Weyl semimetals in high magnetic fields

Fermi arcs and magnetic torque in the quantum limit

Philip J. M. W. Moll, Nityan Nair, James G. Analytis University of California, Berkeley

Key players @ UCB

Itamar Kimchi

Weyl systems in high magnetic fields

PART I: Introduction

PART II: Weyl orbits and the observation of Shubnikov-de Haas from Fermi Arcs.

PART III: Berryparamagnetism, torque in the quantum limit and a new tool for the search for Weyl and Dirac systems.

PART I: Introduction

Wan, Turner, Vishwanath, Savrasov; Burkov & Balents; Witczak-Krempa & Y-B Kim; Andrew C. Potter, I.Kimchi, A. Vishwanath, Nature Communications (2014)

Monopoles and Berry curvature

 $H_{\text{Weyl}} = \pm v \mathbf{k} \cdot \boldsymbol{\sigma}$

- Degeneracies act like monopoles and are associated with a Chern number
- A Weyl node is a source of Berry curvature in *k*-space. Chirality is a good quantum number.

Connecting particles with different chirality

• Breaking translational symmetry of the system, chirality can be transferred from one Weyl node to another via a Fermi arc

Weyl and 3D Dirac

Time-reversal SB Weyl Inversion SB Weyl e.g. TaAs Symmetry protected 3D Dirac e.g. Cd3As2, Na3Bi

Experimental observations

STM on Cd₃As₂ (Yazdani group, Nat. Mat. '14)

(Xiu group, Fudan '15)

Part II: Quantum oscillations from Weyl orbits

3D Dirac system Cd₃As₂ Philip J. W. Moll, JGA et al. arXiv:1505.02817

Intro to Weyl orbits

- Potter-Kimchi-Vishwanath theory (PKV) proposed quantum oscillations as a possible probe of Fermi arcs.
- Closed quasiparticle orbits result in Landau quantization of the energy spectrum, arising from the Bohr-Sommerfeld quantization.
- Oscillations in the density of states observable in magnetotransport, magnetization, heat capacity.....

Bulk Landau Levels

Quantum oscillations as a probe of surface states e.g. Li group SmB₆ (Science 2014)

The chirality conveyor belt

Surface-to-Bulk Transfer

Andrew C. Potter, I.Kimchi, A. Vishwanath, Nature Communications (2014)

- The cyclotron "Weyl" orbit involves a real space and k-space path.
- Real space trajectory encloses no flux (Lorentz force free path).
- From a quantum oscillatory point of view, it looks a lot like a 2D orbit with area A_k , or equivalently frequency $f_{1/B}$

- The cyclotron "Weyl" orbit involves a real space and k-space path.
- Real space trajectory encloses no flux (Lorentz force free path).
- From a quantum oscillatory point of view, it looks a lot like a 2D orbit with area A_k , or equivalently frequency $f_{1/B}$

Distinguishing features

Thickness-dependent quantum oscillatory study in Cd₃As₂

Thickness-dependent quantum oscillatory study in Cd₃As₂

New quantum oscillatory frequency at ~60T ($k_0 \sim 0.08 \text{\AA}^{-1}$)

Note this is approximately the k₀ measured by ARPES

Yi et al. Sci. Rep. 4, 6106 (2014)

Oscillations are 2D

Philip J. W. Moll, JGA et al. arXiv:1505.02817

Amplitude onsets at L~2l (Knudsen effect)

And grows exponentially with thinness

Philip J. W. Moll, JGA et al. arXiv:1505.02817

Does the phase of the oscillations depend on thickness?

- Detailed thickness dependence prohibitively difficult at the moment (frequency is too high and would require 1nm thickness dependence)
- So we came up with something different - a triangular geometry.
- The orbit is averaging over all length scales, causing the QOs to destructively interfere.

 $\frac{1}{B_n} = \frac{2\pi n}{f_{1/B}} - \frac{e}{k_{\rm arc}}L$

Does the phase of the oscillations depend on thickness?

- Detailed thickness dependence prohibitively difficult at the moment (frequency is too high and would require 1nm thickness dependence)
- So we came up with something different - a triangular geometry.
- The orbit is averaging over all length scales, causing the QOs to destructively interfere.

Some other, unexpected details

Mass corrections in TI surface states?

- Seen in Rashba systems (BiTel) and TIs
- But....
 - 1. the effect seems to go in the wrong direction
 - The g-factor required is 300 (10x anything measured in these compounds)

Analytis et al Nature Physics 2010

Non-adiabatic corrections in Weyl orbits?

Andrew C. Potter, I.Kimchi, A. Vishwanath, Nature Communications (2014)

We get $\alpha \sim 1.2$

Observation	Trivial	Weyl
2D QOs	Y	Y
Frequency ~56T	Coincidence	Y
Amplitude exponential with L	Close	Y
Onset at L=2 <i>l</i>	Coincidence	Y
Parallel surface required	N	Y
Field dependent phase.	Unphysical	Y
Saturation field B*	N	N (not yet)

Part III: Berry paramagnetism and the quantum limit torque anomaly.

Inversion symmetry breaking NbAs Philip J. W. Moll, JGA et al. arXiv:1507.06981

Landau diamagnetism

Berry paramagnetism

Philip J. W. Moll, JGA et al. arXiv:1507.06981

The quantum limit n=0

TRIVIAL

DIRAC

Loosely speaking $E=\hbar\omega(n+\frac{1}{2})$

In the quantum limit \mathcal{M}_{T} =-dE/dB \approx - $\hbar \omega$ /2B

Loosely speaking $E = v_F \sqrt{2e\hbar Bn}$

In the quantum limit \mathcal{M}_D =-dE/dB=0

 $\mathcal{M}_{Tot} = \mathcal{M}_T + \mathcal{M}_D$

Torque as a measure of magnetic anisotropy

Extremely sensitive to a change of sign in the magnetization

Torque expected in trivial vs Weyl systems

Note that these arguments are quite general - there will always be an anomaly in the quantum limit of a topologically non-trivial system (though it won't always manifest as a change of sign)

Torque observed in NbAs

A new probe for topological states of matter, that can be done in any lab without the help of photoemission! Philip J. W. Moll, JGA et al. arXiv:1507.06981

Distinguishing between 3D Dirac and Weyl systems

Weyl Dirac B//[001] Dirac B⊥[001]

Philip J. W. Moll, JGA et al. arXiv:1507.06981

GORDON AND BETTY MOORE E 8 H N B & I I 8 N

Berkeley -> MPI

1

Nityan Nair

Philip Moll

shvin Vishwanat

Drew Potter

Filip Ronning

Eric Bauer

39

Itamar Kimchi

Thanks

Torque angle dependence

