Mott quantum criticality in anisotropic Hubbard models

Fakher F. Assaad (KITP, August 28, 2015

New Phases and Emergent Phenomena in Correlated Materials with Strong Spin-Orbit Coupling)

<u>Outline</u>

Model, motivation and methods

- Results from
 - → Exact methods (BSS-QMC)
 → Cluster methods (CDMFT/VCA)

(weakly coupled chains) (full phase diagram)

Conclusions

Marcin Raczkowski
Lode Pollet(Uni. Würzburg)
(LMU)Thomas Pruschke
Benjamin Lenz(Göttingen)
(Göttingen)Salvatore Manmana
(Göttingen)

B. Lenz, M. Raczkowski, S. Manmana, T. Pruschke, FFA in preparation M. Raczkowski, FFA, L. Pollet, FFA, Phys. Rev. B 91, 045137 (2015) M. Raczkowski, FFA, Phys. Rev. B 88, 085120 (2013) M. Raczkowski, FFA, Phys. Rev. Lett. **109**, 126404 (2012)

<u>3D band width controlled MIT:</u> V₂O₃

Universality and Critical Behavior at the Mott Transition

P. Limelette,^{1*} A. Georges,^{1,2} D. Jérome,¹ P. Wzietek,¹ P. Metcalf,³ J. M. Honig³

Science 302, 89 (2003).

D< 2: Dimensional-driven MIT

Questions

- a) Nature of the transition. Quantum ($T_c = 0$) or classical ($T_c > 0$)?
- b) Nature of metallic state in the vicinity of the dimensional driven MIT?

<u>Methods</u>

$$H = -\sum_{\mathbf{i},\mathbf{j},\sigma} t_{\mathbf{i},\mathbf{j}} c_{\mathbf{i},\sigma}^{\dagger} c_{\mathbf{j},\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i},\uparrow} n_{\mathbf{i},\downarrow} - \mu \sum_{\mathbf{i}} n_{\mathbf{i},\sigma}$$

$$t' = -t_{\perp}/4$$

Exact BSS approach

Exact evaluation of

$$\langle O \rangle = \frac{\mathrm{Tr} \left[e^{-\beta (H-\mu N)} O \right]}{\mathrm{Tr} \left[e^{-\beta (H-\mu N)} \right]}$$

Advantage. Two particle quantities. Spatial fluctuations.

Issues. Sign problem. Sign problem is *mild* in a non-trivial portion of the phase diagram. \rightarrow 20 X 20 lattices down to β t=30.

Charge susceptibility: 16x16 @ U/t = 2.3

Origin of charge gap?

Spin and charge dynamics @ T= 1/20

$$C(\mathbf{q},\boldsymbol{\omega}) = \frac{\pi}{Z} \sum_{n,m} e^{-\beta E_n} \left| \left\langle m | N_{\mathbf{q}} | n \right\rangle \right|^2 \, \delta(E_m - E_n - \boldsymbol{\omega})$$
$$N_{\mathbf{q}} = \frac{1}{L} \sum_{\mathbf{k},\sigma} c^{\dagger}_{\mathbf{k}+\mathbf{q},\sigma} c_{\mathbf{k},\sigma}$$

$$S(\mathbf{q},\omega) = \frac{\pi}{Z} \sum_{n,m} e^{-\beta E_n} \left| \left\langle m \right| S_{\mathbf{q}}^+ \left| n \right\rangle \right|^2 \, \delta(E_m - E_n - \omega)$$
$$S_{\mathbf{q}}^+ = \frac{1}{L} \sum_{\mathbf{k}} c_{\mathbf{k}+\mathbf{q},\uparrow}^\dagger c_{\mathbf{k},\downarrow}$$

<u>Methods</u>

$$H = -\sum_{\mathbf{i},\mathbf{j},\sigma} t_{\mathbf{i},\mathbf{j}} c_{\mathbf{i},\sigma}^{\dagger} c_{\mathbf{j},\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i},\uparrow} n_{\mathbf{i},\downarrow} - \mu \sum_{\mathbf{i}} n_{\mathbf{i},\sigma}$$

CDMFT/VCA

Cluster sizes 8x2, 4x4, 2x2, Hirsch-Fye and ED solvers Advantage. Mild sign problem → CPU (βV)³ Paramagnetic phase Issues. Cluster size. Real space fluctuations. Lattice two-particle quantities.

<u>Chain-DMFT</u>. S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarchi, PRL **87**, 276405 (2001).

Exact BSS approach

Exact evaluation of

$$\langle O \rangle = \frac{\mathrm{Tr} \left[e^{-\beta(H-\mu N)} O \right]}{\mathrm{Tr} \left[e^{-\beta(H-\mu N)} \right]}$$

Advantage. Two particle quantities. Spatial fluctuations.

Issues. Sign problem. Sign problem is *mild* in a non-trivial portion of the phase diagram. \rightarrow 20 X 20 lattices down to β t=30.

Conclusion/outlook

 \rightarrow The t₁/t axis drives T_c to zero and yields a model where the scaling Ansatz can be tested.

Cluster methods. (CDMFT + VCA)

T_c can be tuned to zero

Breakup of FS into electron and hole pockets

Below t_{\perp}^{c} volume of electron and hole pockets vanishes continuously at U_{c}

Exact lattice methods (20x20)

Mott quantum phase transition is masked by magnetic ordering

Finite temperature crossover between Mott insulator and metallic state