Generic spin model for the honeycomb iridates with trigonal distortion

Jeffrey G. Rau University of Waterloo

In collaboration with Hae-Young Kee and Eric Kin-Ho Lee (University of Toronto)

Kitaev's honeycomb model

- Spin-½ model
- Highly anisotropic in spin and space
- Frustrated by anisotropy, not geometry

Kitaev Exchange
$$K \sum_{\langle ij \rangle \in \gamma} S_i^{\gamma} S_j^{\gamma}$$

Exactly solvable with spin liquid ground state

Atomic Physics

- Crystal field and spin-orbit give $j=\frac{1}{2}$ states
- Interactions: Hubbard *U*, Hund's J_H

Spin-orbit Mott insulators

Ferromagnetic

$$K \sim -\frac{8J_H}{3U^2} \left(\frac{t_{pd\pi}^2}{\Delta_{pd}}\right)^2$$

- Edge-shared oxygen octahedra
- Effective j=1/2 spin model
- Considers only oxygen mediated exchange

Candidate materials?

Hund's coupling

Na₂lrO₃ & α-Li₂lrO₃

Y. Singh & P. Gegenwart, Phys. Rev. B (2010)

Magnetic Ordering

 Both materials antiferromagnetically order near ~15K

 Na₂IrO₃→ Zigzag ordering pattern

• $\text{Li}_2\text{IrO}_3 \rightarrow \text{Spiral}$ order?

What else do we know about the zigzag order?

Y. Singh et al, Phys. Rev. Lett. (2011); X. Liu et al, Phys. Rev. B (2011); F. Ye et al, Phys. Rev. B (2012)

Diffuse scattering - Na₂IrO₃

S.H. Chun, Nature Physics (2015)

- Above ordering transition short range correlations
- Strong correlation between wave-vector and spin component
- Strong anisotropic interactions

Neutron scattering - Na₂IrO₃

- Absence of scattering at low-Q
- Scattering down to at least 1 meV small gap
- Concave boundary

Some of the only information on the low-energy structure of the zigzag state

Heisenberg-Kitaev Model

Heisenberg interaction in addition to Kitaev

Phase diagram of this model well-established;
 classically, exact diagonalization, DMRG, ...

J. Chaloupka, G. Jackeli & G. Khalliliuin, Phys. Rev. Lett. (2010), ibid (2013);Okamoto, Phys. Rev. Lett. (2013); H.C.Jiang et al Phys. Rev. B (2011)

HK-Model: Properties

- Roughly in agreement with INS and RIXS data; nearly gapless with large energy scale
- Kitaev
 coupling must
 be near AFK
 limit

 Accidental classical degeneracy – gapless spinwaves

HK Model: Problems

Problem: Oxygen mediated hopping dominates so K has wrong sign – Zigzag hard to get in HK model

Some proposed solutions:

- Strong e_g-t_{2g} contribution to K to change sign
- Large further neighbour J₂ and J₃,
- Monoclinic distortions
- Second neighbour Kitaev, ...

Chaloupka et al. Phys. Rev. Lett.(2010), (2013); Kimchi & You, Phys. Rev. B (2011), Yamaji et a. Phys. Rev. Lett. (2014), Katakuri et al, N. J. Phys. (2014), Sizyuk et al, Phys. Rev. B (2014), etc

Generalities

- Structure has monoclinic, trigonal distortion, 2^{nd} and 3^{rd} neighbour exchange
- Many symmetry allowed channels
- 10 at nearest neighbour level alone

4 Exchanges

Plan of attack

- Won't attempt full microscopic treatment
- Let's try the simplest possible consistent model and see how far it can take us
- Questions:
 - Can one find a zigzag phase?

 Can one explain the small excitation gap given strong anisotropy?
- We'll start with no monoclinic distortion, no trigonal distortion; nearest neighbour exchanges only – what's the model?

Heisenberg-Kitaev-T Model

J. G. Rau, E. K. H. Lee & H. Y. Kee Phys. Rev. Lett. 112, 077204 (2014)

Classical Phase Diagram Γ>0

 $J = \sin \theta \cos \phi$,

 $K = \sin \theta \sin \phi$,

 $\Gamma = \cos \theta$

New Phases

Two new phases beyond HK model

 New Zigzag away from FK limit

Incommensurate spiral orders

Phase I & II?

Spiral phases: I and II

- Track largest Fourier component
- Dominant wavevector changes ~ smoothly
- Not single-Q
- Phase I: in 1st BZ
- Phase II: not in 1st
 BZ
- Phase I energy very close to zigzag

Exact Diagonalization: Γ>0

Trigonal Distortion?

- Na₂IrO₃ has trigonal compression along [111], out of plane
- Introduces another off-diagonal exchange

$$\Gamma' \sum_{\langle ij\rangle \in \alpha\beta(\gamma)} \left[S_i^{\alpha} S_j^{\gamma} + S_i^{\gamma} S_j^{\alpha} + S_i^{\beta} S_j^{\gamma} + S_i^{\gamma} S_j^{\beta} \right]$$

Positive for trigonal compression

$$\Gamma' = -\frac{8J_H}{9} \left[\frac{\sqrt{2}\theta \left((t_2 + t_3)^2 + 4t_2^2 \right)}{2(U - 3J_H)(U - J_H)} \right]$$
 Leading term for small trigonal distortion

distortion

Negative for trigonal compression

Will take $\Gamma' < 0$ for Na₂IrO₃

Effects of Γ'<0 (classical)

- Phase I sensitive to trigonal distortion
- Large zigzag phase for even small values
- Zigzag close to FK limit

Effects of Γ'<0 (quantum)

- Focus on FK limit
- Zigzag correlations increasing

Beyond ordering?

Fixed scale so |K|=1

Spin waves with Γ and Γ '

- Accidental classical degeneracy of HK model spoiled
- Gap ~ |Γ|,|Γ'|
- Microscopics: no reason for Γ to be that small
- Spin waves generically gapped

- Experimental input: excitation spectrum has low energy excitations <1-2 meV
- Overall scale large; RIXS excitations at ~30 meV

How to reconcile?

Spin wave gap in zigzag phase

 Consider Γ'=0 and look at spin-wave gap in zigzag state

 Zigzag phase metastable for most of phase I region

• Two gapless regimes: the HK-limit & a large Γ region near FK limit

What's going on?

- Highly anisotropic, shouldn't have gap
- Duality in J-K-Γ-Γ' model C2 spin rotation about [111]

$$\begin{pmatrix} J \\ K \\ \Gamma \\ \Gamma' \end{pmatrix}' = \begin{pmatrix} 1 & +\frac{4}{9} & -\frac{4}{9} & +\frac{4}{9} \\ 0 & -\frac{1}{3} & +\frac{4}{3} & -\frac{4}{3} \\ 0 & +\frac{4}{9} & +\frac{5}{9} & +\frac{4}{9} \\ 0 & -\frac{2}{9} & +\frac{2}{9} & +\frac{7}{9} \end{pmatrix} \begin{pmatrix} J \\ K \\ \Gamma \\ \Gamma' \end{pmatrix}$$

- Gapless regime dual to HK model with accidental degeneracy
- 'Solvable' dual point with zigzag order

Effects of Γ'>0 (classical)

- Phase I is stable
- Incommensur ate spirals persist
- Trigonal distortion is smaller in Li2IrO3

From Phase I: 2M/3 Phase

- Look at phase I near Γ'=0
- Dominant wavevector ~2M/3, commensurate
- Three-fold, not single-Q state
- Ferrimagnetic (~0.2/site)
- $Q_{exp} \sim 0.41 \text{ Å}^{-1}$?

Summary

- Trigonal compression can stabilize a zigzag phase near the FK-limit within a nearest neighbour model
- Parameter regime with small spin-wave gap at large anisotropy
- Zigzag phase near FK limit competes with incommensurate spiral phase – related to Li₂IrO₃?