KITP, July 2015

# Strain-induced Partially Flat Band, Helical Snake States, and Interface Superconductivity in Topological Crystalline Insulators

Evelyn Tang Liang Fu

Nature Physics 10, 964-969 (2014)



# Interface superconductivity



LAO/ STO

Hwang group,

Nature 2004  $T_c \sim 0.5K$ 



1-layer FeSe/ STO Liu-Xue-Jia group, Nat. Materials 2014  $T_c > 100K$ 

\* Interface exhibits superconductivity (or much higher  $T_c$ ) than constituent materials







PbS/PbSe; PbTe/PbSe; PbS/YbS bilayers N.Y. Fogel et al., PRB 2002

#### PbTe/SnTe superlattice

K. Murase et al., Surf. Sci 1986

# Older experiments

Single films non-superconducting; multilayers  $T_c$ ~6K

Why superconductivity at the interface? What is the origin or mechanism?

#### Outline

#### A. Our theoretical model

- 1. IV-VI semiconductors ➤ Topological crystalline insulators
- 2. Strain + Dirac fermions ➤ Pseudo-magnetic field
- 3. Landau-levels ➤ Large DOS ➤ Non-BCS superconductivity
- B. Comparison with experiments/ Our predictions
- C. Discussion and outlook

#### Outline

#### A. Our theoretical model

- 1. IV-VI semiconductors ➤ Topological crystalline insulators
- 2. Strain + Dirac fermions ➤ Pseudo-magnetic field
- 3. Landau-levels ➤ Large DOS ➤ Non-BCS superconductivity
- B. Comparison with experiments/ Our predictions
- C. Discussion and outlook

#### IV-VI semiconductors



Rocksalt FCC structure Mirror symmetry

T.H. Hsieh et al., Nature Comm. 2013



- \* Chalcogenide material class e.g. SnTe, PbSe
- \* Alloying, pressure or strain: Band inversion
- \* Topological crystalline insulator (TCI) phase
  - \* Protected by mirror symmetry and U(1) charge conservation

### Surface states of the TCI

\* Low-energy surface states in the (111), (110) and (001) directions



\* Dirac fermions described by k.p theory  $H_{\bar{X}_1}(\vec{k}) = v_1 k_1 s_y - v_2 k_2 s_x + m \tau_x + \delta s_x \tau_y$ 



## Surface states in the (001) direction



ARPES: Hasan group, Nature Comm. 2012

- \* Two pairs of Dirac cones
- Lie along two orthogonal mirror axes
- Related by four-fold rotation symmetry

STM: Madhavan group, Science 2012



## Properties under time-reversal



- Qualitatively different features
- \* Topological insulator (TI):
  Dirac points at time-reversal invariant momenta (TRIM)
- \* Its own time-reversed partner

ARPES: Hasan group, Nature Comm. 2012

- \* TCI: Dirac points occur in pairs as time-reversed partners
- \* Couple oppositely to strain-induced pseudo gauge-field
- \* Unlike Dirac points in a regular TI which cannot couple to strain

# Shifting of Dirac cones in Pb<sub>1-x</sub>Sn<sub>x</sub>Te



Ando group PRB 2013



 $k_{z}$  (001)

- \* In TCI phase, pair of Dirac points seen
- With changing alloy composition, they move towards zone center
- Similar effect from strain
  - Serbyn & Fu, PRB 2014



#### Outline

#### A. Our theoretical model

- 1. IV-VI semiconductors ➤ Topological crystalline insulators
- 2. Strain + Dirac fermions ➤ Pseudo-magnetic field
- 3. Landau-levels ➤ Large DOS ➤ Non-BCS superconductivity
- B. Comparison with experiments/ Our predictions
- C. Discussion and outlook



Three independent types of strain; resulting shift in BZ

## Strain in a TCI

The strain field  $u_{ij} \equiv (\partial_j u_i + \partial_i u_j)/2$  (where **u** is the displacement field) is

• Compression/dilation:  $u_{xx} + u_{yy}$ 

• Uniaxial stretch:  $u_{xx} - u_{yy}$ 

• Shear:  $u_{xy} + u_{yx}$ 

#### Ab-initio calculations

- \* Isotropic strain pushes certain materials into a TCI
- \* In TCI phase, compressing the lattice shifts surface Dirac points
- \* Extract how strongly strain couples to Dirac point shifts, e.g. for PbTe,  $\alpha_1 = 2.2 \mathring{A}^{-1}$



P. Barone et al., Phys. Status Solidi 2013

# Pseudo gauge-field for Dirac fermions

- \* Linear shift of momentum: similar to minimal coupling  $\vec{k} \to \vec{k} + \vec{A}$ 
  - \* Allows identification with a gauge-field
  - \* Nonrelativistic fermions instead also give terms of  $\ensuremath{\vec{k}} \cdot \vec{A}$
- Exact form depends on lattice symmetries
  - \* Graphene has one coupling constant, J.L. Mañes PRB 2007
  - \* TCIs have three independent coupling constants
  - \* For the Dirac fermion at valley  $\mathbf{K}_j$ , the strain-induced vector potential  $\mathbf{A}_j \equiv \mathbf{K}_j' \mathbf{K}_j$  is to lowest order

$$\mathbf{A}_{j} = (A_{j}^{x}, A_{j}^{y}); \qquad \mathbf{A}_{1} = (\alpha_{1}u_{xx} + \alpha_{2}u_{yy}, \ \alpha_{3}u_{xy}),$$

$$\mathbf{A}_{2} = (\alpha_{3}u_{xy}, \ \alpha_{1}u_{yy} + \alpha_{2}u_{xx}).$$

# Strain profile in a TCI bilayer



TEM image of the square misfit dislocation grid, which forms at the interface of PbTe/PbSe (lattice spacing is 0.64nm)

N.Y. Fogel et al., PRB 2002

- \* Lattice mismatch between two materials of 3-10%
- \* Spontaneous formation of misfit edge dislocations
- \* Regular two-dimensional dislocation array along the mirror axes

# Spatially-varying strain field



Plotted using representative parameters: array period 15nm, Poisson ratio for PbTe of 0.26, lattice constant 0.64nm

$$u_{xx}(x) = \sum_{N} u_{xx}^{0}(x - N\lambda).$$

$$u_{xx}(x) = \sum_{N} u_{xx}^{0}(x - N\lambda),$$

$$u_{xx}^{0}(x) = \frac{bz}{2\pi(1 - \nu)} \frac{(3x^{2} + z^{2})}{(x^{2} + z^{2})^{2}}.$$

- Total strain field is sum of contributions from each dislocation
- Field for single dislocation given by classical strain theory
- Similar behavior along other mirror axis obtained by rotation

# Periodically-alternating B-field



- \* Maximum pseudo-magnetic field is ~180 Tesla
- Spatially-varying strain necessary to produce non-zero B-field
- Periodically-alternating field that averages to zero

## Macroscopic array vs. nanobubbles



- Pseudo magnetic-fields seen in localized graphene nanobubbles
- Dislocation array covers macroscopic regions altering electronic properties globally
- \* A periodic field is easier to achieve than a uniform field (which has infinite gauge potential at boundary)

#### Outline

#### A. Our theoretical model

- 1. IV-VI semiconductors ➤ Topological crystalline insulators
- 2. Strain + Dirac fermions ➤ Pseudo-magnetic field
- 3. Landau-levels ➤ Large DOS ➤ Non-BCS superconductivity
- B. Comparison with experiments/ Our predictions
- C. Discussion and outlook

#### Pseudo Landau-levels

\* When the field varies on scales larger than the magnetic length, we expect the formation of local Landau levels

Energy level spacing depends on local field strength

$$* E_n(x) = \operatorname{sgn}(n) \sqrt{2nv_x v_y} |B(x)|.$$

- \* n=0 Landau level has E=0 regardless of field strength
  - Extensive degeneracy at zero energy

#### Flat bands at low momenta

Approximate periodic field with first Fourier component

$$H = -iv_x \partial_x s_y - v_y (k_y - A_y(x)) s_x, \quad A_y(x) = A_0 \cos(2\pi x/\lambda)$$



\* Two flat bands corresponding to positive and negative regions of pseudo B-field respectively

## Large DOS and snake states



- \* Large DOS at E=0 from flat bands
- \* Dispersive states at transition regions: chiral snake states

- Another time-reversed copy from opposite valley
  - \* Jointly give helical snake states



#### Flat bands drive instabilities

- Large density of states enhance interaction effects and can favor superconductivity
- \* Carrier density in the flat band ~  $10^{12}$ cm<sup>-2</sup>
  - \* Expect Fermi energy there
- \* Solving the BCS mean-field gap equation gives

$$k_B T_c \sim \Delta_0$$
 $\hbar \omega_D \exp(-1/VD(E_F))$ 
Fermi surface flat band

\* Khodel & Shaginyan, JETP Lett 1990; Kopnin, Heikkila & Volovik, PRB 2011

#### Outline

#### A. Our theoretical model

- 1. IV-VI semiconductors ➤ Topological crystalline insulators
- 2. Strain + Dirac fermions ➤ Pseudo-magnetic field
- 3. Landau-levels ➤ Large DOS ➤ Non-BCS superconductivity
- B. Comparison with experiments/ Our predictions
- C. Discussion and outlook

## Experimental features

- \* Superconductivity measured in several IV-VI multilayers,  $T_c$  is 2.5-6.4K
  - \* Individual constituents nonsuperconducting above 0.2K
- \* Superconductivity is two-dimensional
  - Anisotropy of upper critical field
- \* In narrow-gap semiconductors ( $E_g$  < 0.3eV)
  - \* Wide-gap semiconductors do not superconduct above 1.5K



Six PbTe/PbS bilayers (different thicknesses) N.Y. Fogel et al., PRB 2006

# Dependence on dislocation array

\* Samples without a regular dislocation array show only partial superconducting transitions



\* In superconducting samples,  $T_c$  increases from 3K to 6K as array period  $D_g$  decreases from 23nm to 10nm

N.Y. Fogel et al., PRB 2002



\* Consistent with  $T_c$  depending parametrically on the flat band degeneracy — non-BCS dependence

# Predictions from our theory

- Unique DOS spectrum from tunneling conductance measurements
- \* Drop in  $T_c$  when gating out of flat band
- De Haas-van Alphen
  measurements should reflect
  periodicity of superlattice



# STM measures Dirac point shifts



- \* SnTe thin film grown on PbSe substrate
- \* Local atomic measurements map strain: tensile (red) and compressive (blue)
- \* QPI measures wavevector  $Q_1$ : dispersions are offset in momentum agrees with theory







Madhavan group, arXiv 2015

#### Outline

#### A. Our theoretical model

- 1. IV-VI semiconductors ➤ Topological crystalline insulators
- 2. Strain + Dirac fermions ➤ Pseudo-magnetic field
- 3. Landau-levels ➤ Large DOS ➤ Non-BCS superconductivity
- B. Comparison with experiments/ Our predictions
- C. Discussion and outlook

## Summary

- \* Theoretical model for strain-induced helical flat bands and interface superconductivity in TCIs
  - \* Demonstrates role of topological electronic states
  - Opens realistic route to strain-induced flat bands
  - \* Can account for previously unexplained experimental features (e.g. dependence on dislocation array and its relation to  $T_c$ )

#### Further work

- Open questions
  - \* Role of interactions?
  - Analytical description?



Moler group, Nature Mat. 2013

- Connection to interface superconductivity in other systems?
  - \* Conductance channels in STO related to structural distortions
  - \* Strain effects seem important
- Usefulness of flat bands
  - \* New states with repulsive interactions? E.g. FQHE
  - \* Possible route towards higher  $T_c$  by strain engineering

# Summary

- \* Theoretical model for strain-induced helical flat bands and interface superconductivity in TCIs
  - \* Demonstrates role of topological electronic states
  - Opens realistic route to strain-induced flat bands
  - \* Can account for previously unexplained experimental features (e.g. dependence on dislocation array and its relation to  $T_c$ )

Thank you!

# Coloumb repulsion in a flat band?

\* Typically, the electron repulsion is renormalized by the electron bandwidth *W*, so phonon-mediated attraction can dominate.

$$k_B T_c = 1.14 \epsilon_D \exp\left(-\frac{1}{\lambda - \mu^*}\right)$$
 where  $\mu^* = \frac{\mu}{1 + \mu \ln(W/\epsilon_D)}$ 

\* In a flat band (no bandwidth), how does this happen?

\* Revisit Anderson-Morel calculation, using a peak in density of states at very narrow bandwidth (less than phonon energy):

$$k_B T_c = 1.14 \Gamma_{FB} \left(\frac{\epsilon_D}{\Gamma_{FB}}\right)^{\frac{1}{\alpha}} \exp\left(-\frac{1}{\alpha(\lambda - \mu^*)}\right)$$