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Mott quantum criticality in anisotropic Hubbard models 

Outline 
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• Finite t′ = −t⊥/4 guarantees the MIT in the weak-coupling and thermodynamic limits

• Method: 8× 2 cluster dynamical mean-field theory (CDMFT)
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3D band width controlled MIT:   V2O3 

Order parameter: 
double occupancy = 
scalar local  field à 
Ising universality 

(β, δ , γ )= (0.31, 5, 1.25)

Data consistent with mean-field over wide T  range 
 
  
Very  close to transition  crossover to 3D Ising:  

(β, δ , γ )= (0.5, 3, 1) à DMFT 
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D< 2:  Dimensional-driven MIT 

Questions 
 
a)  Nature of the transition.   

Quantum (Tc = 0) or classical (Tc > 0) ?  
 
b)  Nature of metallic state in the vicinity of the  

dimensional driven MIT? 
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D< 2:  Dimensional-driven MIT  
What about the spin degrees of freedom? 

Confinement  

T=0, no frustration,  
δc=0   
(A. Sandvik. PRL 83, 1999) 
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three higher-order spin couplings (J 0, J 00, and Jc! have
similar effects on the dispersion relation and intensity
dependence; therefore they cannot be determined inde-
pendently from the data without additional constraints.
We first assume that only J and J 0 are significant as in
[18], i.e., J 00 ! Jc ! 0. The solid lines in Fig. 2 are fits
to a one-magnon cross section, and Fig. 3 shows fits to
the extracted dispersion relation and spin-wave intensity.
As can be seen in the figures, the model provides an
excellent description of both the spin-wave energies and
intensities. The extracted nearest-neighbor exchange
J ! 111.8 6 4 meV is antiferromagnetic, while the
next-nearest-neighbor exchange J 0 ! 211.4 6 3 meV
across the diagonal is ferromagnetic. A wave-vector-
independent quantum renormalization factor [12] Zc !
1.18 was used in converting spin-wave energies into ex-
change couplings. The zone-boundary dispersion becomes
more pronounced upon cooling as shown in Fig. 3A, and
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FIG. 3. (A) Dispersion relation along high symmetry direc-
tions in the 2D Brillouin zone, see inset (C), at T ! 10 K (open
symbols) and 295 K (solid symbols). Squares were obtained
for Ei ! 250 meV, circles for Ei ! 600 meV, and triangles
for Ei ! 750 meV. Points extracted from constant-E(-Q) cuts
have a vertical (horizontal) bar to indicate the E(Q) integration
band. Solid (dashed) line is a fit to the spin-wave dispersion re-
lation at T ! 10 K (295 K) as discussed in the text. (B) Wave-
vector dependence of the spin-wave intensity at T ! 295 K
compared with predictions of linear spin-wave theory shown by
the solid line. The absolute intensities [11] yield a wave-vector-
independent intensity-lowering renormalization factor of 0.51 6
0.13 in agreement with the theoretical prediction of 0.61 [12]
that includes the effects of quantum fluctuations.

the dispersion at T ! 10 K can be described by the
couplings J ! 104.1 6 4 meV and J 0 ! 218 6 3 meV.

A ferromagnetic J 0 contradicts theoretical predictions
[19], which give an antiferromagnetic superexchange J 0.
Wave-vector-dependent quantum corrections [20] to the
spin-wave energies can also lead to a dispersion along the
zone boundary even if J 0 ! 0, but with sign opposite to our
result. Another problem with a ferromagnetic J 0 comes
from measurements on Sr2Cu3O4Cl2 [21]. This material
contains a similar exchange path between Cu21 ions to
that corresponding to J 0 in La2CuO4 and analysis of the
measured spin-wave dispersion leads to an antiferromag-
netic exchange coupling for this path [21].

While we cannot definitively rule out a ferromagnetic
J 0, we can obtain a natural description of the data in terms
of a one-band Hubbard model [22], an expansion of which
yields the spin Hamiltonian in Eq. (1) where the higher-
order exchange terms arise from the coherent motion of
electrons beyond nearest-neighbor sites [13–15]. The
Hubbard Hamiltonian has been widely used as a starting
point for theories of the cuprates and is given by

H ! 2t
X

"i,j#,s!",#
$cy

iscjs 1 H.c.! 1 U
X

i
ni"ni# , (2)

where "i, j# stands for pairs of nearest neighbors counted
once. Equation (2) has two contributions: the first is
the kinetic term characterized by a hopping energy t
between nearest-neighbor Cu sites and the second the
potential energy term with U being the penalty for
double occupancy on a given site. At half filling, the
case for La2CuO4, there is one electron per site and for
t%U ! 0, charge fluctuations are entirely suppressed
in the ground state. The remaining degrees of freedom
are the spins of the electrons localized at each site. For
small but nonzero t%U, the spins interact via a series of
exchange terms, as in Eq. (1), due to coherent electron
motion touching progressively larger numbers of sites.
If the perturbation series is expanded to order t4 (i.e.,
4 hops), one regains the Hamiltonian (1) with the ex-
change constants J ! 4t2%U 2 24t4%U3, Jc ! 80t4%U3,
and J 0 ! J 00 ! 4t4%U3 [13–15]. We again fitted the
dispersion and intensities of the spin-wave excitations
using these expressions for the exchange constants and
linear spin-wave theory. The fits are indistinguishable
from those for variables J and J 0. Again assuming
[23] Zc ! 1.18, we obtained t ! 0.33 6 0.02 eV and
U ! 2.9 6 0.4 eV (T ! 295 K), in agreement with t
and U determined from photoemission [24] and optical
spectroscopy [25]. The corresponding exchange val-
ues are J ! 138.3 6 4 meV, Jc ! 38 6 8 meV, and
J 0 ! J 00 ! Jc%20 ! 2 6 0.5 meV (the parameters at
T ! 10 K are t ! 0.30 6 0.02 eV, U ! 2.2 6 0.4 eV,
J ! 146.3 6 4 meV, and Jc ! 61 6 8 meV). Us-
ing these values, the higher-order interactions amount
to &11% (T ! 295 K) of the total magnetic energy
2$J 2 Jc%4 2 J 0 2 J 00! required to reverse one spin on a
fully aligned Néel phase.
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• Finite t′ = −t⊥/4 guarantees the MIT in the weak-coupling and thermodynamic limits

• Method: 8× 2 cluster dynamical mean-field theory (CDMFT)

t ' = − t⊥ / 4

Exact BSS approach 

Exact evaluation of   
 
 
 
 
Advantage. Two particle quantities.  

             Spatial fluctuations.  
 
Issues.  Sign problem.  
              Sign problem is mild in a non-trivial  
              portion of the phase diagram.   
               à 20 X 20 lattices down to βt=30.  
	  
	  	  
	  	  

O =
Tr e-β (H−µN )O⎡⎣ ⎤⎦
Tr e-β (H−µN )⎡⎣ ⎤⎦
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FIG. 1. (Color online) Uniform charge susceptibility ln(χct) vs
1/T for several values of the interchain hopping t⊥ found on a 16 × 16
lattice. The inset shows the evolution of the QP gap "qp on increasing
t⊥ extracted from a linear fit.

the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons

045137-3
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the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,
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On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,
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at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
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eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞
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at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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1/T for several values of the interchain hopping t⊥ found on a 16 × 16
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t⊥ extracted from a linear fit.

the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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1/T for several values of the interchain hopping t⊥ found on a 16 × 16
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the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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FIG. 1. (Color online) Uniform charge susceptibility ln(χct) vs
1/T for several values of the interchain hopping t⊥ found on a 16 × 16
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t⊥ extracted from a linear fit.

the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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FIG. 1. (Color online) Uniform charge susceptibility ln(χct) vs
1/T for several values of the interchain hopping t⊥ found on a 16 × 16
lattice. The inset shows the evolution of the QP gap "qp on increasing
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the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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FIG. 9. (Color online) (a) Dynamical charge structure factor
C(qqq,ω) and (b) dynamical spin structure factor S(qqq,ω) obtained on
a 32-site chain at T = t/20. The transverse momentum is a dummy
label.

cranking up the interchain coupling triggers the crossover to a
metal.

2. Quasi-1D metal in the pseudogap regime

Let us consider first a weakly coupled regime with t⊥/t =
0.15. As shown in Fig. 7, the corresponding single-particle
spectral function A(kkk,ω) exhibits two broadened peaks sepa-
rated by a region with a strongly reduced weight that we refer
to as a pseudogap. As is apparent, the system is at the verge
of localization near the 1D Mott phase.

Figure 10(a) depicts the dynamical charge structure factor
C(qqq,ω). Using the continuity equation one finds that upon
approaching the long-wavelength limit qqq → 0 parallel (per-
pendicular) to the chains, this observable is related to the
intrachain (interchain) real part of the optical conductivity
σα(ω), respectively [96]:

σα(ω) = lim
qα→0

ω

q2
α

(1 − e−βω)C(qα,ω), (17)

where qα is the α component of the momentum transfer
parallel/perpendicular to the chains. Given that the intensity of
charge fluctuations rapidly decreases in the long-wavelength
limit, it is difficult to pin down the metallic vs insulating
nature of the system. This issue is resolved by looking at
the low-frequency part of the optical conductivity σα(ω);
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FIG. 10. (Color online) (a) Dynamical charge structure factor
C(qqq,ω), and (b) dynamical spin structure factor S(qqq,ω) obtained
on a 16 × 16 lattice with t⊥/t = 0.15 at T = t/20. Solid line in
panel (b) gives the LSWT dispersion Eq. (19) with J⊥/J = 0.06
and J ′/J⊥ = 0.2. The chosen exchange couplings are fit parameters
subject to the constraint of a finite magnetic order parameter in LSWT
consistent with the long-range AF order in the system.

see Fig. 3. On the one hand, zero-frequency weight in the
interchain optical conductivity σ⊥(ω) indicates a metallic
phase at t⊥/t = 0.15. On the other hand, the smallness
of this weight reveals a large degree of incoherence in
the interchain transport. Moreover, as shown in Fig. 7, the
imaginary part of the corresponding self-energy −Im %(kkk,ωm)
increases at low Matsubara frequency contributing to the
effective mass enhancement and reduced mobility of charge
carriers.

From this standpoint, we can analyze the magnetic excita-
tion spectrum shown in Fig. 10(b). The most striking difference
with respect to the 1D regime is a low-frequency dispersive
feature along the (π,π ) → (π,0) path accompanied by a broad
upward dispersion along the (0,0) → (0,π ) direction. They
are signatures of damped AF spin fluctuations (paramagnons)
which are not strong enough to gap out the FS and develop
long-range AF order but nevertheless can propagate an
appreciable distance.

To get further insight into the spin dynamics, we consider
the spin S = 1/2 Heisenberg model with nearest neighbor
interactions J (J⊥) along the intrachain (interchain) bonds,
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FIG. 1. (Color online) Uniform charge susceptibility ln(χct) vs
1/T for several values of the interchain hopping t⊥ found on a 16 × 16
lattice. The inset shows the evolution of the QP gap "qp on increasing
t⊥ extracted from a linear fit.

the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
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study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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label.

cranking up the interchain coupling triggers the crossover to a
metal.

2. Quasi-1D metal in the pseudogap regime

Let us consider first a weakly coupled regime with t⊥/t =
0.15. As shown in Fig. 7, the corresponding single-particle
spectral function A(kkk,ω) exhibits two broadened peaks sepa-
rated by a region with a strongly reduced weight that we refer
to as a pseudogap. As is apparent, the system is at the verge
of localization near the 1D Mott phase.

Figure 10(a) depicts the dynamical charge structure factor
C(qqq,ω). Using the continuity equation one finds that upon
approaching the long-wavelength limit qqq → 0 parallel (per-
pendicular) to the chains, this observable is related to the
intrachain (interchain) real part of the optical conductivity
σα(ω), respectively [96]:

σα(ω) = lim
qα→0

ω

q2
α

(1 − e−βω)C(qα,ω), (17)

where qα is the α component of the momentum transfer
parallel/perpendicular to the chains. Given that the intensity of
charge fluctuations rapidly decreases in the long-wavelength
limit, it is difficult to pin down the metallic vs insulating
nature of the system. This issue is resolved by looking at
the low-frequency part of the optical conductivity σα(ω);
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FIG. 10. (Color online) (a) Dynamical charge structure factor
C(qqq,ω), and (b) dynamical spin structure factor S(qqq,ω) obtained
on a 16 × 16 lattice with t⊥/t = 0.15 at T = t/20. Solid line in
panel (b) gives the LSWT dispersion Eq. (19) with J⊥/J = 0.06
and J ′/J⊥ = 0.2. The chosen exchange couplings are fit parameters
subject to the constraint of a finite magnetic order parameter in LSWT
consistent with the long-range AF order in the system.

see Fig. 3. On the one hand, zero-frequency weight in the
interchain optical conductivity σ⊥(ω) indicates a metallic
phase at t⊥/t = 0.15. On the other hand, the smallness
of this weight reveals a large degree of incoherence in
the interchain transport. Moreover, as shown in Fig. 7, the
imaginary part of the corresponding self-energy −Im %(kkk,ωm)
increases at low Matsubara frequency contributing to the
effective mass enhancement and reduced mobility of charge
carriers.

From this standpoint, we can analyze the magnetic excita-
tion spectrum shown in Fig. 10(b). The most striking difference
with respect to the 1D regime is a low-frequency dispersive
feature along the (π,π ) → (π,0) path accompanied by a broad
upward dispersion along the (0,0) → (0,π ) direction. They
are signatures of damped AF spin fluctuations (paramagnons)
which are not strong enough to gap out the FS and develop
long-range AF order but nevertheless can propagate an
appreciable distance.

To get further insight into the spin dynamics, we consider
the spin S = 1/2 Heisenberg model with nearest neighbor
interactions J (J⊥) along the intrachain (interchain) bonds,
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cranking up the interchain coupling triggers the crossover to a
metal.

2. Quasi-1D metal in the pseudogap regime

Let us consider first a weakly coupled regime with t⊥/t =
0.15. As shown in Fig. 7, the corresponding single-particle
spectral function A(kkk,ω) exhibits two broadened peaks sepa-
rated by a region with a strongly reduced weight that we refer
to as a pseudogap. As is apparent, the system is at the verge
of localization near the 1D Mott phase.

Figure 10(a) depicts the dynamical charge structure factor
C(qqq,ω). Using the continuity equation one finds that upon
approaching the long-wavelength limit qqq → 0 parallel (per-
pendicular) to the chains, this observable is related to the
intrachain (interchain) real part of the optical conductivity
σα(ω), respectively [96]:
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parallel/perpendicular to the chains. Given that the intensity of
charge fluctuations rapidly decreases in the long-wavelength
limit, it is difficult to pin down the metallic vs insulating
nature of the system. This issue is resolved by looking at
the low-frequency part of the optical conductivity σα(ω);
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see Fig. 3. On the one hand, zero-frequency weight in the
interchain optical conductivity σ⊥(ω) indicates a metallic
phase at t⊥/t = 0.15. On the other hand, the smallness
of this weight reveals a large degree of incoherence in
the interchain transport. Moreover, as shown in Fig. 7, the
imaginary part of the corresponding self-energy −Im %(kkk,ωm)
increases at low Matsubara frequency contributing to the
effective mass enhancement and reduced mobility of charge
carriers.

From this standpoint, we can analyze the magnetic excita-
tion spectrum shown in Fig. 10(b). The most striking difference
with respect to the 1D regime is a low-frequency dispersive
feature along the (π,π ) → (π,0) path accompanied by a broad
upward dispersion along the (0,0) → (0,π ) direction. They
are signatures of damped AF spin fluctuations (paramagnons)
which are not strong enough to gap out the FS and develop
long-range AF order but nevertheless can propagate an
appreciable distance.

To get further insight into the spin dynamics, we consider
the spin S = 1/2 Heisenberg model with nearest neighbor
interactions J (J⊥) along the intrachain (interchain) bonds,
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FIG. 1. (Color online) Uniform charge susceptibility ln(χct) vs
1/T for several values of the interchain hopping t⊥ found on a 16 × 16
lattice. The inset shows the evolution of the QP gap "qp on increasing
t⊥ extracted from a linear fit.

the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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cranking up the interchain coupling triggers the crossover to a
metal.

2. Quasi-1D metal in the pseudogap regime

Let us consider first a weakly coupled regime with t⊥/t =
0.15. As shown in Fig. 7, the corresponding single-particle
spectral function A(kkk,ω) exhibits two broadened peaks sepa-
rated by a region with a strongly reduced weight that we refer
to as a pseudogap. As is apparent, the system is at the verge
of localization near the 1D Mott phase.

Figure 10(a) depicts the dynamical charge structure factor
C(qqq,ω). Using the continuity equation one finds that upon
approaching the long-wavelength limit qqq → 0 parallel (per-
pendicular) to the chains, this observable is related to the
intrachain (interchain) real part of the optical conductivity
σα(ω), respectively [96]:

σα(ω) = lim
qα→0

ω

q2
α

(1 − e−βω)C(qα,ω), (17)

where qα is the α component of the momentum transfer
parallel/perpendicular to the chains. Given that the intensity of
charge fluctuations rapidly decreases in the long-wavelength
limit, it is difficult to pin down the metallic vs insulating
nature of the system. This issue is resolved by looking at
the low-frequency part of the optical conductivity σα(ω);
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C(qqq,ω), and (b) dynamical spin structure factor S(qqq,ω) obtained
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panel (b) gives the LSWT dispersion Eq. (19) with J⊥/J = 0.06
and J ′/J⊥ = 0.2. The chosen exchange couplings are fit parameters
subject to the constraint of a finite magnetic order parameter in LSWT
consistent with the long-range AF order in the system.

see Fig. 3. On the one hand, zero-frequency weight in the
interchain optical conductivity σ⊥(ω) indicates a metallic
phase at t⊥/t = 0.15. On the other hand, the smallness
of this weight reveals a large degree of incoherence in
the interchain transport. Moreover, as shown in Fig. 7, the
imaginary part of the corresponding self-energy −Im %(kkk,ωm)
increases at low Matsubara frequency contributing to the
effective mass enhancement and reduced mobility of charge
carriers.

From this standpoint, we can analyze the magnetic excita-
tion spectrum shown in Fig. 10(b). The most striking difference
with respect to the 1D regime is a low-frequency dispersive
feature along the (π,π ) → (π,0) path accompanied by a broad
upward dispersion along the (0,0) → (0,π ) direction. They
are signatures of damped AF spin fluctuations (paramagnons)
which are not strong enough to gap out the FS and develop
long-range AF order but nevertheless can propagate an
appreciable distance.

To get further insight into the spin dynamics, we consider
the spin S = 1/2 Heisenberg model with nearest neighbor
interactions J (J⊥) along the intrachain (interchain) bonds,
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cranking up the interchain coupling triggers the crossover to a
metal.

2. Quasi-1D metal in the pseudogap regime

Let us consider first a weakly coupled regime with t⊥/t =
0.15. As shown in Fig. 7, the corresponding single-particle
spectral function A(kkk,ω) exhibits two broadened peaks sepa-
rated by a region with a strongly reduced weight that we refer
to as a pseudogap. As is apparent, the system is at the verge
of localization near the 1D Mott phase.

Figure 10(a) depicts the dynamical charge structure factor
C(qqq,ω). Using the continuity equation one finds that upon
approaching the long-wavelength limit qqq → 0 parallel (per-
pendicular) to the chains, this observable is related to the
intrachain (interchain) real part of the optical conductivity
σα(ω), respectively [96]:

σα(ω) = lim
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(1 − e−βω)C(qα,ω), (17)

where qα is the α component of the momentum transfer
parallel/perpendicular to the chains. Given that the intensity of
charge fluctuations rapidly decreases in the long-wavelength
limit, it is difficult to pin down the metallic vs insulating
nature of the system. This issue is resolved by looking at
the low-frequency part of the optical conductivity σα(ω);
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on a 16 × 16 lattice with t⊥/t = 0.15 at T = t/20. Solid line in
panel (b) gives the LSWT dispersion Eq. (19) with J⊥/J = 0.06
and J ′/J⊥ = 0.2. The chosen exchange couplings are fit parameters
subject to the constraint of a finite magnetic order parameter in LSWT
consistent with the long-range AF order in the system.

see Fig. 3. On the one hand, zero-frequency weight in the
interchain optical conductivity σ⊥(ω) indicates a metallic
phase at t⊥/t = 0.15. On the other hand, the smallness
of this weight reveals a large degree of incoherence in
the interchain transport. Moreover, as shown in Fig. 7, the
imaginary part of the corresponding self-energy −Im %(kkk,ωm)
increases at low Matsubara frequency contributing to the
effective mass enhancement and reduced mobility of charge
carriers.

From this standpoint, we can analyze the magnetic excita-
tion spectrum shown in Fig. 10(b). The most striking difference
with respect to the 1D regime is a low-frequency dispersive
feature along the (π,π ) → (π,0) path accompanied by a broad
upward dispersion along the (0,0) → (0,π ) direction. They
are signatures of damped AF spin fluctuations (paramagnons)
which are not strong enough to gap out the FS and develop
long-range AF order but nevertheless can propagate an
appreciable distance.

To get further insight into the spin dynamics, we consider
the spin S = 1/2 Heisenberg model with nearest neighbor
interactions J (J⊥) along the intrachain (interchain) bonds,
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respectively, extended by next-nearest-neighbor interaction J ′:

HJ = J
∑

⟨ijijij ⟩∥

SSSiii · SSSjjj + J⊥
∑

⟨ijijij ⟩⊥

SSSiii · SSSjjj + J ′
∑

⟨⟨ijijij⟩⟩
SSSiii · SSSjjj . (18)

As illustrated in Fig. 10(b), the LSWT dispersion relation of
the Heisenberg model (18) [28],

ωqqq = 2S
√

ξ 2
qqq − γ 2

qqq , (19)

with two-dimensional structure factors,

ξqqq = J + J⊥ − 2J ′(1 − cos qx cos qy), (20)

γqqq = J cos qx + J⊥ cos qy, (21)

tracks the low-frequency paramagnon spectrum. Clearly,
the frequency region with depleted single-particle spectral
weight efficiently separates the low-frequency spin-wave-like
excitations from the high-frequency particle-hole excitations
across the pseudogap in A(kkk,ω). Moreover, a reduced mobility
of charge carriers leads to a separation of time scales, a
characteristic feature of correlated systems with complex
dynamics [97]; charge carriers are localized on the spin time
scale and thus a coherent-like precession of individual spins
might still take place. Consequently, despite broadening and
renormalization of the paramagnon dispersion (softening) as
compared to LSWT with localized moments, an approximate
Heisenberg-like picture turns out to still be applicable below
the single-particle pseudogap.

3. Quasi-1D metal with quasiparticles

We now examine the spin and charge responses at our
largest interchain coupling t⊥/t = 0.3. A closure of the pseu-
dogap in the single-particle spectral function A(kkk,ω) illustrated
in Fig. 7 gives rise to a more pronounced gapless charge mode
in the long-wavelength limit qqq → 0; see Fig. 11(a). As follows
from Eq. (17), this is in turn reflected in a marked increase
in the Drude-like weight shown in Fig. 3 thus providing
the evidence of an increased mobility of charge carriers.
Consequently, the low-frequency part of the dynamical spin
structure factor S(qqq,ω) cannot anymore be interpreted solely
in terms of spin-wave-like excitations assuming localized
spins [98,99]. Our next goal is to identify these various
components in the spin excitation spectrum.

Figure 11(b) reveals featureless continua in S(qqq,ω) near
qqq = (0,π ) and qqq = (π,0) momenta. It is natural to assign
these incoherent excitations to the continuum of independent
particle-hole pairs, a hallmark of an electron system with
mobile charge carriers. Indeed, in the presence of electronic
QPs, a single spin-flip excitation can be made at arbitrary low
energy. Hence, the paramagnons cannot propagate without
exciting unbound particle-hole pairs. The latter contribute to
the charge excitation spectrum C(qqq,ω) which features a similar
continuum around qqq = (0,π ); cf. Fig. 11(a). This similarity
confirms that these features stem from the particle-hole bubble
of dressed single-particle Green’s functions [100].

Less clear evidence of the particle-hole excitations in
C(qqq,ω) is found at qqq = (π,0): since most of the spectral
weight is exhausted by a high-frequency ω/t ≃ 4 charge
mode [101], it is more difficult to resolve the expected
particle-hole continuum. However, we believe that a faint
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FIG. 11. (Color online) Same as in Fig. 10 but for t⊥/t = 0.3.

low-frequency mode corresponds to a lower bound of the
particle-hole continuum.

In contrast, the particle-hole interaction vertex remains
finite near the AF wave vector qqq = (π,π ). Consequently, an
excited particle and a hole are bound together in this part of
the Brillouin zone. This leads to low-frequency paramagnon
excitations; see Fig. 11(b). As compared to the weakly coupled
regime shown in Fig. 10(b), these paramagnons are broadened
by scattering off mobile charge carriers and dissolve into a
FL-like particle-hole continuum on moving away from the
AF wave vector. Such a localized nature of spin fluctuations
in momentum space restricted to a narrow range around
qqq = (π,π ) arises from spatial AF spin correlations rather than
from a set of mutually interacting local moments [40].

4. Thermal crossover

Independently of the intrinsic interest in finding fingerprints
of the LL behavior at elevated temperatures, quasi-1D materi-
als often exhibit low-T broken-symmetry ground states. These
instabilities occur at a temperature scale at which the system
effectively becomes three-dimensional and long-range order
can occur at low but finite temperatures.

The physics associated with a thermal crossover can be
studied in weakly coupled Hubbard chains: for a weak
interchain superexchange coupling J⊥/J ≪ 1, the energy
difference between the broken-symmetry AF ground state
and excited states is small, thus facilitating their ther-
mal population. This offers the opportunity to analyze the
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FIG. 1. (Color online) Uniform charge susceptibility ln(χct) vs
1/T for several values of the interchain hopping t⊥ found on a 16 × 16
lattice. The inset shows the evolution of the QP gap "qp on increasing
t⊥ extracted from a linear fit.

the activated behavior is reflected in the slope of the curves
given by "qp: a decreased negative slope signals the reduction
of the magnitude of "qp. A rough estimate of the QP gap
"qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4
3

∑

rrr

eiqqq·rrr⟨SSS(rrr) · SSS(000)⟩. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t ! 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap "qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ∥(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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Phase diagram

In VCA we discriminate metal against insulator

by looking at the electron filling hni as a function of

chemical potential µ. It shows a plateau at half filling

for large Coulomb repulsion U , which corresponds to

a vanishing charge compressibility  = �@hni
@µ and

indicates an insulator, whereas for a metal no plateau

occurs. Despite the small cluster size and associated

finite size e↵ects, the density of states also shows a

charge gap in the insulating region, whereas no gap is

found in the metal.

Double occupancy

Within CDMFT with the QMC solver the model sys-

tem can be analyzed at finite-temperatures T . This al-

lows one to estimate the t? dependence of the critical

endpoint temperature Tc. In Fig. 1 we show double oc-

cupancy d as a function of Coulomb repulsion U for in-

termediate values of the interchain hopping t?/t = 0.5
and t?/t = 0.7 thus complementing Fig. 4 in our Letter.

As there is no jump in d within CDMFT for small in-

terchain couplings t?/t . 0.2 down to the lowest accessi-

ble temperature T = t/40, VCA is used to investigate the

system at T = 0. Even at zero temperature the transition
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FIG. 1. (Color online) Double occupancy d as a function

of Coulomb repulsion U obtained within CDMFT for: (a)

t?/t = 0.5 and (b) t?/t = 0.7. The low-T jump in d signaling

the first-order MIT is rounded o↵ by thermal fluctuations and

turns into a crossover at the critical endpoint (Uc, Tc).
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VCA at the metal-insulator transition at T = 0. The dashed

line is a rough fit and only meant as a guide to the eye. For

t?/t . 0.2 we cannot identify a jump in d anymore and the

transition seems to be continuous.

seems to be continuous in this regime when considering

the double occupancy as a criterion. There is certainly

no possibility to rule out an exponentially small jump

in d which is beyond our resolution capabilities. Figure

2 shows the size of the jump in d as a function of inter-

chain coupling. For intermediate and large t?, the metal-

lic and insulating solutions both exist in close vicinity of

the transition and the jump can be read o↵ immediately.

In the case of small to intermediate t?, it is necessary to

fit the double occupancies of the metallic and insulating

solution to read o↵ the jump at the transition (see inset

of Fig. 2). Although an exponentially small jump for

t? . 0.2 can still not be ruled out in this way, a fit of the

jump sizes for t?/t > 0.2 agrees with a vanishing jump

size for small t?.

Fermi surface pockets

In the broad range of the phase diagram, see Fig. 1

in our Letter, we find the evidence of the Fermi surface
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diagram. VCA provides the possibility of identifying
and tracing competing phases by analyzing the self-
energy functional ⌦(µ, µ0, V ). For the interchain coupling
t?/t = 0.2, we cannot resolve two disjoined SEF minima
and the value of V is thus expected to change continu-
ously across the critical interaction Uc, see Fig. 2(a). In
contrast, for t?/t & 0.3, SEF has four saddle points of
which two correspond to stable phases close to the phase
transition: one corresponding to the metallic, the other
one to the insulating solution. These stationary points
of ⌦(µ, µ0, V ) are maxima with respect to µ and µ0, but
minima with respect to hybridization strength V . The
existence of two distinct minima in the SEF landscape
shown in Fig. 2(b) results in a jump of hybridization V
when tuning across Uc and thus signals the first-order
nature of the MIT.

Next, we focus on the ground state energy E0 and the
double occupancy d. The latter is obtained as the deriva-
tive of the grand potential ⌦ with respect to Coulomb
repulsion d = @⌦

@U . In the quasi-2D region we identify a
clear kink in the ground state energy E0, see Fig. 3(a). It
arises from a level crossing of the insulating and metallic
solutions and gives rise to a jump in the double occu-
pancy d at Uc as shown in Fig. 3(b). The latter exhibits
hysteresis in the region with two solutions as expected for
the first-order transition. Although a weak kink in E0 is
also resolved for intermediate values of t?, both the co-
existence region and the jump in the double occupancy
shrink and vanish at tc?/t ' 0.2 [48]. The absence of a
jump in d together with a single minimum in SEF yields
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strong evidence for the continuous nature of the MIT.
A similar scenario emerges within a finite-temperature
CDMFT: while a clear jump in d = 1

Nc

P
ijijijhniii"niii#i

is found in the quasi-2D regime, it gradually decreases
when reducing t? and finally converts into a crossover at
tc?/t = 0.2. It remains smooth down to our lowest tem-
perature T = t/40, see Fig. 3(b). As shown in Fig. 3(c),
the level crossing in the ground state is also reflected in
the spin sector and produces a jump in the cluster spin

susceptibility �s(qqq) = 1
Nc

R �
0 d⌧

P
ijijij eiqqq(iii�jjj)hSiSiSi(⌧)SjSjSj(0)i

at the AF wave vector qqq = (⇡, ⇡). In contrast, no dis-
tinction between the response in �s(qqq) at qqq = (⇡, 0) and
qqq = (⇡, ⇡) wave vectors at t?/t = 0.2 indicates that
remnant 1D e↵ects play an important role in the weakly-
coupled regime.

We turn now to finite-temperature consequences of the
continuous MIT seen at T = 0. The estimate of Tc at
a given t? was obtained by monitoring d as a function
U at fixed T , see Fig. 4. The low-T jump in d signaling
the first-order MIT remains up to Tc and turns into a
smooth crossover above Tc. As shown in Fig. 4(a), for
small t?/t = 0.3 a smooth behavior in d is already re-
covered at T = t/30. In contrast, for t?/t = 0.9, the
jump converts into a crossover at much higher temper-
ature T = t/12. By repeating the above analysis for
intermediate values of t?, we extracted the t? depen-
dence of the critical temperature Tc (see inset in Fig. 1)
consistent with a continuous reduction of the jump in the
double occupancy [48].

Spectral function. To elucidate the microscopic ori-
gin of the continuous Mott transition in the quasi-1D
regime, we calculate the single-particle spectral func-
tion A(kkk, !) = � 1

⇡ ImG(kkk, !) where G(kkk, !) is the lattice
Green’s function. Figure 5 shows the evolution of A(kkk, !)
upon cranking up the interaction U at fixed t?/t = 0.2.
In agreement with random-phase approximation stud-
ies [49, 50] we find that the destruction of the FS starts
at momenta kkk = (⇡/2, ±⇡/2) where the interchain hop-
ping matrix elements vanish. As a result, a compensated
metal structure of the FS is formed with elliptic electron
and hole pockets around the kkk = (⇡/2, 0) and (⇡/2, ⇡)
points. A striking feature of the pockets is their sym-
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evidence for the quantum critical nature of the MIT therein.
Bottom insets: FS topology close to Uc in di↵erent regions of
the phase diagram indicated by arrows.

to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:
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with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a
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to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:
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with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a
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to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:
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with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a
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FIG. 6. (Color online) The noninteracting Fermi surface with
t⊥/t = 0.3 (solid) and of the purely 1D case (dashed).

of a weakly dispersive QP-like band near the kkk = (π,0)
momentum. While the flatness is reminiscent of the 1D
nature of the problem, only a broad structure is resolved in
the photoemission ω < 0 part around the kkk = (0,π ) point.
The difference between the inverse- and photoemission parts
reflects a broken particle-hole symmetry due to the finite
next-nearest-neighbor hopping t ′.

The evolution of the spectral function A(kkk,ω) is a con-
sequence of dramatic changes in the single-particle Green’s
function G(kkk,ω). In the Mott insulator, the presence of a spec-
tral gap requires that the real part of the zero-frequency Green’s
function Re G(kkk,ω) change sign in momentum space by going
through a zero. This is accomplished by the singularity in
the corresponding self-energy. As one approaches the Mott
transition, the locus of zeros in kkk space affects the topology
of the emergent FS defined by zero-frequency poles of the
Green’s function [77–80]. We address this issue by examining
two special momenta: (i) nodal kkk = (π/2,π/2), corresponding
to a vanishing interchain kinetic energy ∂εkkk/∂t⊥ = 0, and
(ii) an antinodal kkk = (π/2,0) one, where the maximum
warping of the noninteracting 1D FS occurs; see Fig. 6.

We focus first on the nodal kkk = (π/2,π/2) point considered
in Fig. 7. At our smallest t⊥/t = 0.05, Re G(kkk,ω) has a
negative slope in a broad range of frequencies around the
Fermi level. The imaginary part of the corresponding self-
energy −Im %(kkk,iωm) displays a diverging-like behavior on
approaching the smallest Matsubara frequency ω0 = πT thus
signaling a zero of Re G(kkk,ω); see Fig. 7, left inset. The
anomalous behavior of the self-energy stems from umklapp
scattering and is responsible for a robust Mott gap in the
single-particle spectral function A(kkk,ω), right inset of Fig. 7.
At larger t⊥, the umklapp process becomes less effective at
low-energy scales. This shrinks the frequency region with
a negative slope of Re G(kkk,ω) and reduces the scattering
rate &kkk = −Im %(kkk,ω0). As a result, some thermally excited
single-particle states whose weight is controlled by t⊥ become
apparent at the Fermi energy. Finally, Re G(kkk,ω) develops a
positive slope at t⊥/t = 0.3 thus forming a polelike structure as
in the FL phase. Still, a small kink at ω = 0 signals substantial

-8

-4

0

4

8

-1 -0.5  0  0.5  1

R
e 

G
(k

,ω
) 

(1
/t)

ω/t

t⊥/t=0.3
t⊥/t=0.25
t⊥/t=0.2
t⊥/t=0.15
t⊥/t=0.1
t⊥/t=0.05

0.0

0.6

0 1

-I
m

 Σ
(k

,i ω
m

)/
t

ωm/t

-0.5 0.5

A
( k

,ω
)

ω/t

FIG. 7. (Color online) Dimensional-crossover-driven evolution
of the real part of the Green’s function for fixed T = t/20 at the
nodal kkk = (π/2,π/2) point. Insets show the corresponding (left)
low-frequency dependence of the imaginary part of the self-energy
and (right) single-particle spectral function from bottom to top:
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QP scattering off AF spin fluctuations. Consequently, a broad
QP-like feature is resolved in A(kkk,ω).

We turn now to the antinodal kkk = (π/2,0) point. As shown
in Fig. 8, the zero of Re G(kkk,ω) and the Mott gap in the
spectral function A(kkk,ω) remain for small values of t⊥/t < 0.1
nearly pinned at the kkk = (π/2,0) momentum. Hence, at the
expense of loss in the interchain kinetic energy, the interaction
renders the FS warping tendency irrelevant [81]. In contrast,
at larger interchain hopping amplitude, a reduced scattering
rate &kkk indicates that the kinetic energy gain cannot be further
ignored and the warping effects become discernible. Indeed,
vanishing Re G(kkk,ω) = 0 at the kkk = (π/2,0) point requires
now a finite frequency ω > 0 thus approaching a polelike
behavior around ω/t = 0.2. The latter produces a faint spectral
feature in A(kkk,ω); it signals backfolding of the conduction
band and as such is a fingerprint of the Mott gap slightly off
the kkk = (π/2,0) momentum. Finally, the finite-frequency zero
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(π/2,0) point.
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ature Tc terminating the first-order MIT; Tc is driven down
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the phase diagram indicated by arrows.

to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:
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with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a
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FIG. 4. (Color online) Double occupancy d as a function of
interaction U obtained in CDMFT for: (a) t?/t = 0.3 and
(b) t?/t = 0.9. The low-T jump in d signaling the first-order
MIT is rounded o↵ by thermal fluctuations and turns into a
crossover at the critical endpoint (Uc, Tc).

pancy shrink and vanish at t?/t ' 0.2 [50]. The ab-
sence of a jump in d together with a single minimum in
the SEF yields strong evidence for the continuous nature
of the MIT. A similar scenario emerges within a finite-
temperature CDMFT: while a clear jump in d is found in
the quasi-2D regime, it gradually decreases when reduc-
ing t? and finally converts into a crossover at t?/t = 0.2
which remains smooth down to our lowest temperature
T = t/40, see Fig. 3(b). As shown in Fig. 3(c), the
level crossing in the coexistence region is also reflected in
the spin sector and produces a jump in the cluster spin

susceptibility �
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at the AF wave vector qqq = (⇡, ⇡). This indicates that
the AF spin fluctuations dominate in the intermediate
and strong coupling regimes. In contrast, a relatively
strong response in �

s

(qqq) at the 1D wave vector qqq = (⇡, 0)
comparable with the AF �

s

(⇡, ⇡) indicates that remnant
1D e↵ects play an important role in the weakly-coupled
regime.

We turn now to finite-temperature consequences of the
continuous MIT seen at T = 0 such as the t? dependence
of the critical temperature T

c

. The estimate of T
c

at a
given t? was obtained by monitoring d as a function U
at fixed T , see Fig. 4. The low-T jump in d signaling
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FIG. 5. (Color online) Evolution of the small FS with electron
and hole pockets (see text) for t?/t = 0.2 when approaching
Uc from below. Red solid lines show the noninteracting dis-
persion.

the first-order MIT is rounded o↵ by thermal fluctuations
and turns into a smooth crossover at the critical endpoint
(U

c

, T
c

). As shown in Fig. 4(a), for t?/t = 0.3 a smooth
behavior in d is already recovered at T = t/30. In con-
trast, for t?/t = 0.9, the jump converts into a crossover
at much higher temperature T = t/12. By repeating
the above analysis for intermediate values of t? [50] we
find that the quantum criticality a↵ects a broad region
of the phase diagram with a steep decrease of T

c

starting
already at t?/t = 0.5 (cf. inset in Fig. 1).

Spectral function. To elucidate the microscopic ori-
gin of the continuous Mott transition in the quasi-1D
regime, we calculate the single-particle spectral func-
tion A(kkk, !) = � 1

⇡

ImG(kkk, !) where G(kkk, !) is the lat-
tice Green’s function. Figure 5 shows the evolution of
A(kkk, !) upon cranking up the interaction U at fixed
t?/t = 0.2. In agreement with a random-phase approxi-
mation study [51] we find that the destruction of the FS
starts at momenta kkk = (⇡/2, ±⇡/2) where the interchain
hopping matrix elements vanish. As a result, the large
FS breaks into elliptic electron and hole pockets around
the kkk = (⇡/2, 0) and (⇡/2, ⇡) points. A striking feature
of the pockets is their symmetric form contrasted with
pockets found in coupled spinless fermionic chains [52].
We ascribe this symmetry to quasiparticle scattering o↵
short-range 1D ? spin fluctuations with qqq = (⇡, 0). On
one hand, at intermediate interaction strengths the main
part of the FS carrying most of the quasiparticle weight
follows closely the noninteracting FS. On the other hand,
strong interaction-driven renormalization of the FS warp-
ing is found close to U

c

[50]: the pockets shrink in size
and stick more to the 1D dispersion line at k

x

= ⇡/2, be-
come very shallow, and are smoothly pulled away from
the Fermi level, see Fig. 6(a)-(c). In contrast, competing
interchain kinetic energy gain weakens the 1D renormal-
ization e↵ects for larger t?: the pockets hold a consid-
erable width up to U

c

and then are abruptly removed
from the Fermi level yielding the first-order transition,
cf. Fig. 6(d)-(f).
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FIG. 6. (Color online) The noninteracting Fermi surface with
t⊥/t = 0.3 (solid) and of the purely 1D case (dashed).

of a weakly dispersive QP-like band near the kkk = (π,0)
momentum. While the flatness is reminiscent of the 1D
nature of the problem, only a broad structure is resolved in
the photoemission ω < 0 part around the kkk = (0,π ) point.
The difference between the inverse- and photoemission parts
reflects a broken particle-hole symmetry due to the finite
next-nearest-neighbor hopping t ′.

The evolution of the spectral function A(kkk,ω) is a con-
sequence of dramatic changes in the single-particle Green’s
function G(kkk,ω). In the Mott insulator, the presence of a spec-
tral gap requires that the real part of the zero-frequency Green’s
function Re G(kkk,ω) change sign in momentum space by going
through a zero. This is accomplished by the singularity in
the corresponding self-energy. As one approaches the Mott
transition, the locus of zeros in kkk space affects the topology
of the emergent FS defined by zero-frequency poles of the
Green’s function [77–80]. We address this issue by examining
two special momenta: (i) nodal kkk = (π/2,π/2), corresponding
to a vanishing interchain kinetic energy ∂εkkk/∂t⊥ = 0, and
(ii) an antinodal kkk = (π/2,0) one, where the maximum
warping of the noninteracting 1D FS occurs; see Fig. 6.

We focus first on the nodal kkk = (π/2,π/2) point considered
in Fig. 7. At our smallest t⊥/t = 0.05, Re G(kkk,ω) has a
negative slope in a broad range of frequencies around the
Fermi level. The imaginary part of the corresponding self-
energy −Im %(kkk,iωm) displays a diverging-like behavior on
approaching the smallest Matsubara frequency ω0 = πT thus
signaling a zero of Re G(kkk,ω); see Fig. 7, left inset. The
anomalous behavior of the self-energy stems from umklapp
scattering and is responsible for a robust Mott gap in the
single-particle spectral function A(kkk,ω), right inset of Fig. 7.
At larger t⊥, the umklapp process becomes less effective at
low-energy scales. This shrinks the frequency region with
a negative slope of Re G(kkk,ω) and reduces the scattering
rate &kkk = −Im %(kkk,ω0). As a result, some thermally excited
single-particle states whose weight is controlled by t⊥ become
apparent at the Fermi energy. Finally, Re G(kkk,ω) develops a
positive slope at t⊥/t = 0.3 thus forming a polelike structure as
in the FL phase. Still, a small kink at ω = 0 signals substantial
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FIG. 7. (Color online) Dimensional-crossover-driven evolution
of the real part of the Green’s function for fixed T = t/20 at the
nodal kkk = (π/2,π/2) point. Insets show the corresponding (left)
low-frequency dependence of the imaginary part of the self-energy
and (right) single-particle spectral function from bottom to top:
t⊥/t = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3.

QP scattering off AF spin fluctuations. Consequently, a broad
QP-like feature is resolved in A(kkk,ω).

We turn now to the antinodal kkk = (π/2,0) point. As shown
in Fig. 8, the zero of Re G(kkk,ω) and the Mott gap in the
spectral function A(kkk,ω) remain for small values of t⊥/t < 0.1
nearly pinned at the kkk = (π/2,0) momentum. Hence, at the
expense of loss in the interchain kinetic energy, the interaction
renders the FS warping tendency irrelevant [81]. In contrast,
at larger interchain hopping amplitude, a reduced scattering
rate &kkk indicates that the kinetic energy gain cannot be further
ignored and the warping effects become discernible. Indeed,
vanishing Re G(kkk,ω) = 0 at the kkk = (π/2,0) point requires
now a finite frequency ω > 0 thus approaching a polelike
behavior around ω/t = 0.2. The latter produces a faint spectral
feature in A(kkk,ω); it signals backfolding of the conduction
band and as such is a fingerprint of the Mott gap slightly off
the kkk = (π/2,0) momentum. Finally, the finite-frequency zero
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FIG. 8. (Color online) Same as in Fig. 7 but at the antinodal kkk =
(π/2,0) point.
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It is worth stressing the role of residual interactions in
the results of Figs. 2 and 3(a). At the qualitative level, the
self-energy !"!k;!" (with ! # 1) is sufficient to under-
stand the formation of FS pockets with anisotropic resi-
dues. Using ! # !" in Eq. (4) one indeed finds that
pockets form for 0< "< 2t?, and that the residue varies
on such pockets. However the pockets obtained in this way
are considerably wider than in Fig. 2, and the residue in the
cold regions is Z$ 1 when " approaches zero instead of
Z$ 0:5 as in Fig. 3. Thus the residual interactions are
important for the quantitative understanding of the FS
properties. Meanwhile, the fact that our model self-energy
fits the ch-DMFT data at t? > tc2

? with V% $ V [Fig. 3(b)]
indicates that second-order perturbation theory is a good
approximation in this region, as expected in a Fermi liquid.

We now turn to the question of the experimental obser-
vation of FS pockets. There are several limitations which
could make the observation of such pockets by angle-
resolved photoemission spectroscopy (ARPES) challeng-
ing, such as the finite energy and momentum resolutions,
the finite temperature at which experiments are performed,
as well as the need to integrate the ARPES intensity on
some energy window in order to improve the signal to
noise ratio. Ideally, ARPES would measure the occupied
spectrum A!k; !"f!!". In practice, however, due to the
above limitations, the measured intensity at the Fermi
energy would be I!k" / R1&"E d!

R
d"dqA!q; ""f!""g!k&

q; !& "", where "E defines the energy integration win-
dow and g is some function describing the instrument
resolution. We have calculated I!k" using a Gaussian for
g. The comparison depicted in Fig. 4 of the T # 0 Fermi
surface with the expected ARPES intensity clearly shows
that the closing segments of the pockets near k # #=2
would very likely be hidden in the ARPES signal. The
broad aspect of I!k" as compared to A!k; 0" is not a con-
sequence of finite temperature, but of (i) the finite k-space
resolution combined with the fact that the pockets are very
thin and (ii) the large difference in quasiparticle weight on
the two sides of the pockets, which is obvious in A!k; 0"

and consistent with the residues shown in Fig. 3. Similar FS
anisotropies were recently found in cluster-DMFT studies
of the 2D Hubbard model [18], suggesting that such effects
are generic to systems close to a Mott transition, and could
possibly explain the ARPES observation of FS arcs in
high-Tc cuprate superconductors.
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FIG. 1. (Color online) Metal-insulator phase diagram of
the half-filled Hubbard model (1) as obtained by the zero-
temperature VCA and CDMFT at T = t/40. Top inset:
combined VCA and CDMFT estimate for the critical temper-
ature Tc terminating the first-order MIT; Tc is driven down
to zero in the quasi-1D region with t?/t  0.2 thus providing
evidence for the quantum critical nature of the MIT therein.
Bottom insets: FS topology close to Uc in di↵erent regions of
the phase diagram indicated by arrows.

to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:

H = �
X

ij

ij

ij,�

t
ij

ij

ij

c†
i

i

i�

c
j

j

j�

+ U
X

i

i

i

n
i

i

i"ni

i

i# � µ
X

i

i

i,�

n
i

i

i�

, (1)

with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a
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FIG. 4. (Color online) Double occupancy d as a function of
interaction U obtained in CDMFT for: (a) t?/t = 0.3 and
(b) t?/t = 0.9. The low-T jump in d signaling the first-order
MIT is rounded o↵ by thermal fluctuations and turns into a
crossover at the critical endpoint (Uc, Tc).

pancy shrink and vanish at t?/t ' 0.2 [50]. The ab-
sence of a jump in d together with a single minimum in
the SEF yields strong evidence for the continuous nature
of the MIT. A similar scenario emerges within a finite-
temperature CDMFT: while a clear jump in d is found in
the quasi-2D regime, it gradually decreases when reduc-
ing t? and finally converts into a crossover at t?/t = 0.2
which remains smooth down to our lowest temperature
T = t/40, see Fig. 3(b). As shown in Fig. 3(c), the
level crossing in the coexistence region is also reflected in
the spin sector and produces a jump in the cluster spin
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at the AF wave vector qqq = (⇡, ⇡). This indicates that
the AF spin fluctuations dominate in the intermediate
and strong coupling regimes. In contrast, a relatively
strong response in �

s

(qqq) at the 1D wave vector qqq = (⇡, 0)
comparable with the AF �

s

(⇡, ⇡) indicates that remnant
1D e↵ects play an important role in the weakly-coupled
regime.

We turn now to finite-temperature consequences of the
continuous MIT seen at T = 0 such as the t? dependence
of the critical temperature T

c

. The estimate of T
c

at a
given t? was obtained by monitoring d as a function U
at fixed T , see Fig. 4. The low-T jump in d signaling
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FIG. 5. (Color online) Evolution of the small FS with electron
and hole pockets (see text) for t?/t = 0.2 when approaching
Uc from below. Red solid lines show the noninteracting dis-
persion.

the first-order MIT is rounded o↵ by thermal fluctuations
and turns into a smooth crossover at the critical endpoint
(U

c

, T
c

). As shown in Fig. 4(a), for t?/t = 0.3 a smooth
behavior in d is already recovered at T = t/30. In con-
trast, for t?/t = 0.9, the jump converts into a crossover
at much higher temperature T = t/12. By repeating
the above analysis for intermediate values of t? [50] we
find that the quantum criticality a↵ects a broad region
of the phase diagram with a steep decrease of T

c

starting
already at t?/t = 0.5 (cf. inset in Fig. 1).

Spectral function. To elucidate the microscopic ori-
gin of the continuous Mott transition in the quasi-1D
regime, we calculate the single-particle spectral func-
tion A(kkk, !) = � 1

⇡

ImG(kkk, !) where G(kkk, !) is the lat-
tice Green’s function. Figure 5 shows the evolution of
A(kkk, !) upon cranking up the interaction U at fixed
t?/t = 0.2. In agreement with a random-phase approxi-
mation study [51] we find that the destruction of the FS
starts at momenta kkk = (⇡/2, ±⇡/2) where the interchain
hopping matrix elements vanish. As a result, the large
FS breaks into elliptic electron and hole pockets around
the kkk = (⇡/2, 0) and (⇡/2, ⇡) points. A striking feature
of the pockets is their symmetric form contrasted with
pockets found in coupled spinless fermionic chains [52].
We ascribe this symmetry to quasiparticle scattering o↵
short-range 1D ? spin fluctuations with qqq = (⇡, 0). On
one hand, at intermediate interaction strengths the main
part of the FS carrying most of the quasiparticle weight
follows closely the noninteracting FS. On the other hand,
strong interaction-driven renormalization of the FS warp-
ing is found close to U

c

[50]: the pockets shrink in size
and stick more to the 1D dispersion line at k

x

= ⇡/2, be-
come very shallow, and are smoothly pulled away from
the Fermi level, see Fig. 6(a)-(c). In contrast, competing
interchain kinetic energy gain weakens the 1D renormal-
ization e↵ects for larger t?: the pockets hold a consid-
erable width up to U

c

and then are abruptly removed
from the Fermi level yielding the first-order transition,
cf. Fig. 6(d)-(f).

5

Discussion. Let us discuss the relation of our find-
ings to recent experiments on the three half-filled organic
materials [12]. Both -(BEDT-TTF)2Cu2(CN)3 and
EtMe3Sb[Pd(dmit)2]2 are layered systems with Hückel
parameters close to an equilateral triangular lattice [53].
Instead, ab initio calculations for the latter show an
appreciable 1D anisotropy along the stacking direction
with the ratio of interchain to intrachain transfer around
0.82 [54]. Since the organic salts are soft, it is also plau-
sible that hydrostatic pressure leads to inhomogeneous
e↵ects reducing the e↵ective dimensionality, especially in
-(BEDT-TTF)2Cu[N(CN)2]Cl with inbuilt lowered ro-
tational symmetry.

In our approach, this asymmetry is taken into consid-
eration and using VCA at T = 0 and CDMFT at finite
T we find strong evidence for Mott quantum criticality
at finite U in coupled Hubbard chains at half filling.

In this scenario, the interchain hopping t? acts as con-
trol parameter driving the second-order critical endpoint
T
c

of the interaction-driven MIT down to zero in the
presence of strong anisotropic hopping. This critical be-
havior can be associated to the competition between the
kinetic energy gain due to the interchain coupling t? and
the renormalization of the FS which it causes. Below a
threshold value of t?/t ' 0.2, the FS renormalizes to 1D
nesting is 1D nesting a good phrasing? at U

c

[55]. The
resulting MIT is continuous without a detectable jump
in the double occupancy or a visible coexistence region in
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FIG. 6. Single-particle spectral function A(kkk,! + i⌘) for dif-
ferent t? obtained within VCA at T = 0, ⌘ = 0.05. The
pockets are shown for U < Uc (a,d) and at U . Uc (b,e). In
the insulator at U > Uc (c,f) they are gone.

the SEF. In contrast, this 1D FS renormalization mech-
anism is only partially at work at larger t?: the jump
in the double occupancy and the existence of two dis-
tinct degenerate minima in the SEF are consistent with
a (weak) why weak? above we say strong first order first-
order transition.

While the 2 ⇥ 2 plaquette cluster used is known to
overestimate the singlet formation [37], we expect the
unveiled quantum critical behavior to be robust. Indeed,
former CDMFT studies on larger clusters up to 16 sites
have provided evidence for a continuous dimensional-
crossover-driven MIT down to the lowest accessible tem-
peratures [56]. We believe that this scenario is not re-
stricted to quantum cluster descriptions of the system but
should also emerge in lattice simulations as 2D DMRG [?
], iPEPS [] or other tensor network techniques [], pro-
vided su�ciently strong frustration reduces the range of
AF spin fluctuations [57]. The continuous MIT at T = 0
o↵ers a possibility to understand finite-T behavior such
as the scaling behavior of resistivity curves in the high-T
crossover region T � T

c

usually attributed to (hidden)
Mott quantum criticality [18, 19]. Finally, it would be
very interesting to investigate whether the quantum crit-
ical behavior emerges also in coupled spinless fermionic
chains displaying similar FS breakup into pockets [52].
stimulate further experiments, further theoretical work
- see tensor network approaches above, further under-
standing of FS topologies? I feel we should write some
more as a stimulating outlook...
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ing Centre and financial support from the DFG Grants
No.: xxx (FOR 1807) and AS120/8-2 (FOR 1346) as well
as from the FP7/ERC Starting Grant No. 306897.

⇤ benjamin.lenz@theorie.physik.uni-goettingen.de
† marcin.raczkowski@physik.uni-wuerzburg.de

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys.
70, 1039 (1998).

[2] C. Castellani, C. D. Castro, D. Feinberg, and J. Ran-
ninger, Phys. Rev. Lett. 43, 1957 (1979).

[3] G. Kotliar, E. Lange, and M. J. Rozenberg, Phys. Rev.
Lett. 84, 5180 (2000).

[4] P. Limelette, A. Georges, D. Jérome, P. Wzietek, P. Met-
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FIG. 6. (Color online) The noninteracting Fermi surface with
t⊥/t = 0.3 (solid) and of the purely 1D case (dashed).

of a weakly dispersive QP-like band near the kkk = (π,0)
momentum. While the flatness is reminiscent of the 1D
nature of the problem, only a broad structure is resolved in
the photoemission ω < 0 part around the kkk = (0,π ) point.
The difference between the inverse- and photoemission parts
reflects a broken particle-hole symmetry due to the finite
next-nearest-neighbor hopping t ′.

The evolution of the spectral function A(kkk,ω) is a con-
sequence of dramatic changes in the single-particle Green’s
function G(kkk,ω). In the Mott insulator, the presence of a spec-
tral gap requires that the real part of the zero-frequency Green’s
function Re G(kkk,ω) change sign in momentum space by going
through a zero. This is accomplished by the singularity in
the corresponding self-energy. As one approaches the Mott
transition, the locus of zeros in kkk space affects the topology
of the emergent FS defined by zero-frequency poles of the
Green’s function [77–80]. We address this issue by examining
two special momenta: (i) nodal kkk = (π/2,π/2), corresponding
to a vanishing interchain kinetic energy ∂εkkk/∂t⊥ = 0, and
(ii) an antinodal kkk = (π/2,0) one, where the maximum
warping of the noninteracting 1D FS occurs; see Fig. 6.

We focus first on the nodal kkk = (π/2,π/2) point considered
in Fig. 7. At our smallest t⊥/t = 0.05, Re G(kkk,ω) has a
negative slope in a broad range of frequencies around the
Fermi level. The imaginary part of the corresponding self-
energy −Im %(kkk,iωm) displays a diverging-like behavior on
approaching the smallest Matsubara frequency ω0 = πT thus
signaling a zero of Re G(kkk,ω); see Fig. 7, left inset. The
anomalous behavior of the self-energy stems from umklapp
scattering and is responsible for a robust Mott gap in the
single-particle spectral function A(kkk,ω), right inset of Fig. 7.
At larger t⊥, the umklapp process becomes less effective at
low-energy scales. This shrinks the frequency region with
a negative slope of Re G(kkk,ω) and reduces the scattering
rate &kkk = −Im %(kkk,ω0). As a result, some thermally excited
single-particle states whose weight is controlled by t⊥ become
apparent at the Fermi energy. Finally, Re G(kkk,ω) develops a
positive slope at t⊥/t = 0.3 thus forming a polelike structure as
in the FL phase. Still, a small kink at ω = 0 signals substantial
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FIG. 7. (Color online) Dimensional-crossover-driven evolution
of the real part of the Green’s function for fixed T = t/20 at the
nodal kkk = (π/2,π/2) point. Insets show the corresponding (left)
low-frequency dependence of the imaginary part of the self-energy
and (right) single-particle spectral function from bottom to top:
t⊥/t = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3.

QP scattering off AF spin fluctuations. Consequently, a broad
QP-like feature is resolved in A(kkk,ω).

We turn now to the antinodal kkk = (π/2,0) point. As shown
in Fig. 8, the zero of Re G(kkk,ω) and the Mott gap in the
spectral function A(kkk,ω) remain for small values of t⊥/t < 0.1
nearly pinned at the kkk = (π/2,0) momentum. Hence, at the
expense of loss in the interchain kinetic energy, the interaction
renders the FS warping tendency irrelevant [81]. In contrast,
at larger interchain hopping amplitude, a reduced scattering
rate &kkk indicates that the kinetic energy gain cannot be further
ignored and the warping effects become discernible. Indeed,
vanishing Re G(kkk,ω) = 0 at the kkk = (π/2,0) point requires
now a finite frequency ω > 0 thus approaching a polelike
behavior around ω/t = 0.2. The latter produces a faint spectral
feature in A(kkk,ω); it signals backfolding of the conduction
band and as such is a fingerprint of the Mott gap slightly off
the kkk = (π/2,0) momentum. Finally, the finite-frequency zero
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(π/2,0) point.
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FIG. 1. (Color online) Metal-insulator phase diagram of
the half-filled Hubbard model (1) as obtained by the zero-
temperature VCA and CDMFT at T = t/40. Top inset:
combined VCA and CDMFT estimate for the critical temper-
ature Tc terminating the first-order MIT; Tc is driven down
to zero in the quasi-1D region with t?/t  0.2 thus providing
evidence for the quantum critical nature of the MIT therein.
Bottom insets: FS topology close to Uc in di↵erent regions of
the phase diagram indicated by arrows.

to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:

H = �
X

ij

ij

ij,�

t
ij

ij

ij

c†
i

i

i�

c
j

j

j�

+ U
X

i

i

i

n
i

i

i"ni

i

i# � µ
X

i

i

i,�

n
i

i

i�

, (1)

with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a

Fermi surface topology 
 
@  t⟂/t  = 0.5 as a  
function of U/t 

t⟂/t 	  

U/t 	  

à Jump in volume of hole and electron pockets across the transition 
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Discussion. Let us discuss the relation of our find-
ings to recent experiments on the three half-filled organic
materials [12]. Both -(BEDT-TTF)2Cu2(CN)3 and
EtMe3Sb[Pd(dmit)2]2 are layered systems with Hückel
parameters close to an equilateral triangular lattice [53].
Instead, ab initio calculations for the latter show an
appreciable 1D anisotropy along the stacking direction
with the ratio of interchain to intrachain transfer around
0.82 [54]. Since the organic salts are soft, it is also plau-
sible that hydrostatic pressure leads to inhomogeneous
e↵ects reducing the e↵ective dimensionality, especially in
-(BEDT-TTF)2Cu[N(CN)2]Cl with inbuilt lowered ro-
tational symmetry.

In our approach, this asymmetry is taken into consid-
eration and using VCA at T = 0 and CDMFT at finite
T we find strong evidence for Mott quantum criticality
at finite U in coupled Hubbard chains at half filling.

In this scenario, the interchain hopping t? acts as con-
trol parameter driving the second-order critical endpoint
T
c

of the interaction-driven MIT down to zero in the
presence of strong anisotropic hopping. This critical be-
havior can be associated to the competition between the
kinetic energy gain due to the interchain coupling t? and
the renormalization of the FS which it causes. Below a
threshold value of t?/t ' 0.2, the FS renormalizes to 1D
nesting is 1D nesting a good phrasing? at U

c

[55]. The
resulting MIT is continuous without a detectable jump
in the double occupancy or a visible coexistence region in
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FIG. 6. Single-particle spectral function A(kkk,! + i⌘) for dif-
ferent t? obtained within VCA at T = 0, ⌘ = 0.05. The
pockets are shown for U < Uc (a,d) and at U . Uc (b,e). In
the insulator at U > Uc (c,f) they are gone.

the SEF. In contrast, this 1D FS renormalization mech-
anism is only partially at work at larger t?: the jump
in the double occupancy and the existence of two dis-
tinct degenerate minima in the SEF are consistent with
a (weak) why weak? above we say strong first order first-
order transition.

While the 2 ⇥ 2 plaquette cluster used is known to
overestimate the singlet formation [37], we expect the
unveiled quantum critical behavior to be robust. Indeed,
former CDMFT studies on larger clusters up to 16 sites
have provided evidence for a continuous dimensional-
crossover-driven MIT down to the lowest accessible tem-
peratures [56]. We believe that this scenario is not re-
stricted to quantum cluster descriptions of the system but
should also emerge in lattice simulations as 2D DMRG [?
], iPEPS [] or other tensor network techniques [], pro-
vided su�ciently strong frustration reduces the range of
AF spin fluctuations [57]. The continuous MIT at T = 0
o↵ers a possibility to understand finite-T behavior such
as the scaling behavior of resistivity curves in the high-T
crossover region T � T

c

usually attributed to (hidden)
Mott quantum criticality [18, 19]. Finally, it would be
very interesting to investigate whether the quantum crit-
ical behavior emerges also in coupled spinless fermionic
chains displaying similar FS breakup into pockets [52].
stimulate further experiments, further theoretical work
- see tensor network approaches above, further under-
standing of FS topologies? I feel we should write some
more as a stimulating outlook...
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FIG. 1. (Color online) Metal-insulator phase diagram of
the half-filled Hubbard model (1) as obtained by the zero-
temperature VCA and CDMFT at T = t/40. Top inset:
combined VCA and CDMFT estimate for the critical temper-
ature Tc terminating the first-order MIT; Tc is driven down
to zero in the quasi-1D region with t?/t  0.2 thus providing
evidence for the quantum critical nature of the MIT therein.
Bottom insets: FS topology close to Uc in di↵erent regions of
the phase diagram indicated by arrows.

to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:
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with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a
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ature Tc terminating the first-order MIT; Tc is driven down
to zero in the quasi-1D region with t?/t  0.2 thus providing
evidence for the quantum critical nature of the MIT therein.
Bottom insets: FS topology close to Uc in di↵erent regions of
the phase diagram indicated by arrows.

to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.
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the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N
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interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U
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in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T
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= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U
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increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
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solution, which is formally exact in the limit of large
coordination. Here the Hubbard model maps onto an
effective Anderson impurity model supplemented by a
self-consistency condition [7]. To solve the DMFT equa-
tions we use the iterated perturbation theory (IPT) [7] and
cross-check our results with numerically exact continuous
time quantum Monte Carlo (CTQMC) calculations [8,9].
We find, in agreement with previous work [10], that after
appropriate energy rescaling (see below), the two methods
produce qualitatively and even quantitatively identical re-
sults in the incoherent crossover region that we examine.

It is well known that at very low temperatures T < Tc !
0:03, this model features a first-order metal-insulator tran-
sition terminating at the critical end point Tc (Fig. 2), very
similar to the familiar liquid-gas transition [10]. For
T > Tc, however, different crossover regimes have been
tentatively identified [7,11], but they have not been studied
in any appreciable detail. The fact that the first-order
coexistence region is restricted to such very low tempera-
tures provides strong motivation to examine the high tem-
perature crossover region from the perspective of ‘‘hidden
quantum criticality.’’ In other words, the presence of a
coexistence dome at T < Tc " 1, an effect with a very
small energy scale, is not likely to influence the behavior at
much higher temperatures T # Tc. In this high tempera-
ture regime smooth crossover is found, which may display
behavior consistent with the presence of a ‘‘hidden’’ quan-
tum critical (QC) point at T ¼ 0. To test this idea, we
utilize standard scaling methods appropriate for quantum

criticality and compute the resistivity curves along judi-
ciously chosen trajectories respecting the symmetries of
the problem.
Instability trajectory formalism.—Previous work has al-

ready recognized [10] that, in order to reveal the proper
scaling behavior close to the critical end point, one has to
follow a set of trajectories parallel to ‘‘zero field’’ trajec-
tory U%ðTÞ. We thus expect !U ( U)U?ðTÞ to play the
role of the scaling variable corresponding to a symmetry-
breaking field favoring one of the two competing (metal
vs insulator) phases. By analogy [10,12] to the familiar
liquid-gas transition, we determine the precise location
of such an ‘‘instability trajectory’’ by examining the cur-
vature of the corresponding free energy functional [13].
This curvature vanishes at Tc and is finite and minimal at
T > Tc, along this instability line. Consequently, as in
Refs. [10,13,14], our problem is recast as an eigenvalue
analysis of the corresponding free energy functional
F ½GðiwnÞ+ for which the DMFT Green’s function solution
GDMFTðiwnÞ represents a local extremum and can be re-
garded as a vector in an appropriate Hilbert space.
The free energy near such an extremum can be written as

F ½GðiwnÞ+ ¼F 0þTt2
P

m;n!Gði!mÞMmn!Gði!nÞþ - - - ,
where

Mmn ¼
1

2Tt2
@2F ½G+

@Gði!mÞ@Gði!nÞ

!!!!!!!!G¼GDMFT

(2)

and !Gði!nÞ ( Gði!nÞ )GDMFTði!nÞ. The curvature of
the free energy functional is determined by the lowest
eigenvalue " of the fluctuation matrix M. As explained in
Ref. [15], " can be obtained from the iterative solution of
DMFT equations. The difference of the Green’s functions
in iterations n and nþ 1 of the DMFT self-consistency
loop is given by

!Gðnþ1Þði!nÞ ) !GðnÞði!nÞ ¼ e)n"!Gð0Þði!nÞ; (3)

and therefore " determines the rate of convergence of the
Green function to its solution.
An example of our calculations is shown in the inset in

Fig. 2, where the eigenvalues at several temperatures are
plotted as a function of interaction U=Uc. The minima of
these curves define the locus of the instability trajectory
U?ðTÞ, which terminates at the critical end point (Uc, Tc),
as shown in Fig. 2. Note that the immediate vicinity T . Tc

of the critical end point has been carefully studied theo-
retically [10] and even observed in experiments [2],
revealing classical Ising scaling (since one has a finite
temperature critical point) of transport in this regime. In
our study, we examine the crossover behavior at much
higher temperatures T # Tc, displaying very different
behavior: precisely what is expected in presence of quan-
tum criticality.
Resistivity calculation.—To reveal quantum critical

scaling, we calculate the temperature dependence of the
resistivity along a set of trajectories parallel to our insta-
bility trajectory [fixed !U ¼ U)U?ðTÞ]. Resistivity was
calculated by using standard DMFT procedures [7], with

T0

Fermi liquid

region
Quantum critical

FIG. 2 (color online). DMFT phase diagram of the fully frus-
trated half filled Hubbard model, with a shaded region showing
where quantum critical-like scaling is found. Metallic Uc2ðTÞ
and insulating Uc1ðTÞ spinodals (dotted lines) are found at
T < Tc; the corresponding first-order phase transition is shown
by a thick solid line. The thick dashed line, which extends at
T > Tc, shows the instability trajectory U

?ðTÞ, and the crossover
temperature T0 delimits the QC region (dash-dotted lines). The
inset shows examples of eigenvalue curves at three different
temperatures, with pronounced minima at U?ðTÞ determining
the instability trajectory.
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We perform a systematic study of incoherent transport in the high temperature crossover region

of the half filled one-band Hubbard model. We demonstrate that the family of resistivity curves

displays characteristic quantum critical scaling of the form !ðT;"UÞ ¼ !cðTÞfðT=T0ð"UÞÞ, with

T0ð"UÞ $ j"Ujz#, and !cðTÞ $ T. The corresponding $ function displays a ‘‘strong coupling’’ form

$$ lnð!c=!Þ, reflecting the peculiar mirror symmetry of the scaling curves. This behavior, which is

surprisingly similar to some experimental findings, indicates that Mott quantum criticality may be acting

as the fundamental mechanism behind the unusual transport phenomena in many systems near the metal-

insulator transition.
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Many systems close to the metal-insulator transition
(MIT) often display surprisingly similar transport features
in the high temperature regime [1–3]. Here, the family
of resistivity curves typically assumes a characteristic
‘‘fan-shaped’’ form [see Fig. 1(a)], reflecting a gradual
crossover from metallic to insulating transport. At the
highest temperatures the resistivity depends only weakly
on the control parameter (concentration of charge carriers
[1] or pressure [2,3]), while as T is lowered, the system
seems to ‘‘make up its mind’’ and rapidly converges
towards either a metallic or an insulating state. Since
temperature acts as a natural cutoff scale for the metal-
insulator transition, such behavior is precisely what one
expects for quantum criticality [4]. In some cases [1], the
entire family of curves displays beautiful scaling behavior,
with a remarkable ‘‘mirror symmetry’’ of the relevant
scaling functions [4]. But under which microscopic con-
ditions should one expect such scaling phenomenology?
What is the corresponding driving force for the transitions?
Despite recent progress, such basic physics questions re-
main the subject of much ongoing controversy and debate.

The phenomenon of disordered-driven Anderson local-
ization of noninteracting electrons is at present rather
well understood based on the scaling formulation [5]
and is generally viewed as an example of a T ¼ 0 quantum
phase transition. On the other hand, a considerable number
of recent experiments [1] provide compelling evidence
that strong correlation effects—some form of Mott
localization—may be the dominant mechanism [6].
Should one expect similar or very different transport
phenomenology in the Mott picture? Is the paradigm of
quantum criticality even a useful language to describe
high temperature transport around the Mott point? These
issues are notoriously difficult to address, because conven-
tional Fermi liquid concepts simply cannot be utilized
in the relevant high temperature incoherent regime.
In this Letter, we answer this question in the framework

of dynamical mean-field theory (DMFT) [7], the only
theoretical method that is most reliable precisely at high
temperatures.
Model and DMFT solution.—We consider a single-band

Hubbard model at half filling

H ¼ %
X

hi;ji%
tijðcyi%cj% þ c:c:Þ þ

X

i

Uni"ni#; (1)

where cyi% and ci% are the electron creation and annihilation

operators, respectively, ni% ¼ cyi%ci%, tij is the hopping
amplitude, and U is the repulsion between two electrons
on the same site. We use a semicircular density of states,
and the corresponding half-bandwidth D is set to be
our energy unit. We focus on the paramagnetic DMFT

0.1
T

1

10

100

ρ/
ρ M

ot
t

1
T/T0

0.1

1

10

ρ/
ρ c

IPT
CTQMC

δU<0

0.3

δU>0

0.20.05

(a) (b)

-0.2<δU<+0.2

30.6

FIG. 1 (color online). (a) DMFT resistivity curves as a func-
tion of temperature along different trajectories %0:2 ' "U '
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line; see the text). Data are obtained by using IPT impurity
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Scaling Ansatz:   

à  The t⟂/t  axis  drives Tc to zero and yields a model where  the  scaling Ansatz can be tested.  

ρ(T ,δU ) = ρ(T ,δU = 0) f (T /T0 )

δU =U −U ∗(T ), T0 = c δU
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Quantum criticality of Mott transition in
organic materials
Tetsuya Furukawa1*, Kazuya Miyagawa1, Hiromi Taniguchi2, Reizo Kato3 and Kazushi Kanoda1*
A many-body quantum system on the verge of instability
between two competing ground states may exhibit quantum-
critical phenomena1,2, as has been intensively studied for
magnetic systems. The Mott metal–insulator transition3,
aphenomenon that is central tomany investigationsof strongly
correlated electrons, is also supposed to be quantum critical,
although this has so far not beendemonstratedexperimentally.
Here,we report experimental evidence for thequantum-critical
nature of the Mott instability, obtained by investigating the
electron transport of three organic systems with di�erent
ground states under continuously controlled pressure. The
resistivity obeys the material-independent quantum-critical
scaling relationbifurcating into a Fermi liquid orMott insulator,
irrespective of the ground states. Electrons on the verge of
becoming delocalized behave like a strange quantum-critical
fluid before becoming a Fermi liquid.

Mutually interacting electrons with su�ciently strong Coulomb
repulsion U fall into the Mott insulating state when the carrier
density corresponds to an electron per site (a half-filled band)3. As
the bandwidthW is increased by pressure or chemical substitution,
the electrons gain kinetic energy and become itinerant at a critical
value of W/U . The Mott transition, a marked phase transition
between ametal and an insulator, is a collectivemanifestation of im-
balance in the particle–wave duality of electrons. As one of the main
issues in the quantum physics of condensed matter, the quantum-
critical nature of the Mott transition awaits clarification. In contrast
to intensive theoretical studies4–6, however, this issue has not yet
been addressed experimentally becausemostMott transitions in real
systems have critical points at finite temperatures7–11; thus, they are
not genuine quantum phase transitions.

In general, quantum criticality is observed at the temperature
T su�ciently lower than the competing energy scales underlying
the phase transition1,2, which are the bandwidth W and on-site
Coulomb energy U in the case of the Mott transition. Thus, even if
the system’s critical point, Tc, is finite, unlike the genuine quantum
phase transition, in the case that Tc is orders of magnitude lower
thanW andU , there is a vast temperature region of Tc <T ⌧U ,W ,
where the system can experience quantum criticality (Fig. 1a).
Indeed, using dynamical mean field theory (DMFT), which can
properly describe the Mott transition12, the authors of refs 4,13
have suggested the scaling of transport for quantum criticality in an
intermediate temperature range well above Tc.

To explore the possible Mott quantum criticality from the ex-
perimental side, we performed pressure studies of the electron
transport for three di�erent quasi-two-dimensional organic Mott
insulators with anisotropic triangular lattices, -(ET)2Cu2(CN)3,
-(ET)2Cu[N(CN)2]Cl and EtMe3Sb[Pd(dmit)2]2 (hereafter abbre-
viated to -Cu2(CN)3, -Cl and EtMe3Sb-dmit, respectively), where

ET and dmit represent bis(ethylenedithio)tetrathiafulvalene and
1,3-dithiole-2-thione-4,5-dithiolate, respectively (Fig. 1b,c). In the
Mott insulating phases, -Cu2(CN)3 and EtMe3Sb-dmit host quan-
tum spin liquids (QSLs), whereas -Cl is an antiferromagnet14–18
(AFM). In the metallic phases, -Cu2(CN)3 and -Cl are supercon-
ducting (SC) at low temperatures, whereas EtMe3Sb-dmit remains
a paramagnetic metal9–11,19–21 (PM). Then, the three systems have
di�erent types ofMott transition in their ground states, for example,
QSL–SC, AFM–SC andQSL–PM transitions (Fig. 1d–f). Clear first-
order Mott transitions are observed in -Cu2(CN)3 and -Cl up to
Tc values of 20K (ref. 22) and 38K (ref. 11), respectively, whereas
there is no clear first-order nature in theMott transition in EtMe3Sb-
dmit21; its critical temperature, if any, is well below 30K. The critical
temperatures of the three compounds are two or three orders of
magnitude lower than the values of W , U , which are several thou-
sand Kelvin or more19 (Fig. 1a); the orders-of-magnitude di�erence
between Tc and U ,W preserves the possibility of quantum critical-
ity in the intermediate temperature region (Tc <T ⌧U , W ). We
measured resistivity curves ⇢(P , T ) under continuously controlled
He-gas pressure P at various fixed temperatures to cover the metal–
insulator crossover region and tested the quantum-critical scaling
of the ⇢(P , T ) data. Figure 1d–f present coloured contour plots
of the normalized ⇢(P , T ) (explained later in detail), which is
shown to follow the quantum-critical scaling almost perfectly in the
fan-shaped region where the colour changes, as described in the
following section.

First, we define metal–insulator crossover pressures at a given
temperature, Pc(T ), as inflection points in the experimental
log ⇢(P ,T ) versus P curve (Supplementary Information). The
Pc(T ) determined at di�erent temperatures forms a bow-
shaped crossover line, which corresponds to the Widom
line of the Mott transition4,13. The Widom line divides the
insulating (�P⌘P�Pc(T )<0) and metallic sides (�P > 0), as
observed in Fig. 1d–f. Figure 2 shows the normalized resistivity
⇢̃(�P , T )⌘⇢(�P , T )/⇢c(T ) of -Cu2(CN)3 as a function of �P ,
where ⇢c(T ) ⌘ ⇢(�P = 0, T ) is the crossover resistivity along the
Widom line. It is observed that ⇢̃(�P , T ) crosses continuously from
the insulating state (�P<0) to the metallic state (�P>0). As a result
of the normalization, all curves cross at a single point for which
�P = 0 and ⇢̃ = 1, and the slope at the inflection point is steeper
at lower temperatures. It is noted that the volume change of the
sample, which can be large particularly near the Mott transition,
has no practical influence on the ⇢(P , T ) values, as explained in the
Supplementary Information.

For a quantum phase transition1,2, as a system approaches a
quantum-critical point while remaining at zero temperature, not
only the spatial correlation length ⇠ but also the correlation time
⌧ diverges as ⇠ / |g � gc|�⌫ and ⌧ / ⇠ z / |g � gc|�z⌫ , where g is the

1Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. 2Department of Physics, Saitama University,
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parameter controlling the quantum fluctuations, gc is the critical
value of g , ⌫ is the critical exponent of the correlation length, and z is
the dynamical exponent. At finite temperatures, another timescale,
LT / T�1 appears because of a thermal e�ect; LT corresponds to
the system size in the temporal direction, where LT ! 1 when
T ! 0. At finite temperatures, finite-size scaling is available, such
that the ratio of LT to ⌧ determines the development of critical
fluctuations. Consequently, the singular parts of physical quantities
are governed by one scaling parameter, ⌧/LT /T/|g � gc|z⌫ . In the
present study, considering the bow-shapedWidom line, it is natural
to adopt �P=P�Pc(T ) as the parameter controlling the quantum
fluctuations instead of P�Pc(T !0). Accordingly, if ⇢̃(�P ,T ) can
be expressed as ⇢̃(�P , T )=F [T/|c�P|z⌫], where c is an arbitrary
constant, and F(y) is a scaling function of the scaling variable

y=T/|c�P|z⌫ , such that F(y)! 1 when y !1, we can conclude
that the system is in the quantum-critical regime.

Turning to the experimental data for -Cu2(CN)3, all data for
⇢̃(�P , T ) in a wide temperature range (35K T  90K) collapse
onto bifurcating scaling curves against T/T0 ⌘ T/|c�P|z⌫ , with
a critical exponent of z⌫ = 0.62± 0.02, as shown in Fig. 3a. The
scaling is fulfilled over several orders of magnitude. For -Cl and
EtMe3Sb-dmit, similar scaling is observed for 75K T  115K
with z⌫ =0.49±0.01 (Fig. 3b) and for 35K T  90K
with z⌫ =0.68±0.04 (Fig. 3c), respectively (Supplementary
Information). The scaling curves for the three systems nearly
coincide with each other (Supplementary Information). It is
remarkable that these three systems with di�erent ground states
show common scaling behaviour; this implies that the present
Mott quantum criticality in the intermediate temperatures comes
from the high-energy itinerant-localized competition, no matter
which ground state the system falls into at low temperatures.
These scaling curves clearly reveal the perfect ‘mirror symmetry’
of ⇢̃(�P , T ) between the insulating (⇢̃ > 1) and metallic (⇢̃ < 1)
branches at T/T0 & 1. The mirror symmetry indicates that the
scaling function F(y) exhibits duality at y & 1 between the metallic
(�P >0) and insulating (�P <0) sides as Fmetal(y)=1/Finsulator(y). It
is noticeable that this duality of scaling is also observed in a metal–
insulator transition in the two-dimensional electron gas system of
a metal–oxide–semiconductor field-e�ect transistor23 (MOSFET),
where the electron correlation is argued to play a key role in the
metal–insulator transition, possibly a Wigner crystallization24.

The form of scaling function is explained by a typical quantum-
critical regime. At T/T0 � 1, the system does not ‘know’ whether
it resides in the metallic or insulating side because of the large
quantum-critical fluctuations. As T/T0 decreases, the system grad-
ually ‘notices’ the regime to which it belongs. The ⇢̃(�P , T ) of the
-Cu2(CN)3 versus T/T0 plot in Fig. 3a is shown using logarithmic
scales in Fig. 4, which illustrates that for further decreases in T/T0,
the metallic branch deviates from the quantum-critical behaviour
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FIG. 1. (Color online) Metal-insulator phase diagram of
the half-filled Hubbard model (1) as obtained by the zero-
temperature VCA and CDMFT at T = t/40. Top inset:
combined VCA and CDMFT estimate for the critical temper-
ature Tc terminating the first-order MIT; Tc is driven down
to zero in the quasi-1D region with t?/t  0.2 thus providing
evidence for the quantum critical nature of the MIT therein.
Bottom insets: FS topology close to Uc in di↵erent regions of
the phase diagram indicated by arrows.

to locate the putative quantum critical point at T = 0 in
the phase diagram. We address the problem by combin-
ing multiple state-of-the-art numerical techniques. The
scenario we obtain relies on the VCA and CDMFT treat-
ment of the system. Both being cluster methods, we
therefore go beyond the local picture provided by DMFT
and are able to gain insights into the generic behavior of
the MIT in the frustrated lattice under consideration.

Model and methods. We study the frustrated Hub-
bard model on a square lattice with anisotropic hopping
at half-filling:
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with chemical potential µ and Coulomb repulsion U . The
hopping t

ij

ij

ij

is t ⌘ 1 in the longitudinal direction and t? in
the transverse direction. By tuning the value of t? from 0
to 1, we bridge the regime of uncoupled one-dimensional
(1D) Hubbard chains (t? = 0) and the isotropic 2D lat-
tice (t?/t = 1). In order to remove the perfect nest-
ing AF instability of the FS [34] also in the 2D regime
which would lead to an insulating state at any finite value
of U [35, 36], we add geometrical frustration via next-
nearest-neighbor hoppings t0 = �t?/4 explain why we
use this value of t’?.

The results are obtained by two complementary quan-
tum cluster techniques [37] which can be both de-
scribed within the framework of self-energy functional
theory (SFT) [38]. In the cluster extension of DMFT
(CDMFT) [39], N

c

interacting impurity sites are dynam-
ically coupled to an e↵ective bath. The impurity problem
is solved using the quantum Monte Carlo (QMC) Hirsch-

Fye solver and the coupling to the bath is determined self-
consistently. To make the study computationally man-
ageable down to the lowest temperature T = t/40 also
in the 2D regime, where the sign problem hampers the
usage of the QMC solver on larger clusters, we use a
2 ⇥ 2 plaquette cluster. The 2 ⇥ 2 cluster is a minimal
unit cell which allows one to capture both the 1D umk-
lapp scattering process opening a gap in the half-filled
band [40] and short-range 2D AF spin fluctuations, thus
going beyond the local quantum criticality see remark
above framework. To trace the Mott transition at zero
temperature, we use the variational cluster approxima-
tion (VCA) [41, 42] with a 2⇥2 cluster and one additional
bath site per correlated site as a reference system [25],
i.e., an e↵ective 8-site cluster. In VCA, the grand po-
tential ⌦ is approximated by the self-energy functional
(SEF) at its saddle point. As variational parameters we
choose the hybridization V between correlated and bath
sites and the chemical potentials of the reference system
µ0 and the lattice system µ, respectively [43].

Phase diagram. Our main results are summarized in
the ground-state phase diagram shown in Fig. 1. Three
main aspects emerge: (i) frustration leads to a finite value
of the critical interaction strength U

c

in the whole 1D to
2D crossover region 0 < t?  1, as already reported
previously [].... (ii) for t? & 0.2, both cluster techniques
identify a first order MIT, which CDMFT finds also at
finite T (see inset). For t? . 0.2, however, a continuous
transition is obtained which is accompanied by a T

c

= 0,
indicating quantum critical behavior. (iii) the topology
of the FS undergoes various interesting changes when
tuning t? and U . The most interesting aspects are a
Lifshitz-type transition at t? ⇡ 0.7 also in the presence
of interactions, and the formation of shadow bands and
pockets at smaller values of t? caused by the interaction.

In agreement with the exact Bethe ansatz solution [44]
and bosonization [45], VCA yields the Mott phase for
any U > 0 in the 1D regime [46]. This changes dramat-
ically upon coupling the chains: single-particle hopping
t? shifts the critical interaction U

c

towards a finite value
thus enabling the interaction-driven MIT make clear if
this refers to VCA results, or also to unbiased approaches;
see also below.. Initially, U

c

increases steeply with t? and
then continues to grow nearly linearly as expected from
a high-dimensional perspective of the MIT controlled by
the ratio of U/W where W is the electronic bandwidth
I don’t know this perspective. Can one say in one sen-
tence which physical intuition leads to this expectation?.
In this region (to the right of the dashed line), the MIT
line is found to be first-order, which is also the result of a
VCA study of the frustrated 2D Hubbard model without
magnetism [25]. Unbiased studies including magnetic or-
der also obtain metal-insulator transitions even for small
frustration [47]. Further studies on anisotropic triangular
lattices find first order transitions [48, 49]. In contrast, in
the strongly anisotropic case with t?/t  0.2, it marks a
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