, and “Metal” a metallic
phase which has Weyl points shifted from the Fermi energy
in the region below the dashed line. For H = 0, the insulator
is a topological insulator.

j = 3/2 matrices) transforming as the T2 representation
of the cubic group. In our minimal model, we assume
only these states close to � are important. Then k · p
theory and cubic symmetry determines the band struc-
ture in its vicinity to be precisely described by the Lut-
tinger Hamiltonian with three e↵ective mass parameters
[16, 23],

H0(k) =
k2

2M̃0

+
5
4k

2 � (~k · ~J)2
2m

� (k2xJ
2
x + k2yJ

2
y + k2zJ

2
z )

2Mc
.

This describes doubly degenerate bands with energy

E±(k) =
k2

2M0
±

s

✓

k2

2m

◆2

+
m+ 2Mc

4mM2
c

pc(k), (1)

where pc(k) =
P

i k
4
i � P

i 6=j k
2
i k

2
j and M0 =

(4McM̃0)/(4Mc�5M̃0). Henceforth we assume M0 > m,
which describes conduction and valence bands touching
quadratically at E = k = 0, where the chemical potential
for the undoped material crosses.

The LAB is obtained by adding to this the long-range
Coulomb interaction. We implement the latter by a
scalar potential ', which in the Euclidean path integral
formalism gives the action

SL =

Z

d⌧ddx
n

 †
h

@⌧ � ie'+ Ĥ0

i

 +
c0
2
(@i')

2
o

,(2)

with Ĥ0 = H0(�i~r) and c0 = 1/4⇡. Here  is a four-
component spinor, but subsequently we will artificially
add an additional U(Nf ) flavor index, which allows a
check on our calculations by large Nf methods; the phys-
ical case is Nf = 1. Eq. (2) contains in addition to the

three mass parameters, the Coulomb coupling constant
e. For e = 0, scale invariance is manifest, with the scaling
dimensions [x�1] = 1 , [⌧�1] = z , [ ] = d

2 , [
1
m ] = z � 2,

['] = (d+ z� 2)/2. Here we introduce the dynamic crit-
ical exponent (z), which is naturally z = 2 with e = 0,
but will become non-trivial with interactions.

Directly in the physical case d = 3, the dimension of
the coupling constant is [e2] = 1, so Coulomb interactions
are strongly relevant. Therefore we employ the " = 4� d
expansion to control the RG analysis. As familiar from
quantum electrodynamics, three one loop Feynmann di-
agrams contribute to leading order in ": the fermion self-
energy, boson self-energy, and vertex correction. Here we
show that the relevance of Coulomb interactions signals,
rather than a flow to strong coupling and a symmetry
breaking instability, the formation of a new stable inter-
acting fixed point, which describes the critical non-Fermi
liquid LAB state (Abrikosov’s analysis tacitly assumes
this stability).

The RG is carried out perturbatively in e, but non-
perturbatively in the mass parameters. Thus a full treat-
ment gives non-trivial and complete beta functions for
the two dimensionless mass ratios m/M0, m/Mc; these
are given in the Supplementary Material. The analysis of
the full RG shows, however, that there is a single stable
isotropic fixed point corresponding to m/M0 = m/Mc =
0, so for simplicity we quote in the main text only the
results in the vicinity of this point.

In this limit, the leading contribution to the bosonic
self energy becomes

1

Nf
⌃'(q, 0) = �(2m)e2



Z

ddk

(2⇡)d
1

k4

�

⇥ q2, (3)

where we took the ! ! 0 limit because frequency de-
pendence is subdominant. The divergence should be ab-
sorbed by rescaling the bosonic field, ' ! e�⌘bd`' upon
reduction of the hard momentum cuto↵ ⇤ ! e�d`⇤,
which defines the RG parameter `. This gives the bosonic
anomalous dimension ⌘b = 2Nfu [24], where the dimen-

sionless coupling constant is u = me2

8⇡2c0⇤4�d , which has
the physical meaning in d = 3 of the ratio of the real
space cuto↵ to the e↵ective Bohr radius. The frequency
dependence of the one loop fermionic self-energy and the
vertex correction both vanish, the result of a Ward iden-
tity. For k 6= 0, the fermion self-energy gives mass cor-
rections, e.g. �(1/m) = 8u/(15m) ⇥ d` to leading order.
Detailed analysis is given in the Supplementary Material.

Given these calculations, we choose z = 2 � 8u/15 to
keep the mass m fixed, which gives the RG equations, to
lowest order in m/Mc,m/M0:

d

d`
u = "u� 30Nf + 8

15
u2, (4)

d
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.
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• k.p theory, Luttinger Hamiltonian around Γ point with cubic 

symmetry

• Strain/pressure will break the cubic symmetry 

• Consider strain/pressure along (111) direction

• δ>0, opens up a gap at Γ point (topological insulator?)

δ<0, bands crossing along (111) direction
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of renormalized strain to Zeeman field ratio, � ⌘ (�/H)
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,
versus cubic Zeeman angle, ✓. Here“Weyl” denotes the (dou-
ble) Weyl semimetal, “Ins.” insulator, and “Metal” a metallic
phase which has Weyl points shifted from the Fermi energy
in the region below the dashed line. For H = 0, the insulator
is a topological insulator.

j = 3/2 matrices) transforming as the T2 representation
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only these states close to � are important. Then k · p
theory and cubic symmetry determines the band struc-
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i

 +
c0
2
(@i')

2
o

,(2)
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quantum electrodynamics, three one loop Feynmann di-
agrams contribute to leading order in ": the fermion self-
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rather than a flow to strong coupling and a symmetry
breaking instability, the formation of a new stable inter-
acting fixed point, which describes the critical non-Fermi
liquid LAB state (Abrikosov’s analysis tacitly assumes
this stability).
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reduction of the hard momentum cuto↵ ⇤ ! e�d`⇤,
which defines the RG parameter `. This gives the bosonic
anomalous dimension ⌘b = 2Nfu [24], where the dimen-

sionless coupling constant is u = me2

8⇡2c0⇤4�d , which has
the physical meaning in d = 3 of the ratio of the real
space cuto↵ to the e↵ective Bohr radius. The frequency
dependence of the one loop fermionic self-energy and the
vertex correction both vanish, the result of a Ward iden-
tity. For k 6= 0, the fermion self-energy gives mass cor-
rections, e.g. �(1/m) = 8u/(15m) ⇥ d` to leading order.
Detailed analysis is given in the Supplementary Material.

Given these calculations, we choose z = 2 � 8u/15 to
keep the mass m fixed, which gives the RG equations, to
lowest order in m/Mc,m/M0:

d

d`
u = "u� 30Nf + 8

15
u2, (4)

d

d`

⇣

m
Mc

⌘

= �0.152u
⇣

m
Mc

⌘

,
d

d`

⇣

m
M0

⌘

= � 8
15u

⇣

m
M0

⌘

.
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From the first equation above we find the fixed point
coupling and hence dynamical exponent,

u⇤ =
15

30Nf + 8
" , z = 2� 4

15Nf + 4
", (5)

and since u⇤ > 0, the second line in Eq. (4) implies both
m/M0 and m/Mc are irrelevant. This establishes the
existence and nature of the stable, isotropic fixed point
describing the LAB phase. As a check, we have carried
out a large Nf expansion, which gives the same bosonic
anomalous dimension as in the " expansion at the one-
loop level, supporting the stability of the LAB phase.

The presence of the stable interacting fixed point can
be understood physically as a balance of partial dynam-
ical screening of the Coulomb interactions by electron-
hole pairs and mass enhancement of the same quasipar-
ticles by pairs. This situation is in sharp contrast to the
case of a vanishing indirect band gap, for which to lead-
ing order in the long-range Coulomb interaction electrons
and holes are separately conserved, so there is no screen-
ing by virtual electron-hole pairs, and exciton formation
destabilizes the putative gapless state[25].

Using the RG, we can evaluate the anomalous di-
mension of any physical operator. By charge conser-
vation, [ † ] = d. Due to the isotropy of the fixed
point, there are only two non-trivial values for the
other charge-conserving fermion bilinears. We obtain ,
[ †�a ] = d+⌘1 , [ †�ab ] = d+⌘12, , where �a are the
(time-reversal invariant) Dirac gamma matrices, �ab =
� i

2 [�a,�b] are time-reversal odd, and a, b = 1, 2, · · · , 5.
Using the standard operator insertion technique, we find
⌘1 = � 6

15Nf+4" and ⌘12 = � 3
15Nf+4". These operators

describe many physical observables, e.g. the “angular
momentum” operator Jz ⇠  †(��34� 1

2�12) . The nega-
tive anomalous dimension of these operators suggests the
a schematic picture of power-law excitons due to electron-
hole attraction. For pairing channels, we find positive
anomalous dimensions, consistent with this view. The
local pairing channel has ⌘pairing = u⇤

5 = 3
30Nf+8✏.

Using these results, we obtain thermodynamic re-
sponses such as the specific heat, cv ⇠ T d/z ⇡ T 1.7

and the spin susceptibility �(T ) ⇠ a+ b T (d�z+2⌘12)/z ⇡
a + b T 0.5, with some constants a, b. Interestingly,
the non-linear susceptibility �3 = @3M/@H3

�

�

H=0
⇠

T�(3z�4⌘12�d)/z ⇡ T�1.7 diverges, as in spin glasses but
with completely di↵erent physics. Comparing the scaling
of current and electric field gives the usual result [�ij ] =
d� 2. Consequently, the temperature and frequence de-
pendence of the conductivity is �(!, T ) ⇠ T 1/zF(!/T ),
and a clean, undoped LAB is therefore a power-law insu-
lator.

We now turn to the e↵ect of applied strain and Zee-
man field upon the LAB. These perturbations break
cubic/time-reversal symmetries, and thus destabilize the
LAB. Due to the isotropic nature of the LAB fixed point,

the response to the Zeeman field alone is to leading or-
der independent of its direction (the cubic mass 1/Mc

can be “dangerously irrelevant”, however – see below),
so we take it to lie along the (001) direction. We con-
sider for simplicity tetragonal strain which preserves C4

rotation about this axis (in the absence of Zeeman field,
the direction of strain is again unimportant). This leads
to the perturbations

H0 = ��(J2
z � 5

4
)�H(cos(✓)Jz + sin(✓)J3

z ), (6)

where � parametrizes the strain, h is the Zeeman field,
and ✓ controls the strength of the cubic Zeeman term
allowed by the cubic symmetry [26, 27]. Using the RG
results, the dimensions of these perturbations are [�] =
z�⌘1 ⇡ 2.1 and [H] = z�⌘12 ⇡ 1.9; i.e. strain is slightly
enhanced while Zeeman field is slightly suppressed by
interactions. However, both dimensions are positive and
close to 2, so that they are strongly relevant. They flow
to strong coupling under the RG, and the fate of the
system must be re-analyzed in the limit.

To do so, we assume, and check self-consistently, that
interactions have weak e↵ects at strong coupling, and
simply solve the quadratic Hamiltonian (with m/M0 =
m/Mc = 0) in the presence of the renormalized H0.
The result depends upon the dimensionless quantities
✓ and the renormalized coupling ratio � = (�/H)R ⇠
�/H(z�⌘1)/(z�⌘12). For H = 0 (� = 1), we have time-
reversal invariance, and we recover the known result that
strain � > 0 induces a gapped, 3d TI phase, as observed
in HgTe [19]. The situation in applied Zeeman field is

more interesting. Notice that for ~k = kẑ, Jz is a good
quantum number, and there is no level repulsion between
bands of di↵erent Jz. This allows (non-degenerate) bands
to cross along this axis, which indeed occurs when |�| is
not too large. Further analysis in the Supplementary Ma-
terial shows that these crossings correspond to a pair of
double Weyl points, with linear dispersion along the z axis
and quadratic dispersion normal to it. These points are
strength ±2 monopoles in momentum space. Away from
the kz axis, electron and hole pockets may accidentally
cross the Fermi energy. If this does not occur, one has
a pristine double Weyl semimetal, which occurs for the

angular range ✓1  ✓  ✓2, where ✓1 = � tan�1( 8+4
p
3

7
p
3+26

)

and ✓2 = tan�1( 8�4
p
3

7
p
3�26

) for � = 0, as shown in horizontal

axis of Fig. 1. When 0 < |�| < 1, we observe insulating,
double Weyl semimetal, and Weyl metal (with coexisting
electron-hole pockets) phases, as shown in Figure 1. Note
that in all these phases, the Coulomb interactions become
either unimportant (in the insulator), screened (in the
metal), or marginally irrelevant (in the Weyl semimetal),
justifying our treatment of the phase diagram to a first
approximation.

More subtle e↵ects may make small modifications to
this picture. Coulomb interactions can destabilize some

E.-G. Moon et al, PRL 2013

AIAO order parameter susceptibility
(Dated: November 12, 2013)

I. FORMALISM

Following notations of YB’s tight binding calcultion1, the kinetic part is

E±(k) =
k2

2M0
±

s
�k2(m+Mc) + 2�mMc

2mMc

�2

To capture the Fermi pockets near the L point, we use the parameters around

(t1 = 0.0815, t01 = �0.00753, t2 = �0.0418, t02 = 0.00245, t03 = �0.018).

The 2nd nearest neighbor spin-dependent hopping terms determine the pocket size.
From now on, we use the sublattice index for the tetrahedron sites. The kinetic Hamiltonian is

E±(k) =
k2

2M0
±
s

� k2

2m

�2
+

m+ 2Mc

4mM2
c

pc(k)+ (1)

The two matrices (HNN (k), HNNN (k)) are for the nearest neighbor and the next nearest neighbor hopping terms.
The energy eigenvalues and eigenvectors are

⇥HNN (k) +HNNN (k)
⇤ |k,↵ >= ✏↵(k)|k,↵ > ↵ = 1, 2, 3, ..., 8. (2)

The all-in all-out coupling in each tetrahedron is

HAIAO = �
⇣
c†1 [ẑ1 · �] c1 + c†2 [ẑ2 · �] c2 + c†3 [ẑ3 · �] c3 + c†4 [ẑ4 · �] c4

⌘
. (3)

The four unit vectors are for the local spin directions.

ẑ1 =
1p
3
(1, 1, 1) ẑ2 =

1p
3
(�1, 1, 1) ẑ3 =

1p
3
(1,�1, 1) ẑ4 =

1p
3
(1, 1,�1)

In terms of the matrix representation, the AIAO coupling matrix is

M =

0

B@

ẑ1 · � 0 0 0
0 ẑ2 · � 0 0
0 0 ẑ3 · � 0
0 0 0 ẑ4 · �

1

CA

The AIAO susceptibility is

�AIAO(i!n, q) =
1

V

X

k

8X

↵,�=1

(�1)
nF (✏↵(k)� µ)� nF (✏�(k + q)� µ)

i!n + ✏↵(k)� ✏�(k + q)
| < k,↵|M |k + q,� > |2 (4)

The finite frequency is used to regularize the divergence. The Fermi function (nF ) becomes the step function at zero
temperature. At the end of the day, we should take the limit (T,!n ! 0, q ! 0)

Summary

• Solve the Eqn (2) and obtain the eigenvectors and eigenvalues.

• Determine the chemical potential.

• Evaluate the Eqn (4).
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• Several tight-binding studies suggest that pressure would 

produce topological insulator.

• Ir 5d states are quite extended and a tight-binding model will 

require many parameters for a good fit. It will be interesting to 

see full ab initio calculation!

• Ab initio results show that Pr2Ir2O7 is closest to quadratic band 

touching at Fermi energy             it should be very sensitive to 

strain/pressure!

Quadratic Band Touching State

B.-J. Yang et al, PRB2010 D.A. Pesin et al, Nat phys (2010)

Modulation of interatomic distances between neighboring
Ir atoms results in the renormalization of the nearest-
neighbor hopping amplitudes. To understand the effect of
electron-phonon coupling on the ground-state properties of
the system, we consider a Hamiltonian given by

Hel-ph = !
i,n,!

""! − ##din!
† din! +

1
2!

i
!
n,m

Kn,m$n,m
2

+ !
$ij%

!
n,n!

!
!,!!

din!
† Tn!,n!!!"&$n,n!'#djn!!! + H.c.,

"16#

where $n,n! indicates modulation of the hopping amplitude
between neighboring nth and n!th Ir atoms. Specifically, we
assume that Tn!,n!!!"&$n,n!'#=Tn!,n!!!"&$n,n!=0'#"1−$n,n!#.
This is equivalent to scaling of ta and te to ta"1−$n,n!# and
te"1−$n,n!# between neighboring sites n and n! (see Eqs. "10#
and "12#). Since ta% te%!pd&

2 , this approximation captures
the change in the overlap integral between neighboring d and
p orbitals caused by electron-phonon coupling. The elastic
constant, Kn,n!, corresponding to the modulation $n,n!, is sim-
ply taken to be Kn,n!=1.7ta.

In Fig. 10 we plot the ground-state energy of the coupled
electron-phonon system (Eq. "16#) as we increase the mag-
nitude of hopping amplitude modulation $T, which corre-
sponds to a trigonal lattice distortion. Here $T'0 means that
the hopping amplitudes along the bonds connected with the
site 1 "the broken lines in Fig. 9# are reduced by $T while the
hopping amplitudes along all other bonds are increased by
the same amount. In Fig. 11, we plot the change in the elec-
tron band dispersion induced by a trigonal lattice distortion.
The trigonal lattice distortion results in opening a full gap at
the Fermi energy leading to an insulating phase. The compe-
tition between the electronic energy gain from gap opening
and elastic energy cost compromises at the equilibrium bond
distance. For (SO=4.0, ta=0.5, and te / ta=2.5, 10% modula-
tion of the hopping amplitude $T generates a band gap with
magnitude of 0.22, which is about 4% of the jeff=1 /2 state

bandwidth. Taking into account the jeff=1 /2 state bandwidth
predicted by the LDA calculation,44 the estimated magnitude
of the band gap is roughly about 40 meV. Straightforward
calculation of Z2 topological invariants shows that the result-
ant insulating ground state is a strong topological insulator
with Z2 invariants ") ;)1)2)3#= "1;000#. Notice that the Z2
invariants of the new insulating phase are the same as those
of the original topological insulating phase, which exists
when there is no local trigonal crystal-field splitting effect.

It is interesting that two insulating phases separated by a
metallic phase in between share the same topological prop-
erties. To understand the reason for the identical topological
properties of two insulating phases, we have checked the
inversion parities of all bands at the * point displayed in
Table I. According to Fu and Kane,9 for a system with time-
reversal and inversion symmetries, the Z2 topological invari-
ants are given by the product of inversion parities of all
occupied bands at time-reversal invariant momenta. As one
can see in Fig. 6, the metallic phase induced by local trigonal
crystal-field effect has a band crossing only at the * point.
Since every band has even inversion parity at the * point, the
band crossing does not change the parities of occupied
bands. Therefore two insulating phases with an intervening
metallic phase share the same Z2 topological indices in this
case.

In addition to trigonal lattice distortions, we have also
investigated the effect of tetragonal and orthorhombic distor-
tions, which result from softening q=0 Eg phonon modes.
The influence of various lattice distortions on the nature of
the ground state is summarized in Table II. It turns out that a
tetragonal distortion with $E1'0 leads to an insulating
ground state. Figure 8 describes a bond modulation pattern
for a tetragonal distortion with $E1'0. Here electron hop-
ping amplitudes are increased for dotted bonds while the
hopping amplitudes for solid bonds are reduced. Relative
magnitude of bond length modulations is consistent with the
Q1

E mode, the first component of the doublet E phonon mode
in Eq. "15#. However, the magnitude of the band gap gener-
ated by a tetragonal distortion with $E1'0 is much smaller
than that from a trigonal lattice distortion when the magni-
tudes of hopping amplitude modulations are the same in the
two cases. In addition, an orthorhombic distortion does not

∆∆EE

ηTT00 0.20.2

0.020.02

00

0.40.4

0.040.04

FIG. 10. "Color online# Ground-state energy per unit cell for the
pyrochlore iridate system coupled with a trigonal phonon mode
along (111) direction. Here (SO=4.0, ta=0.5, and te / ta=2.5. We plot
the change in the ground-state energy induced by the trigonal lattice
distortion as a function of the hopping amplitude modulation $T.

E(k)E(k)

ΓΓ ΓΓXX XXΚΚLL!!ΓΓ ΓΓXX XXΚΚLL!!

Trigonal
distortion

FIG. 11. "Color online# Band-structure change induced by a
trigonal lattice distortion, which comes from a q=0 T2g phonon
mode softening. A band gap opens at the * point. The resultant
insulating phase is a strong topological insulator.
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FIG. 3: Electronic band structure of Ir 5d electrons on the pyrochlore lattice at large spin-orbit coupling, �/t!1. Only the
relevant four doubly degenerate bands are shown. A band gap between the filled lower two bands and empty upper two bands
is clearly seen.

orbital angular momentum operator is equal to minus the usual spin-one angular momentum operator L [16]. Thus we
may e↵ectively consider the pseudo-total angular momentum J = L+S, which commutes with the SOI. The multiplet
structure for the usual ` = 1 states is inverted, and the t2g

manifold splits into a j = 1/2 doublet with energy �, and
a j = 3/2 quadruplet with energy ��/2. We will work in the local diagonal basis of the j eigenstates, and introduce a
single label ↵ such that ↵ = 1, 2 and ↵ = 3 . . . 6 denote the doublet and quadruplet, respectively, with orbital energy
"

↵

= � for the doublet and "
↵

= ��/2 for the quadruplet. The specific form of the wave functions of these states are
given in the Supplementary Information.

We assume that hopping between nearest neighbor Ir ions is accomplished via the oxygen atoms nearest to a given
pair, Fig. 2(b). In reality, this is not necessarily the case [17]. However, our assumption minimizes the number of
free parameters, and is resilient to perturbations that are not too strong. The model with oxygen-mediated hopping
is preferable as it contains a single parameter determining the hopping strength: the hopping integral between Ir t2g

states and O p-orbitals (V
pd⇡

in the terminology of Ref. [18]). Integrating out the oxygens, and taking the simplest
on-site Coulomb interaction involving the total charge only, we arrive at the Hubbard Hamiltonian,

H =
X

Ri↵

("
↵

� µ)d†
Ri↵

d
Ri↵

+ t
X

hRi,R

0
i

0i
↵↵

0

T ii

0

↵↵

0d†
Ri↵

d
R

0
i

0
↵

0 +
U

2

X

Ri

 
X

↵

d†
Ri↵

d
Ri↵

� n
d

!2

, (1)

where R and i label the sites of the Bravais lattice and the tetrahedral basis, and n
d

= 5 is the number of 5d-electrons
on each Ir4+ ion. The strength of the hopping is parameterized by a single energy scale t / V 2

pd⇡

/�, where � is the
energy di↵erence between the Ir d and O p states. The procedure to obtain the dimensionless hopping matrices T ii

0

↵↵

0 ,
arising from the Ir-O-Ir hopping path, taking into account the rotation between the local cubic axes of each Ir ion, is
given in the Supplementary Information.

Band structure: The Hamiltonian (1) contains two dimensionless parameters: �/t and U/t, which define the phase
diagram in Fig. 1. It is instructive to consider first various simple limits. For U = 0, we have a free electron model,
which is of course exactly soluble. Due to inversion symmetry, one obtains in general 12 doubly degenerate bands.
For small �/t, these overlap at the Fermi energy and one obtains a metal. For large �/t, the upper 4 bands originating
from the j = 1/2 doublet become well-separated from the lower 8 bands. Because there are four holes per unit cell,
the upper 4 bands are half-filled in total. On inspection, we see (Fig. 3) that they exhibit a band gap, indicating the
formation of a band insulator at large �.

As shown by Fu and Kane [19], one can determine the band topology of an insulator with inversion symmetry either
from the parity of the Hamiltonian eigenstates at time-reversal invariant momenta, or from the number of Dirac points
on the surface of the insulator. Applying the first criterion (see Supplementary Information), we find that the large
�/t state is a pure “strong” TBI of the spinons (the weak Z2 invariants vanish, consistent with cubic symmetry). We
also calculated the surface state spectrum (Fig. 4), which shows the required odd number of intersections with the

Without pressure, didn’t take
Ir-Ir direct hopping into account 



Pressure/Strain effect on Pyrochlore

• Uniaxial pressure/Strain along (111) direction  

• Cubic -> Rhombohedral symmetry 

• Full lattice relaxation both on the lattice parameter 

and the atom positions.

Strain/Pressure

Ir-O-Ir angle

Undistorted: 132˚
Increase pressure: bond angle<132˚
Decrease pressure: bond angle>132˚



Pressure/Strain effect on Pyrochlore

• Pressure/Strain along (111) direction  

• Cubic -> Rhombohedral symmetry 

• Compressive pressure (in-plane tensile strain) 

      c=0.96c0, a=1.05a0
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Pressure/Strain effect on Pyrochlore

• Pressure/Strain along (111) direction  

• Cubic -> Rhombohedral symmetry 

• Compressive pressure (in-plane tensile strain) 

      c=0.99c0, a=1.01a0

Full lattice relaxation: GGA 

both GGA+SO and mBJ+SO calculation 
Insulator 
mBJ+SO gap>0eV

6

Ef

X W ⇥ L W
�2.

�1.5

�1.

�0.5

0.

0.5

En
er
gy
�eV⇥

En
er

gy
 (e

V)

0.5

0.0

-0.5

-1.0

-1.5

-2.0
X W L WΓ

wave number, k kx (Å-1) ky (Å
-1)

k(111)

kx

ky

Cross ! point

Half way between 
 ! and L

Cross L point

Cross ! point

Half way between 
 ! and L

Cross L point

Cross ! point

Half way between 
 ! and L

Cross L point

a b

d

c

e

Fermi node

Fermi node

0.10

0.00

-0.10

En
er

gy
 (e

V)

0.0 0.2-0.2 0.0 0.2 -0.2

0.0 0.2-0.2 0.0 0.2 -0.2

0.0 0.2-0.2 0.0 0.2 -0.2

Cross midpoint

Cross L point

Cross !  point

!�

L�

X�
W�K�

0.10

0.00

-0.10

0.10

0.00

-0.10

FIG. 2: Single crystal and first principles band calculation for Pr2Ir2O7. a, Crystal structure of Pr2Ir2O7 with face-centered
cubic lattice. b, Photo of single crystal we used. The top surface with a triangle shape is the (111) plane, which is measured
by ARPES. c, Brillouin zone. d, Band dispersion along high symmetry lines obtained by the first principles calculation. e,
Band dispersions along three k
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planes perpendicular to k(111) direction, which crosses L (top panel), � (bottom panel),
and between these two points (middle panel). Fermi node is indicated with a magenta circle and arrow in d and e.
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• Compressive pressure (tensile strain) 

      c=0.96c0, a=1.05a0

Parity at time reversal invariant 
momenta:

Γ L Z F

+ - - -

Z2 invariant (1; 000) 

Compressive pressure/ tensile strain  along (111) direction
will make Pr2Ir2O7 a topological insulator!

Pressure/Strain effect on Pyrochlore

separated by an energy gap. Depending on the details of
the Hamiltonian near the edge there may or may not be
states bound to the edge inside the gap. If they are
present, however, then Kramers’ theorem requires they
are twofold degenerate at the T invariant momenta kx
=0 and ! /a !which is the same as −! /a". Away from
these special points, labeled "a,b in Fig. 3, a spin-orbit
interaction will split the degeneracy. There are two ways
the states at kx=0 and ! /a can connect. In Fig. 3!a" they
connect pairwise. In this case the edge states can be
eliminated by pushing all of the bound states out of the
gap. Between kx=0 and ! /a, the bands intersect EF an
even number of times. In contrast, in Fig. 3!b" the edge
states cannot be eliminated. The bands intersect EF an
odd number of times.

Which of these alternatives occurred depend on the
topological class of the bulk band structure? Since each
band intersecting EF at kx has a Kramers partner at −kx,
the bulk-boundary correspondence relates the number
NK of Kramers pairs of edge modes intersecting EF to
the change in the Z2 invariants across the interface,

NK = #$ mod 2. !9"

We conclude that a 2D topological insulator has topo-
logically protected edge states. These form a unique 1D
conductor, whose properties will be discussed in Sec. III.
The above considerations can be generalized to 3D to-
pological insulators, discussed in Sec. IV, which have
protected surface states.

There are several mathematical formulations of the Z2
invariant $ !Kane and Mele, 2005b; Fu and Kane, 2006,
2007; Fukui and Hatsugai, 2007; Moore and Balents,
2007; Fukui, Fujiwara, and Hatsugai, 2008; Qi, Hughes,
and Zhang, 2008; Roy, 2009a; Wang, Qi, and Zhang,
2010". One approach !Fu and Kane, 2006" is to define a
unitary matrix wmn!k"= #um!k"$%$un!−k"% built from the
occupied Bloch functions $um!k"%. Since % is antiunitary
and %2=−1, wT!k"=−w!−k". There are four special
points &a in the bulk 2D Brillouin zone where k and −k
coincide, so w!&a" is antisymmetric. The determinant of
an antisymmetric matrix is the square of its Pfaffian,
which allows us to define 'a=Pf&w!&a"' /(Det&w!&a"'
= ±1. Provided $um!k"% is chosen continuously through-
out the Brillouin zone !which is always possible", the
branch of the square root can be specified globally, and
the Z2 invariant is

!− 1"$ = )
a=1

4

'a. !10"

This formulation can be generalized to 3D topological
insulators and involves the eight special points in the 3D
Brillouin zone.

The calculation of $ is simpler if the crystal has extra
symmetry. For instance, if the 2D system conserves the
perpendicular spin Sz, then the up and down spins have
independent Chern integers n↑, n↓. T symmetry requires

n↑+n↓=0, but the difference n(= !n↑−n↓" /2 defines a
quantized spin Hall conductivity !Sheng et al., 2006". The
Z2 invariant is then simply

$ = n( mod 2. !11"

While n↑, n↓ lose their meaning when Sz nonconserving
terms !which are inevitably present" are added, $ retains
its identity.

If the crystal has inversion symmetry, there is another
shortcut to computing $ !Fu and Kane, 2007". At the
special points &a the Bloch states um!&a" are also parity
eigenstates with eigenvalue )m!&a"= ±1. The Z2 invari-
ant then simply follows from Eq. !10" with

'a = )
m

)m!&a" , !12"

where the product is over the Kramers pairs of occupied
bands. This has proven useful for identifying topological
insulators from band-structure calculations !Fu and
Kane, 2007; Teo, Fu, and Kane, 2008; Guo and Franz,
2009; Zhang, Liu, et al., 2009; Pesin and Balents, 2010".

D. Topological superconductor, Majorana fermions

Considerations of topological band theory can also be
used to topologically classify superconductors. This is a
subject that has seen fascinating recent theoretical de-
velopments !Roy, 2008; Schnyder et al., 2008; Kitaev,
2009; Qi, Hughes, et al., 2009". We give an introduction
that focuses on the simplest model superconductors. The
more general case will be touched on at the end. This
section will provide the conceptual basis for topological
superconductors and explain the emergence of Majo-
rana fermions in superconducting systems. It will also
provide background for Sec. V.B, where we discuss Ma-
jorana states in superconductor-topological insulator
structures along with possible applications to topological
quantum computing.

1. Bogoliubov–de Gennes theory

In the BCS mean-field theory of a superconductor the
Hamiltonian for a system of spinless electrons may be
written in the form !de Gennes, 1966",

H − *N =
1
2*

k
!ck

†c−k"HBdG!k"+ ck

c−k
† , , !13"

where ck
† is an electron creation operator and HBdG is a

2+2 block matrix, which in Nambu’s notation may be
written in terms of Pauli matrices ,! as

HBdG!k" = &H0!k" − *',z + #1!k",x + #2!k",y. !14"

Here, H0!k" is the Bloch Hamiltonian in the absence of
superconductivity and #=#1+ i#2 is the BCS mean-field
pairing potential, which for spinless particles must have
odd parity, #!−k"=−#!k". For a uniform system the ex-
citation spectrum of a superconductor is given by the
eigenvalues of HBdG, which exhibit a superconducting
energy gap. More generally, for spatially dependent H0
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Surface state

• Compressive pressure (tensile strain) 

      c=0.96c0, a=1.05a0



• Reducing pressure (in-plane compressive strain) 

      c=1.06c0, a=0.95a0

both GGA and mBJ+SO calculation 
Metallic 
Band crossing along (111) direction
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Paramagnetic calculation: Pr2Ir2O7 and Y2Ir2O7

GGA+SO GGA+SOPr2Ir2O7 Y2Ir2O7

The bigger the rare earth 
ionic radius is, the smaller 
the electron and hole pocket 
Fermi surface is.

Why is Pr metallic and Y not? 

• Ir-O-Ir bond angle   Y: ~129˚;  Pr: ~132˚

• Ir-O bond length     Y: 1.997Å ;  Pr: 2.014Å 

• Ir-Ir bond length     Y: 3.599Å ;  Pr: 3.677Å 



Magnetic band structure calculation

• Focus on Pr, Nd, Y

• GGA+SO+U, U=2eV since 5d are more extended

• Magnetism in R 4f electrons and in Ir 5d electrons → Magnetic 
ground state can be complicated!

• non-collinear magnetism :Wien2k+WIENNCM

magnetic state:
all-in all-out state

Figure 2(b) shows the inelastic scattering intensity
distributions in ðQ;EÞ space measured below TMI. The
horizontally spreading excitation mode is observed at around
1.3meV; it corresponds to the splitting of the Nd3þ ground
doublet. The scattering intensity decreases with increasing
Q, confirming that the excitations are magnetic. However,
the mode appears slightly dispersive. To verify the
dispersion, we compared the constant–E scans measured at
1.2 and 1.4meV in Fig. 2(b); the comparison results are
shown in Fig. 2(c). The Q dependences at these energies
are clearly different, indicating that the excitations are not
completely flat but dispersive, with a bandwidth of $0:1
meV (1K).

4. Analyses

We analyzed the magnetic structure on the basis of the
q0 intensities given in Table I. Crystalline field analysis21)

revealed the magnitude of Nd3þ moments to be about
2.37!B, whereas that of Ir

4þ moments is expected to be 1!B

at most. Therefore, as the first approximation, we assumed
that the q0 intensities consist of only the Nd moments. In
fact, the statistical errors of our data would be too large to
resolve the Nd and Ir moments. Furthermore, later in this
section, the magnitude of moment estimated by the magnetic
structure analysis is confirmed to be in agreement with that
estimated by the crystalline field analysis.

The crystalline field analysis also strongly suggests that
the Nd moments are highly anisotropic along the h111i
directions (in/out-type Ising moments),21) as expected from
available data on other Nd pyrochlore oxides.26) In addition,
the measured magnetic susceptibility shows a small value of
only $10%3!B/formula under a magnetic field of 1 kOe, and
no hysteresis curve is observed at 5K.16,17,21,24) Therefore,
among the various magnetic structure models described by
the in/out-type moments, the 3-in 1-out and the 2-in 2-out
types are most probably ruled out, because these model types
are essentially ferromagnetic. A unique possible solution is
the all-in all-out type of model, as shown in Fig. 3(b). Thus,
we examined the consistency between the all-in all-out
model and the q0 intensities.

The remaining fitting parameter is the absolute value of
magnetic moments of Nd3þ (m). Therefore, we evaluated it
by the least-squares method, by employing the magnetic
form factor of Nd3þ calculated by Freeman and Desclaux.27)

Since the sample was cylindrical in shape, the reflection-
angle dependence of the absorption factor was ignored. The
evaluation results showed that the all-in all-out model had
the best-fit calculated intensities, with mð9KÞ ¼ 1:3'
0:2!B (Table I); these intensities are in agreement with the
experimental ones, as shown in Fig. 3(a).

Further, from Fig. 1(d), the ratio of magnetic scattering
intensity at 0.7 K to that at 9K is estimated to be about 3.2.
Since the magnetic intensity is proportional to the square of
m,28) the value of mð0:7KÞ is estimated to be 2:3' 0:4
½¼

ffiffiffiffiffiffiffi
3:2

p
) mð9KÞ*!B. This value is in good agreement

with the value of 2.37!B estimated by the crystalline field
analysis.21)

To summarize x3 and x4, we found that the antiferro-
magnetic long-range structure with q0 grows with decreasing
temperature below TNd ¼ 15' 5K. The structure can be
approximately described by the all-in all-out type of model
for Nd moments with a magnitude of 2:3' 0:4!B at 0.7K.
No direct signals for Ir moments were obtained in the
present experiments.

5. Discussion

5.1 Magnetic structure below TMI

The ground doublet of Nd3þ splits when the temperature
decreases to below TMI, as shown by the dotted arrows in
Fig. 2(a); however, the Nd magnetic structure grows mainly
below TNd, as shown in Fig. 1(d) and by the solid arrows
in Fig. 2(a). This discrepancy in temperature suggests that
not Nd moments exhibit static magnetic order at TMI. In
isomorphic Nd2Mo2O7, the magnetic moments of d and
f electrons do not order simultaneously, as revealed by
neutron diffraction experiments; the Mo structure grows
below Curie temperature TC ¼ 93K and then the Nd
structure grows mainly below $20K with decreasing
temperature.26) In analogy with Nd2Mo2O7, Ir magnetic
ordering is expected to occur in Nd2Ir2O7 at TMI. The
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Fig. 3. (Color online) Magnetic structure modelling. (a) Comparison between experimental and best-fit calculated magnetic reflection intensities given in
Table I. (b) All-in all-out magnetic structure. The filled circles represent Nd3þ ions, and the arrows represent the Nd moments. (c) Trigonally distorted O2%

ligand around Ir4þ ion. All the Ir–O bonds are of the same length (2.01 !A). (d) Relation between magnetic moments (blue thin arrows) of Ir4þ ions (blue small
balls) and magnetic moments (red thick arrows) of Nd3þ ions (red large balls). Both the Ir and the Nd moments form the all-in all-out structures. Alternative
directions of Nd moments in the case of a ferromagnetic Nd–Ir interaction are depicted: when the moments are antiferromagnetic, the directions of all the red
arrows are reversed, and the all-in all-out type structure is retained.
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Neutron diffraction and
inelastic scattering measurement

q0=(0,0,0)

Nd2Ir2O7



Pr2Ir2O7

• Metallic/paramagnetic down to 0.3K
• Experimental:  Pr 4f: 2-in 2-out  Ir: paramagnetic
• Try both Pr and Ir all-in all-out order 

GGA+SO+U
UIr=2eV
UPr=6eV
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Nd2Ir2O7

• TMI~33K, optical conductivity measurement infers the full opening of 
the charge gap.

• Experiment suggesting both Nd and Ir are all-in all-out

Figure 2(b) shows the inelastic scattering intensity
distributions in ðQ;EÞ space measured below TMI. The
horizontally spreading excitation mode is observed at around
1.3meV; it corresponds to the splitting of the Nd3þ ground
doublet. The scattering intensity decreases with increasing
Q, confirming that the excitations are magnetic. However,
the mode appears slightly dispersive. To verify the
dispersion, we compared the constant–E scans measured at
1.2 and 1.4meV in Fig. 2(b); the comparison results are
shown in Fig. 2(c). The Q dependences at these energies
are clearly different, indicating that the excitations are not
completely flat but dispersive, with a bandwidth of $0:1
meV (1K).

4. Analyses

We analyzed the magnetic structure on the basis of the
q0 intensities given in Table I. Crystalline field analysis21)

revealed the magnitude of Nd3þ moments to be about
2.37!B, whereas that of Ir

4þ moments is expected to be 1!B

at most. Therefore, as the first approximation, we assumed
that the q0 intensities consist of only the Nd moments. In
fact, the statistical errors of our data would be too large to
resolve the Nd and Ir moments. Furthermore, later in this
section, the magnitude of moment estimated by the magnetic
structure analysis is confirmed to be in agreement with that
estimated by the crystalline field analysis.

The crystalline field analysis also strongly suggests that
the Nd moments are highly anisotropic along the h111i
directions (in/out-type Ising moments),21) as expected from
available data on other Nd pyrochlore oxides.26) In addition,
the measured magnetic susceptibility shows a small value of
only $10%3!B/formula under a magnetic field of 1 kOe, and
no hysteresis curve is observed at 5K.16,17,21,24) Therefore,
among the various magnetic structure models described by
the in/out-type moments, the 3-in 1-out and the 2-in 2-out
types are most probably ruled out, because these model types
are essentially ferromagnetic. A unique possible solution is
the all-in all-out type of model, as shown in Fig. 3(b). Thus,
we examined the consistency between the all-in all-out
model and the q0 intensities.

The remaining fitting parameter is the absolute value of
magnetic moments of Nd3þ (m). Therefore, we evaluated it
by the least-squares method, by employing the magnetic
form factor of Nd3þ calculated by Freeman and Desclaux.27)

Since the sample was cylindrical in shape, the reflection-
angle dependence of the absorption factor was ignored. The
evaluation results showed that the all-in all-out model had
the best-fit calculated intensities, with mð9KÞ ¼ 1:3'
0:2!B (Table I); these intensities are in agreement with the
experimental ones, as shown in Fig. 3(a).

Further, from Fig. 1(d), the ratio of magnetic scattering
intensity at 0.7 K to that at 9K is estimated to be about 3.2.
Since the magnetic intensity is proportional to the square of
m,28) the value of mð0:7KÞ is estimated to be 2:3' 0:4
½¼

ffiffiffiffiffiffiffi
3:2

p
) mð9KÞ*!B. This value is in good agreement

with the value of 2.37!B estimated by the crystalline field
analysis.21)

To summarize x3 and x4, we found that the antiferro-
magnetic long-range structure with q0 grows with decreasing
temperature below TNd ¼ 15' 5K. The structure can be
approximately described by the all-in all-out type of model
for Nd moments with a magnitude of 2:3' 0:4!B at 0.7K.
No direct signals for Ir moments were obtained in the
present experiments.

5. Discussion

5.1 Magnetic structure below TMI

The ground doublet of Nd3þ splits when the temperature
decreases to below TMI, as shown by the dotted arrows in
Fig. 2(a); however, the Nd magnetic structure grows mainly
below TNd, as shown in Fig. 1(d) and by the solid arrows
in Fig. 2(a). This discrepancy in temperature suggests that
not Nd moments exhibit static magnetic order at TMI. In
isomorphic Nd2Mo2O7, the magnetic moments of d and
f electrons do not order simultaneously, as revealed by
neutron diffraction experiments; the Mo structure grows
below Curie temperature TC ¼ 93K and then the Nd
structure grows mainly below $20K with decreasing
temperature.26) In analogy with Nd2Mo2O7, Ir magnetic
ordering is expected to occur in Nd2Ir2O7 at TMI. The
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Fig. 3. (Color online) Magnetic structure modelling. (a) Comparison between experimental and best-fit calculated magnetic reflection intensities given in
Table I. (b) All-in all-out magnetic structure. The filled circles represent Nd3þ ions, and the arrows represent the Nd moments. (c) Trigonally distorted O2%

ligand around Ir4þ ion. All the Ir–O bonds are of the same length (2.01 !A). (d) Relation between magnetic moments (blue thin arrows) of Ir4þ ions (blue small
balls) and magnetic moments (red thick arrows) of Nd3þ ions (red large balls). Both the Ir and the Nd moments form the all-in all-out structures. Alternative
directions of Nd moments in the case of a ferromagnetic Nd–Ir interaction are depicted: when the moments are antiferromagnetic, the directions of all the red
arrows are reversed, and the all-in all-out type structure is retained.
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[10,12–14], while Pr2Ir2O7 is metallic down to 0.3 K and
shows no long-range magnetic ordering except for the
freezing of Pr-4f or Ir-5d moments at 0.12 K [15].
Despite these experimental investigations on the electronic
or magnetic properties for these systems, the origin of MIT
has been left elusive.

In this study, we have systematically investigated the
evolution of the charge dynamics as well as the transport,
magnetic, and thermal properties in the course of MIT for
the pyrochlore-type Nd2Ir2O7 and its Rh-doped analogs
Nd2ðIr1"xRhxÞ2O7. Rh doping is done to finely tune the
interplay between the SOI and the electron correlation, and
hence to drive the insulator-metal transition at the ground
state. The observed features suggest that the MITs for the
present system can be viewed as the phase changes among
the correlated metal, the Weyl semimetal, and the narrow
gap Mott insulator, as characterized by the strong SOI and
electron correlation.

The high-quality polycrystalline samples of
Nd2ðIr1"xRhxÞ2O7 with x ¼ 0, 0.02, 0.05, and 0.10 were
prepared by a solid-state reaction under high pressure
(3 GPa and 1200 %C). The dense and hard samples with
least grain-boundary effect as prepared by the high-
pressure method are particularly suitable for the optical
reflectance and transport measurements. We have con-
firmed by powder x-ray diffraction that all the samples
imply no detectable impurity phase, and the lattice con-
stant of the Rh-doped compounds satisfies Vegard’s law, as
shown in Fig. 1(f). The resistivity, specific heat, and mag-
netization were measured with the physical property mea-
surement system (Quantum Design). Reflectivity spectra in
the temperature range from 5 to 290 K were measured
between 0.005 and 5 eV by Fourier transform- and grating-
type spectrometers. The spectra above 5 eV were measured
at room temperature with the use of synchrotron radiation
at UV-SOR, Institute for Molecular Science. The optical
conductivity spectra were obtained by Kramers-Kronig
(KK) analysis with suitable extrapolation procedures.
The optical conductivity spectra below 10 meV were ob-
tained by terahertz (THz) time-domain spectroscopy
(TDS) in a transmission configuration [16] without resort-
ing to KK analysis (for details of the experimental setup for
the present THz TDS, see Sec. II Ref. [16]).

The temperature dependence of resistivity for Nd2Ir2O7

(x ¼ 0) is shown in Fig. 1(a), along with those for x¼0:02,
0.05, and 0.10. First, we focus on the MIT in Nd2Ir2O7

(x ¼ 0). With lowering temperature, the resistivity for
x ¼ 0 monotonically decreases down to 50 K and then
shows a divergent behavior below 30 K. In Fig. 1(b), we
show the temperature dependence of magnetization mea-
sured by field-cooling (FC) and zero-field-cooling (ZFC)
processes. The magnetization curve measured in the FC
process shows an upturn at TN, while that measured in the
ZFC process shows no clear anomaly with previous reports
[10]. As shown in Fig. 1(g), the ordering of the Ir-5d

moment manifests itself as a !-type peak at TN in the
specific heat curve for x ¼ 0. A recent neutron scattering
study indicates that the Nd-4f moment starts to order
below 15 K [11]. Since the energy of the crystal field
(CF) splitting between the ground state and the first excited
state is estimated to be 26 meV (& 300 K) [11], a broad
hump-like structure around 10 K may be attributed not to
CF excitation but to the magnetic ordering of Nd-4f mo-
ments. We note that the entropy change except the contri-
bution from phonon below 20 K is larger than R ln2, the
value corresponding to the entropy released by the mag-
netic ordering of Nd-4f moments as observed in spin-ice
systems [17]. The excess entropy change may originate
from the coupled Ir-5d moments, reflecting the exchange
interaction between Nd-4f and Ir-5d moments.
Figure 2(a) displays the optical conductivity spectra for

Nd2Ir2O7 (x ¼ 0) at various temperatures above 50 K as
well as at 10 K. At 290 K, a broad absorption band is
observed around 1 eV, as shown in the inset to Fig. 2(a).
Since the optical conductivity spectra above 1 eV show
minimal temperature dependence, we henceforth focus on
the low energy range below 1 eV. At room temperature, the
spectral shape below 0.5 eV is fairly flat except for the
sharp peaks due to the optical phonons below 0.08 eV,

FIG. 2 (color online). (a) Optical conductivity spectra at vari-
ous temperatures for Nd2Ir2O7. The filled circles denote dc
conductivities. The inset shows the spectra at 290 K and 50 K
up to 2 eV. The triangle indicates the absorption band around
1 eV. (b) Optical conductivity spectra below 50 K. The inset
show the magnified view of the spectra in the far-infrared region
as deduced by time-domain terahertz spectroscopy.
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Y2Ir2O7

• TMI~150K

• Y: no f electron

• Theory and experiment: all-in all-out state X. Wan et al, PRB 2011
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• Pr2Ir2O7 : Quadratic Fermi node

• Strain/pressure along (111) direction make Pr2Ir2O7  a 
strong topological insulator with correlation.

• Systematic gap decrease trend as rare earth ionic 
radius increases.

Summary for Part 1
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Domain wall states in pyrochlore Iridates

Conducting metallic domain wall even at the gapped bulk state! 

Yamaji & Imada Phys. Rev. X 2014, arXiv: 1507.04153
Ueda, Fujioka, Nagaosa, et al. arXiv: 1506.07336, arXiv:1507.04804
Fujita  et al. Scientific Reports 2015

many others…

Theory and experiments:

A full ab initio calculation is desirable.

ANOMALOUS DOMAIN-WALL CONDUCTANCE IN . . . PHYSICAL REVIEW B 89, 075127 (2014)

may be attributed to the canting deformation of the AIAO
state by a magnetic field. Surprisingly, there is a considerable
antisymmetric component as shown in Fig. 2(c), whose sign
is opposite between processes (2) and (3). The unconventional
field dependence is also identified in the magnetization.
In Fig. 2(d), we plot the magnetization as a function of
magnetic field. The magnetization shows a small hysteresis
between processes (2) and (3) and contains the symmetric
component [Fig. 2(e)], the sign of which is opposite between
these processes, in addition to the conventional antisymmetric
component [Fig. 2(f)]. In general, such an antisymmetric
component of magnetoresistance and a symmetric one of
magnetization with respect to the applied magnetic field
are not present in conventional antiferromagnets without
a net magnetization. Recently, Arima pointed out that the
AIAO-type magnetic ordering on the pyrochlore lattice can be
regarded as a ferroic order of magnetic octupole moments, and
the two variants (A and B domains) can be switched between
each other by a magnetic field [29]. Such a unique order makes
the aforementioned components discernible, the sign of which
is reversed between A and B domains. Thus, the observed
antisymmetric (symmetric) component of magnetoresistance
(magnetization) with sign reversal indicates that, once the
magnetic field as high as +14 T (−14 T) is applied, a
nearly single A domain (B domain) state is realized, which is
switchable to each other by sweeping the magnetic field down
(up) to −14 T (+14 T) [30]. In this context, the enhancement
of σut/σt observed at zero magnetic field in the AF phase
means that the resistivity in the multidomain state is lower
than in the nearly single domain one; namely, the AF DW
is electronically more conductive than the bulk. This cannot
be explained in terms of the conventional magnetoresistance
effect such as the DW resistance in ferromagnetic metal [28]
or giant magnetoresistance in spin-valve multilayers [34],
although it cannot be ruled out that specific electron-spin
coupling at the grain boundary might partly affect the observed
magnetoresistance. The σut/σt reaches as large as 30 at 3 K
for x = 0, suggesting that the charge transport for the AF
phase with multi-magnetic-domains is predominantly via the
electron conduction associated with the AF DW. This picture
can quantitatively explain the nonmonotonic behavior of virgin
magnetoresistivity [process (1) in Fig. 2(a)]; the positive
magnetoresistance in the low field region can be attributed
to the disappearance of a conductive DW, while the negative
magnetoresistivity above 3.5 T may be due to the canting of
Ir-5d moments.

Having established these results, we henceforth discuss the
electronic state of the AF DW. Figure 3(a) shows optical
conductivity spectra σ ′(ω) for x = 0 at 4 K. The σ ′(ω)
measured in the untrained, i.e., multidomain, state σ ′

ut(ω)
shows an upturn below 4 meV, whereas that measured in
the trained state σ ′

t (ω) monotonically decreases with lowering
ω. Here σ ′

ut(ω) is obtained at 0 T after cooling under zero
magnetic field, while σ ′

t (ω) is obtained at 0 T once the
magnetic field is applied up to 7 T at 4 K. Therefore,
we regard the difference between σ̃ut(ω) [=σ ′

ut(ω) + iσ ′′
ut(ω)]

and σ̃t(ω) [=σ ′
t (ω) + iσ ′′

t (ω)] as the optical absorption due
to the AF DW, #σ̃ (ω). Figure 3(b) shows the real part
#σ ′(ω) and the imaginary part #σ ′′(ω) of #σ̃ (ω). #σ ′(ω)
monotonically increases with decreasing photon energy ω,

FIG. 3. (Color online) (a) The real part of optical conductivity
spectra at 4 K. The red (black) line indicates the spectra for the
untrained (trained) state. The filled circle denotes the dc conductivity
of the trained state and the open triangle denotes that of the untrained
state. The broken line is the guide to the eye for the trained state.
See text for details about the extrapolation for the untrained state.
(b) Complex optical conductivity #σ̃ (ω) at 4 K for the antiferromag-
netic domain walls, as defined by the differential spectra between the
untrained (multidomain) and trained (single-domain) states. The blue
(red) line indicates the real (imaginary) part of #σ̃ (ω). The dashed
lines denote the spectra fitted with the Drude formula.

and #σ ′′(ω) has a hump structure around 2 meV (the photon
energy corresponding to a scattering rate or damping constant),
which reminds us of the Drude response inherent to a good
metal. We show #σ ′(ω) and #σ ′′(ω) at various fields applied
during the process (1) in Figs. 4(a) and 4(b), respectively.
Although both #σ ′(ω) and #σ ′′(ω) are nearly unchanged
below 2 T, the spectral intensities are strongly suppressed
above 3 T and the #σ ′(ω) vanishes below 6 meV. We also plot
σ ′(ω = 2 meV) at various magnetic fields in Fig. 4(c). The
σ ′(ω = 2 meV) decreases dramatically as the field increases
from 0 up to 7 T [process (1)], while slightly and monotonically
decreases with decreasing field from 7 to 0 T [process (2)].
It is clear that the field dependence of σ ′(ω = 2 meV) in
the process (1) is distinct from that in the process (2) below
5 T. Such a behavior is qualitatively similar to the case of dc
conductivity as denoted by solid lines in Fig. 4(c), although the
σ ′(ω = 2 meV) is three orders of magnitude as large as the dc
conductivity.

The temperature dependence of #σ ′(ω) as well as #σDW
are displayed in Fig. 5. Here the #σDW corresponds to the dc
conductivity associated with the AF DW, which is defined
as σut − σt. The #σ ′(ω) appears to be well fitted by the
Drude model above 2 meV, showing the nearly temperature-
independent profile. In contrast, the #σDW is significantly
small compared to the hypothetical value extrapolated to
ω = 0 by a simple Drude response at low temperatures. Such a
discrepancy between the dc and ac (GHz-THz) conductivities
is often observed in disordered metals or semiconductors
where the dc charge transport is limited or disrupted by the
electron hopping through insulating boundaries/paths [35–37].
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FIG. 2: (color online). (a) Temperature dependence of resis-
tivity for (SmyNd1−y)2Ir2O7, and (b) its enlarged view in the
temperature range from 0 K to 200 K. (c) Temperature de-
pendence of resistivity for (Nd1−xPrx)2Ir2O7. The solid lines
are resistivity of trained state measured at 0 T on warming
run after 14 T-field cooling and the broken ones are that of
untrained state measured after zero-field cooling. The inset
shows the magnetic field dependence of resistivity for several
compositions. Starting from the zero field-cooled (untrained)
state, these curves were measured for increasing and decreas-
ing magnetic field scans as shown by arrows.

order nature accompanying T hysteresis is not discerned
apart from the sharp change of resistivity in the present
system. Since the similar reduction of resistivity in an
intermediate T region was also observed in the study on
pressure effect for R=Eu[40], the observed paramagnetic
insulator-metal transition can be attributed neither to
the increased disorder nor to the phase separation.
Figure 2 (c) displays the T dependence of resistivity for

(Nd1−xPrx)2Ir2O7. The resistivity for x=0-0.7 conspicu-
ously increases below respective TN. Importantly, all the
AIAO insulators of (Nd1−xPrx)2Ir2O7 show the differ-
ence of resistivity between the trained (14 T-magnetic-
field cooled) and untrained (zero-field cooled) states at-
tributable to the existence of metallic state on the AIAO
DWs[33, 34]. The realization of metallic DWs is mani-
fested also by the magnetic field dependence of resistiv-
ity shown in the inset of Fig. 2 (c); irreversible behav-
iors of resistivity between field increasing and decreasing
scans starting from the untrained states are due to the
field alignment of the AIAO-type magnetic domain. The
critical field for such elimination of DWs decreases as
x increases, indicating the gradual decline of magnetic
anisotropic energy.
The r vs. T phase diagram for (SmyNd1−y)2Ir2O7

and (Nd1−xPrx)2Ir2O7 based on the transport results
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FIG. 3: (color online). (a) Contour map in the plane
of R ionic radius (r) and temperature for resistivity in
(SmyNd1−y)2Ir2O7 and (Nd1−xPrx)2Ir2O7 by the interpola-
tion of the experimental data shown in Fig. 2. Dots denote
the transition temperature. PM, PI, and AFI stand for the
paramagnetic metal, paramagnetic insulator, and antiferro-
magnetic insulator phase, respectively. The broken line as
the border of PI and PM is the guide to the eyes. (b) The
ratio of resistivity between trained (ρt) and untrained (ρut)
state as a function of R ionic radius.

(Figs. 1 and 2) is shown in Fig. 3 (a). Metallic state
with no magnetic order is apparent down to 2 K for
large r (Pr-rich regime; x > 0.8), whereas others ex-
hibit thermal transitions from paramagnetic metal (PM,
dρ/dT > 0) or paramagnetic insulator (PI, dρ/dT < 0)
to antiferrromagnetic insulator (AFI) below TN. In par-
ticular, for (SmyNd1−y)2Ir2O7 (0.6 < y < 0.8) the reen-
trant insulator-metal-insulator transition is observed as
argued above. TN increases rapidly with the decline of
r in the range from 1.121 Å(x=0.7) to 1.079 Å(y=1).
This indicates that the TN is intimately linked to the
U which changes almost linearly with varying r in the
pyrochlore oxides, being consistent with the theoretical
prediction[19].

We have also plotted the ratio of resistivity of trained
to untrained state (ρt/ρut) as a function of r in Fig. 3 (b).
The ρt/ρut can be regarded as the ratio of conductance
between DWs and bulk on the basis of a simple picture of
parallel circuit[33]. The ρt/ρut markedly increases with
decreasing r and reaches maximum at Nd2Ir2O7 likely
due to the smaller value of bulk conductivity. Subse-
quently, it decreases significantly as r decreases, implying
that the conductance of DWs decreases with increasing

Ueda, et al. arXiv:1507.04804

6

FIG. 4. (color online): Band dispersion of pyrochlore slab and Fermi surface. (a) and (b) show the band dispersion of the
slab for U/t = 4 and U/t = 4.5, respectively. The Fermi surfaces of the domain-wall states for U/t = 4 and U/t = 4.5
are summarized in (c). The solid curves represent the degenerate Fermi surfaces for U/t = 4. The broken (red and blue)
curves represent the split non-degenerate hole pockets centered at the K point and electron pockets centered at the K′ point,
respectively for U/t = 4.5.

FIG. 5. (color online): Schematic illustration for changes
in Fermi surface topology. Starting with a hole pocket cen-
tered at the K point obtained in the degenerate helical metals
(solid black curves), we illustrate how an electron pocket cen-
tered at the K′ point emerges in the helical metals (solid gray
curves). Inbetween them, Fermi surfaces with two hole pock-
ets centered at the K and Γ points are illustrated.

from the magnetic structure of the AIAO domain wall as
detailed below by using the illustrations in Fig.7.

In the top panels of Fig.7, we decompose the spin
into the out-of-plane (namely, along (111) direction) and
the in-plane components by referring to the domain-wall
plane, where the in-plane component is further decom-
posed into the component tangential to the Fermi surface
(more precisely the Fermi line) and that perpendicular to
the Fermi line in the two-dimensional Brillouin zone.

Let us first examine the degeneracy derived from the
IΘ symmetry: We first show that the IΘ symmetry it-
self does not sufficiently restrict the direction of the spin
on the Fermi surface. The IΘ operation simply requires
that, by this operation, all the spin components are trans-
formed to the opposite directions. The constraint is that

-0.1
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FIG. 6. (color online): Circular dichroism in optical conduc-
tivity in comparison with interband components of optical
conductivity. Upper panel shows frequency dependences of
∆α(ω) for U/t = 4 (grey solid curve) and U/t = 4.5 (black
solid curve). Non-Drude parts or interband components of
optical conductivity, σ̃XX(ω), are shown in the lower panel.

the degenerate two states must have this spin inversion
property.
However, the domain wall of the AIAO phase preserves

another symmetry determined by the successive two mir-
ror operations illustrated step by step in the left three
panels of Fig. 7 from the top to the bottom. By this
operation, the out-of-plane and tangential components
of the spin are transformed to the opposite direction at
least at the points where the Fermi surface (Fermi line)
crosses the symmetry lines denoted by the Γ-K, K-K ′,
and Γ-K ′ lines. This inversion is the same as the IΘ op-
eration (see the bottom middle panel of Fig. 7). However,

Yamaji & Imada  arXiv: 1507.04153
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FIG. 1: (color online) Phase diagrams of (a) Y2Ir2O7 and (b) Pr2Ir2O7 as functions of U, obtained with the experimentally observed crystal
parameters; the total energy difference ∆E between paramagnetic semimetal (PSM) and AF semimetal (AFSM) or insulator (AFI) in the left
axis, and the magnitude mIr of the ordered local magnetic moment per Ir site in the right axes.
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FIG. 2: (color online) Electronic band dispersions (left) and atom projected densities of states (right) of (a) the all-in, all-out AFI for Y2Ir2O7
and of (b) the PSM for La2Ir2O7 with the crystal parameters of Pr2Ir2O7, obtained by the LSDA+U (U = 1.3 eV) and the LSDA (U = 0),
respectively. Red, green, magenta and blue curves represent Y or La, Ir, O1 (48 f ), and O2 (8b) states, respectively. The Fermi level is denoted
by grey dashed lines.

relativistic non-collinear spin density functional theory within
the LSDA and LSDA+U methods implemented in OpenMX
code [25], which is based on the norm-conserving pseudopo-
tential and a linear combination of multiple pseudo-atomic
orbitals. (For computational details, see Supplemental Ma-
terials.) We use (9,9,9) to (18,18,18) uniform k-point mesh.
The pseudopotentials and pseudo-atomic orbitals are severely
checked by comparison with the all-electron full-potential lin-
earized augmented plane-wave (FLAPW) method [26], so that
our fully relativistic scheme is well compared to the FLAPW
results in the LDAwith the spin-orbit interaction being treated
in the second variation scheme. (See Fig. S1 in Supplemental
Materials.) The total-energy calculation using OpenMX re-
veals a structural stability around a = 10.4 Å and x = 0.33
for La2Ir2O7 (see Supplemental Materials), which are close to
the experimental observations for Pr2Ir2O7 and justifies the La
replacement as long as the low-temperature rare-earth mag-
netism is irrelevant above 1.5 K[2]. Thus, we henceforth re-
place Pr with La for calculations on Pr2Ir2O7. We assume
that the translational invariance is fully preserved, while the
ordered magnetic moment directions have been fully relaxed
during the calcuations without adding any energy barrier and

converged to the all-in, all-out AF structure in all the magnet-
ically ordered cases shown below.
Figure 2 shows the band structure and atom projected den-

sity of states (DOS) of (a) a narrow-gap AFI obtained for
Y2Ir2O7 with the LSDA+U (U = 1.3 eV) and (b) a PSM
obtained for Pr2Ir2O7 with the LSDA (U = 0). The Fermi
level has been chosen to be EF = 0. In both cases, the bands
in E ∈ [−2, 0.5] eV shown in the atom projected DOS (Fig.2)
are mainly composed of anti-bonding states of Ir 5d and O1
(48 f ) 2p electrons in IrO6 octahedra. The energy windows
E ∈ [0.5, 2.0] eV for Y2Ir2O7 and E ∈ [0.5, 1.5] eV for
Pr2Ir2O7 are given by a crystal-field gap due to the IrO6 octa-
hedral coordination.
In this AFI for Y2Ir2O7, the charge gap is suppressed by a

proximity to the AFWSM. Figure 3 shows an evolution of the
electron dispersions around a Weyl point with increasing U
from 1.2 to 1.3 eV. Weyl points are confined to the Γ-X-L and
symmetry-related planes [14] by the magnetic space group
symmetry Fd3̄m′ if they exist. They indeed appear at k =
2π
a (0.44, 0.44, 0.35) and (0.46,0.46,0.41) forU = 1.15 eV and
1.2 eV, respectively, and symmetry-related points, with their
energy level being located about 35 and 24 meV higher than
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin
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parameters; the total energy difference ∆E between paramagnetic semimetal (PSM) and AF semimetal (AFSM) or insulator (AFI) in the left
axis, and the magnitude mIr of the ordered local magnetic moment per Ir site in the right axes.
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FIG. 2: (color online) Electronic band dispersions (left) and atom projected densities of states (right) of (a) the all-in, all-out AFI for Y2Ir2O7
and of (b) the PSM for La2Ir2O7 with the crystal parameters of Pr2Ir2O7, obtained by the LSDA+U (U = 1.3 eV) and the LSDA (U = 0),
respectively. Red, green, magenta and blue curves represent Y or La, Ir, O1 (48 f ), and O2 (8b) states, respectively. The Fermi level is denoted
by grey dashed lines.

relativistic non-collinear spin density functional theory within
the LSDA and LSDA+U methods implemented in OpenMX
code [25], which is based on the norm-conserving pseudopo-
tential and a linear combination of multiple pseudo-atomic
orbitals. (For computational details, see Supplemental Ma-
terials.) We use (9,9,9) to (18,18,18) uniform k-point mesh.
The pseudopotentials and pseudo-atomic orbitals are severely
checked by comparison with the all-electron full-potential lin-
earized augmented plane-wave (FLAPW) method [26], so that
our fully relativistic scheme is well compared to the FLAPW
results in the LDAwith the spin-orbit interaction being treated
in the second variation scheme. (See Fig. S1 in Supplemental
Materials.) The total-energy calculation using OpenMX re-
veals a structural stability around a = 10.4 Å and x = 0.33
for La2Ir2O7 (see Supplemental Materials), which are close to
the experimental observations for Pr2Ir2O7 and justifies the La
replacement as long as the low-temperature rare-earth mag-
netism is irrelevant above 1.5 K[2]. Thus, we henceforth re-
place Pr with La for calculations on Pr2Ir2O7. We assume
that the translational invariance is fully preserved, while the
ordered magnetic moment directions have been fully relaxed
during the calcuations without adding any energy barrier and

converged to the all-in, all-out AF structure in all the magnet-
ically ordered cases shown below.
Figure 2 shows the band structure and atom projected den-

sity of states (DOS) of (a) a narrow-gap AFI obtained for
Y2Ir2O7 with the LSDA+U (U = 1.3 eV) and (b) a PSM
obtained for Pr2Ir2O7 with the LSDA (U = 0). The Fermi
level has been chosen to be EF = 0. In both cases, the bands
in E ∈ [−2, 0.5] eV shown in the atom projected DOS (Fig.2)
are mainly composed of anti-bonding states of Ir 5d and O1
(48 f ) 2p electrons in IrO6 octahedra. The energy windows
E ∈ [0.5, 2.0] eV for Y2Ir2O7 and E ∈ [0.5, 1.5] eV for
Pr2Ir2O7 are given by a crystal-field gap due to the IrO6 octa-
hedral coordination.
In this AFI for Y2Ir2O7, the charge gap is suppressed by a

proximity to the AFWSM. Figure 3 shows an evolution of the
electron dispersions around a Weyl point with increasing U
from 1.2 to 1.3 eV. Weyl points are confined to the Γ-X-L and
symmetry-related planes [14] by the magnetic space group
symmetry Fd3̄m′ if they exist. They indeed appear at k =
2π
a (0.44, 0.44, 0.35) and (0.46,0.46,0.41) forU = 1.15 eV and
1.2 eV, respectively, and symmetry-related points, with their
energy level being located about 35 and 24 meV higher than
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin
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Examine the domain wall state
in the insulating region.
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Total energy 

per domain wall 

(2D Kagome plane)

U = 1.5 eV U = 2 eV

Type 1 Domain walls 0.05eV 0.25eV

Type 2 Domain walls 0 0
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Total energy 
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(2D Kagome plane)

U = 1.5 eV U = 2 eV

Type 1 Domain walls 0.05eV 0.25eV

Type 2 Domain walls 0 0

energetically 
favorable!
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• From ab initio calculation, type 2 domain wall 
(magnetic) is energetically favored

• Within the AF insulating phase of Y2Ir2O7, there’re 
two phases, one with conducting domain wall, with 
stronger correlation, the conducting domain wall is 
gapped out.

Summary for Part 2


