From Spin Glass to Spin Liquid Ground States in Molybdate Pyrochlores L. Clark ^{1, 2} E. Kermarrec ^{1, 3} K. Fritsch ^{1, 4} G. J. Nilsen ⁵ J. P. Attfield ⁶ A. Harrison ^{5, 6} H. J. Silverstein ^{7, 8} C. R. Wiebe ⁷ H. Zhou ⁹ J. S. Gardner ¹⁰ M. J. P. Gingras ¹¹ J. E. Greedan ¹ - ¹ McMaster University - ² St. Andrew's University - ³ Universite Paris-Sud - ⁴ Hemlholz Zentrum Berlin - Institut Laue LangevinEdinburgh University - ⁷ University of Winnipeg - 8 Stanford University - ⁹ University of Tennessee ¹⁰ NSRRC Taiwan - ¹⁰ NSRRC, Taiwan - ¹¹ University of Waterloo Bruce D. Gaulin McMaster University **Brockhouse Institute** for **Materials Research** # Geometric Frustration from Tetrahedra Spin Ice: FM near-neighbour coupling + local Ising anisotropy leads to 6-fold degenerate "ice states" for a single tetrahedron. Macroscopic degeneracy for network of corner-sharing tetrahedra. # Geometric Frustration from Tetrahedra Spin Ice: FM near-neighbour coupling + local Ising anisotropy leads to 6-fold degenerate "ice states" for a single tetrahedron. Macroscopic degeneracy for network of corner-sharing tetrahedra. #### Cubic Pyrochlores: A₂B₂O₇ $Y_2Mo_2O_7: Mo^{4+} 4d^2$ Lu₂Mo₂O₇: Mo⁴⁺ 4d² $Lu_2Mo_2O_5N_2 : Mo^{5+} 4d^{1}$ | Hydrogen | | | | | | | | | | | | | | | | | | Helium | |-----------------------|---------------------|--------|-----------|----------------------|-----------------------|-------------------|----------------|----------------|-------------------|---------------------|--------------------|--------------------|------------------|------------------|-----------------|--------------------|-----------------|-------------------| | 1 | | | | | | | | | | | | | | | | | | 2 | | ш | | | | | | | | | | | | | | | | | | Ц۵ | Не | | 1.008 | | | _ | Key: | | | | | | | | | | | | | | 4.0026 | | Lithium | Beryllium | | | | Element Name | | | | | | | | Boron | Carbon | Nitrogen | Oxygen | Fluorine | Neon | | 3 | 4 | | | At | omic numb | per | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li | Be | | | S | ymb | ol | | | | | | | В | C | N | 0 | F | Ne | | 6.94 | 9.0122 | | | Atomic we | eight (mean rela | tive mass) | | | | | | | 10.81 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | Sodium | Magnesium | | | | | | | | | | | | Aluminium | Silicon | Phosphorus | Sulfur | Chlorine | Argon | | 11 | 12 | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | | Al | Si | P | S | CI | Ar | | 22.990 | 24.305 | | | | | | | | | | | | 26.982 | 28.085 | 30.974 | 32.06 | 35.45 | 39.948 | | Potassium | Calcium | | Scandium | Titanium | Vanadium | Chromium | Manganese | Iron | Cobalt | Nickel | Copper | Zinc | Gallium | Germanium | Arsenic | Selenium | Bromine | Krypton | | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098 | 40.078(4) | | 44.956 | 47.867 | 50.942 | o1.990 | 54.938 | 55.845(2) | 58.933 | 58.693 | 63.546(3) | 65.38(2) | 69.723 | 72.63 | 74.922 | 78.96(3) | 79.904 | 83.798(2) | | Rubidium | Strontium | | Yttrium | Zirconium | Niobium | Molybdenum | Technetium | Ruthenium | Rhodium | Palladium | Silver | Cadmium | Indium | Tin | Antimony | Tellurium | lodine | Xenon | | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | Rb | Sr | | Y | Zr | N | Мо | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | | Xe | | 85.468 | 87.62 | | 88.906 | 1.224(2) | 92.906 | 95.96(2) | [97.91] | 101.07(2) | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60(3) | 126.90 | 131.29 | | Caesium | Barium | F7 70 | Lutetium | lafnium | Tantalui | Tungsten | Rhenium | Osmium | Iridium | Platinum | Gold | Mercury | Thallium | Lead | Bismuth | Polonium | Astatine | Radon | | 55 | 56 | 57-70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | * | Lu | Hf | Ta | VV | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49(2) | 180.95 | 183.84 | 186.21 | 190.23(2) | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [208.98] | [209.99] | [222.02] | | Francium
87 | Radium
88 | 89-102 | awrencium | Rutherfordium
104 | Dubnium
105 | Seaborgium
106 | Bohrium
107 | Hassium
108 | Meitnerium
109 | Darmstadtium
110 | Roentgenium
111 | Copernicium
112 | Ununtrium
113 | Flerovium
114 | Ununpentium 115 | Livermorium
116 | Ununseptium 117 | Ununoctium
118 | | | | | | | | | | | | | | _ | | l | | | | | | Fr | Ra | ** | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | FI | Uup | Lv | Uus | Uuo | | [223.02] | [226.03] | | [262.11] | [265.12] | [268.13] | [271.13] | [270] | [277.15] | [276.15] | [281.16] | [280.16] | [285.17] | [284.18] | [289.19] | [288.19] | [293] | [294] | [294] | *lanthanoids 70 Pr Sm Tb Dy Er Ce Nd Eu Gd Ho Yb La Pm Tm 144.24 [144.91] 150.36(2) 158.93 167.26 173.05 138.91 140.91 157.25(3) 168.93 100 102 Bk U Es No Ac Np Fm Am Cm **actinoids #### Cubic Pyrochlores: A₂B₂O₇ $Y_2Mo_2O_7: Mo^{4+} 4d^2$ $Lu_2Mo_2O_7: Mo^{4+} 4d^2$ $Lu_2Mo_2O_5N_2: Mo^{5+} 4d^{1}$ | Hydrogen | | | | | | | | | | | | | | | | | | Helium | |--------------------|------------------------|--------|--------------------|-----------------------|-----------------------|----------------------|------------------------|------------------------|-------------------|---------------------|---------------------|---------------------|----------------------|------------------------|--------------------|-----------------------|----------------------|----------------------| | 1 | | | | | | | | | | | | | | | | | | 2 | | Н | | | | | | | | | | | | | | | | | | He | | 1.008 | | | | Key: | | | | | | | | | | | | | | 4.0026 | | Lithium | Beryllium | | [| | Element Name | | | | | | | | Boron | Carbon | Nitrogen | Oxygen | Fluorine | Neon | | 3 | 4 | | | At | omic numb | oer | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li | Be | | | S | ymb | ol | | | | | | | В | C | N | 0 | F | Ne | | 6.94 | 9.0122 | | L | Atomic we | eight (mean rela | ative mass) | | | | | | | 10.81 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | Sodium | Magnesium | | | | | | | | | | | | Aluminium | Silicon | Phosphorus | Sulfur | Chlorine | Argon | | 11 | 12 | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | | Al | Si | P | S | CI | Ar | | 22.990 | 24.305 | ı | 0 | T9 1 | Maria Para | | | 1 | 0.111 | Nr.L.I | 0 | 7' | 26.982 | 28.085 | 30.974 | 32.06 | 35.45 | 39.948 | | Potassium
19 | Calcium
20 | | Scandium 21 | Titanium
22 | Vanadium
23 | Chromium 24 | Manganese
25 | Iron
26 | Cobalt
27 | Nickel
28 | Copper 29 | Zinc
30 | Gallium
31 | Germanium
32 | Arsenic
33 | Selenium
34 | Bromine
35 | Krypton
36 | | | _ | | _ | | 23 | | | _ | _ | | | | | | | | | | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098
Rubidium | 40.078(4)
Strontium | | 44.956
Yttrium | 47.867
Zirconium | 50.942
Niobium | Molybdenum | 54.938
Technetium | 55.845(2)
Ruthenium | 58.933
Rhodium | 58.693
Palladium | 63.546(3)
Silver | 65.38(2)
Cadmium | 69.723
Indium | 72.63
Tin | 74.922 | 78.96(3)
Tellurium | 79.904
lodine | 83.798(2) | | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | Antimony 51 | 52 | 53 | Xenon 54 | | | | | 39 | 40 | | | | | | | _ | | | _ | | | 33 | | | Rb | Sr | | Y | Zr | N | Mo | TC | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | 400.00 | Xe | | 85.468
Caesium | 87.62
Barium | - | 88.906
Lutetium | 1.224(2)
lafnium | 92.906)
Tantalui | 95.96(2)
Tungsten | [97.91]
Rhenium | 101.07(2)
Osmium | 102.91
Iridium | 106.42
Platinum | 107.87
Gold | 112.41
Mercury | 114.82
Thallium | 118.71
Lead | 121.76
Bismuth | 127.60(3)
Polonium | 126.90
Astatine | 131.29
Radon | | 55 | 56 | 57-70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | | | * | | _ | | | | | _ | | _ | | | | 1 | | | | | Cs | Ba | ^ | Lu | Hf | Ta | VV | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49(2) | 180.95 | 183.84 | 186.21 | 190.23(2) | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [208.98] | [209.99] | [222.02] | | Francium | Radium | 90 400 | awrencium | Rutherfordium | Dubnium | Seaborgium | Bohrium | Hassium | Meitnerium | Darmstadtium | Roentgenium | Copernicium | Ununtrium | Flerovium | Ununpentium | Livermorium | Ununseptium | Ununoctium | | 87 | 88 | 89-102 | | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | | Fr | Ra | ** | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | FI | Uup | Lv | Uus | Uuo | | [223.02] | [226.03] | | [262.11] | [265.12] | [268.13] | [271.13] | [270] | [277.15] | [276.15] | [281.16] | [280.16] | [285.17] | [284.18] | [289.19] | [288.19] | [293] | [294] | [294] | SOC *lanthanoids 70 Pr Sm Tb Dy Er Ce Nd Eu Gd Ho Yb La Pm [144.91] 150.36(2) 158.93 164.93 138.91 140.91 144.24 157.25(3) 167.26 173.05 100 102 Bk U Es No Ac Np Fm Am Cm **actinoids #### Cubic Pyrochlores: A₂B₂O₇ $Y_2Mo_2O_7: Mo^{4+} 4d^2$ $Lu_2Mo_2O_7: Mo^{4+} 4d^2$ $Lu_2Mo_2O_5N_2 : Mo^{5+} 4d^{1}$ | Hydrogen | | | | | | | | | | | | | | | | | | Helium | |-------------------|-----------------|--------|--------------------|---------------------|----------------------|----------------------|--------------------|---------------------|-------------------|--------------------|----------------|-------------------|--------------------|----------------|-------------------|-----------------------|--------------------|-----------------| | 1 1 | | | | | | | | | | | | | | | | | | 2 | L | Не | | 1.008 | | | | Key: | | | | | | | | | | | | | | 4.0026 | | Lithium | Beryllium | | | | Element Name | | | | | | | | Boron | Carbon | Nitrogen | Oxygen | Fluorine | Neon | | 3 | 4 | | | Ate | omic numb | er | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | 1 1 1 | Da | | | C | voo b | ~ I | | | | | | | D | | N.I. | | | NIa | | | Be | | | 3 | ymbo | | | | | | | | В | U | N | O | | Ne | | 6.94 | 9.0122 | | | Atomic we | eight (mean rela | tive mass) | | | | | | | 10.81 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | Sodium | Magnesium | | | | | | | | | | | | Aluminium | Silicon | phorus | Sule | Chlorine | Argon | | 11 | 12 | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Ma | | | | | | | | | | | | Al | Si | P | S | CI | ۸r | | Na | Mg | | | | | | | | | | | | Al | 3 1 | | 3 | | Ar | | 22.990 | 24.305 | | | | | | | | | | | | 26.982 | 28.085 | 30.974 | 32.06 | 35.45 | 39.948 | | Potassium | Calcium | | Scandium | Titanium | Vanadium | Chromium | Manganese | Iron | Cobalt | Nickel | Copper | Zinc | Gallium | Germanium | Arsenic | Selenium | Bromine | Krypton | | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | , n | | | | | V | OI | | | | | | | | l | 1 | | I | | | 39.098 | 40.078(4) | | 44.956 | 47.867 | 50.942 | 21.990 | 54.938 | 55.845(2) | 58.933 | 58.693 | 63.546(3) | 65.38(2) | 69.723 | 72.63 | 74.922 | 78.96(3) | 79.904 | 83.798(2) | | Rubidium | Strontium | | Yttrium | Zirconium | Niobium | Molybdenum | Technetium | Ruthenium | Rhodium | Palladium | Silver | Cadmium | Indium | Tin | Antimony | Tellurium | lodine | Xenon | | 37 | 38 | | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | Rb | Sr | | | \7 r | NI | Mo | TC | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | | Xe | | | l I | | | | | | | | | | 79 | | | l | | | | | | 85.468
Caesium | 87.62
Barium | | 88.906
Lutetium | 1.224(2)
lafnium | 92.906)
Tantalur | 95.96(2)
Tungsten | [97.91]
Rhenium | 101.07(2)
Osmium | 102.91
Iridium | 106.42
Platinum | 107.87
Gold | 112.41
Mercury | 114.82
Thallium | 118.71
Lead | 121.76
Bismuth | 127.60(3)
Polonium | 126.90
Astatine | 131.29
Radon | | 55 | 56 | 57-70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | _ | | | _'' | _ | | 74 | | 70 | | | 19 | | | l | 1 | | | | | Cs | Ba | * | Lu | Hf | Ta | VV | Re | Os | l Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49(2) | 180.95 | 183.84 | 186.21 | 190.23(2) | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [208.98] | [209.99] | [222.02] | | Francium | Radium | | | Rutherfordium | Dubnium | Seaborgium | Bohrium | Hassium | Meitnerium | Darmstadtium | Roentgenium | Copernicium | Ununtrium | Flerovium | Ununpentium | Livermorium | Ununseptium | Ununoctium | | 87 | 88 | 89-102 | 102 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | | | | ** | | | | | _ | | | | | _ | | l | | | | | | Fr | Ra | ** | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | FI | Uup | LV | Uus | Uuo | | [223.02] | [226.03] | | [262.11] | [265.12] | [268.13] | [271.13] | [270] | [277.15] | [276.15] | [281.16] | [280.16] | [285.17] | [284.18] | [289.19] | [288.19] | [293] | [294] | [294] | | [] | | | | | | | | | | | | | | | | | | | **SOC**- 74 *lanthanoids 70 Pr Sm Tb Dy Er Ce Nd Eu Gd Ho Yb La Pm [144.91] 150.36(2) 158.93 138.91 140.91 144.24 157.25(3) 167.26 173.05 100 102 Bk U Es Md No Ac Np Fm Am Cm **actinoids #### MIT in Rare Earth Molybdate Pyrochlores L. Clark et al., J. Sol. State Chem, 203, 199, 2013 > N. Ali et al., J. Sol. State Chem, 83, 178, 1989 #### MIT in Rare Earth Molybdate Pyrochlores L. Clark et al., J. Sol. State Chem, 203, 199, 2013 > N. Ali et al., J. Sol. State Chem, 83, 178, 1989 0 1.02 1.04 1.06 1.08 *Ln*³⁺ ionic radius (Å) # 8 1.00 1.02 1.04 1.06 1.08 1.10 1.12 $r_{R^{3+}}(\text{Å})$ Semiconductor Semimetal Metal 150 Ho Dy Tb Gd Eu Sm Semiconductor Semimetal Metal 1.12 1.14 ## Rare Earth Molybdates 4d² # Comparing Cubic Pyrochlore Molybdates and Iridates Rare Earth Iridates 5d⁵ ## Rare Earth Molybdates 4d² # Comparing Cubic Pyrochlore Molybdates and Iridates Rare Earth Iridates 5d⁵ #### Conventional View of Magnetic Ground States Selected by Frustration and Disorder A.P. Ramirez, Ann. Rev. Mat. Sci., 1994 #### Spin Glass Transition at T_f ~ 22 K in Y₂Mo₂O₇ Thermodynamic phase transition at $T_f \sim 22 \text{ K}$ Criticality typical of random spin glasses $T_f = 22 \text{ K}, \ \gamma = 2.8, \ \text{and} \ \beta = 0.75.$ $\delta = 4.73$ Gingras et al., PRL, 78, 947, 1997 #### Elastic Neutron Scattering from Y₂Mo₂O₇ "Cluster Glass" with Qmax ~ 0.44 A⁻¹ T=1.4 K - 50 K $\xi \approx 1/\text{HWHM} \approx 5 \text{ Å},$ Gardner et al., PRL, 83, 211, 1999 #### Inelastic Neutron Scattering from Y₂Mo₂O₇ #### 3D Percolation: Just another ordered state? Site substitution with non-magnetic Ti⁴⁺ ## Structural Disorder in Y₂Mo₂O₇ definitely low, but is it measurable? PHYSICAL REVIEW B 79, 014427 (2009) Local and average structures of the spin-glass pyrochlore Y₂Mo₂O₇ from neutron diffraction and neutron pair distribution function analysis J. E. Greedan, Delphine Gout, A. D. Lozano-Gorrin, Shahab Derahkshan, Th. Proffen, H.-J. Kim, E. Božin, and S. J. L. Billinge #### Neutron PDF - Weak Y-O' disorder - No Mo-Mo disorder RAPID COMMUNICA PHYSICAL REVIEW B VOLUME 62, NUMBER 2 1 JULY 2000-II Local lattice disorder in the geometrically frustrated spin-glass pyrochlore Y₂Mo₂O₇ C. H. Booth, ^{1,2} J. S. Gardner, ² G. H. Kwei, ² R. H. Heffner, ² F. Bridges, ³ and M. A. Subramanian ⁴ **XAFS** Weak Mo-Mo disorder VOLUME 87, NUMBER 17 PHYSICAL REVIEW LETTERS 22 October 2001 Frustration Driven Lattice Distortion: An NMR Investigation of Y₂Mo₂O₇ Amit Keren¹ and Jason S. Gardner² 89Y NMR Weak Mo-Mo disorder #### Single Crystal Samples: Real Liquid Correlations! 0.4 0.2 0.0 0.0 0.5 2.0 Q (m⁻¹⁰) 2.5 Silverstein et al., PRB, 89, 054433, 2014 #### Spin Ice Ground State in Ho₂Ti₂O₇ T. Fennell et al., Science, 326 (5951): 415-417 (2009) ## Oxygen miscibility gap in Lu₂Mo₂O₇ **Table 1** Refined atomic coordinates and occupancies for $Lu_2Mo_2O_7$ (a=10.1478(1) Å) and (lower values where different) for $Lu_2Mo_2O_{6.69(6)}$ (a=10.1789(1) Å). Isotropic U-factors were 0.0091(2) Å² for metal cations and 0.0152(3) Å² for oxygen sites. Residuals for the combined refinement were $R_{wp}=5.83\%$, and $\chi^2=6.9$. | Atom | Site | X | У | Z | Occupancy | |---------------|-------------------------|---|------------------------------|------------------------------|--| | Lu
Mo
O | 16d
16c
48f
8b | 0.5
0.0
0.3417(1)
0.3477(1)
0.375 | 0.5
0.0
0.125
0.375 | 0.5
0.0
0.125
0.375 | 1.0
1.0
1.0
0.97(1)
1.0
0.87(2) | L. Clark et al., J. Sol. State Chem, 203, 199, 2013 #### Local environments at the A³⁺ and B⁴⁺ sites: Rare earth site Mo site #### Local environments at the A³⁺ and B⁴⁺ sites: Lu₂Mo₂O_{6.7} oxygen deficiency is primarily at the O' site Rare earth site Mo site #### Synthesize either Lu₂Mo₂O₇ or Lu₂Mo₂O_{6.7} #### Lu₂Mo₂O₇ vs Lu₂Mo₂O_{6.7} Increase in T_f due in part to expansion of the lattice ## Topochemical nitration of Lu₂Mo₂O₇ $$Lu_{2}Mo_{2}O_{7} (Mo^{4+}, 4d^{2}, S = 1) \xrightarrow{NH_{3}(g), 250 \text{ cm}^{3} \text{ min}^{-1}} Lu_{2}Mo_{2}O_{5}N_{2} (Mo^{5+}, 4d^{1}, S = \frac{1}{2})$$ $$a = 10.1452(8) \text{ Å}$$ $$a = 10.1499(1) \text{ Å}$$ ## Topochemical nitration of Lu₂Mo₂O₇ $$Lu_{2}Mo_{2}O_{7} (Mo^{4+}, 4d^{2}, S = 1) \xrightarrow{NH_{3} (g), 250 \text{ cm}^{3} \text{ min}^{-1}} Lu_{2}Mo_{2}O_{5}N_{2} (Mo^{5+}, 4d^{1}, S = \frac{1}{2})$$ $$a = 10.1452(8) \text{ Å}$$ $$a = 10.1499(1) \text{ Å}$$ TABLE I. Refined atomic coordinates and occupancies for $\text{Lu}_2\text{Mo}_2\text{O}_{4.8}\text{N}_{1.7}$ (a=10.1428(2) Å). Isotropic thermal parameters were 0.0337(6) Å² for metal cations and 0.0398(6) Å² for anion sites. Total $R_{wp}=2.21$ %, $\chi^2=14.58$ for 64 variables. | Atom | Site | x | \overline{y} | z | Occupancy | |-------|------|---------------|----------------|---------------|----------------| | Lu | 16d | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 1.0 | | Mo | 16c | $ar{0}$ | $\bar{0}$ | $\bar{0}$ | 1.0 | | O/N | 48f | 0.3477(1) | $\frac{1}{8}$ | $\frac{1}{8}$ | 0.663(2)/0.257 | | O'/N' | 8b | $\frac{3}{8}$ | $\frac{3}{8}$ | $\frac{3}{8}$ | 0.831/0.169 | TABLE II. Results from the Curie Weiss fit to magnetic susceptibilities of the oxide and oxynitride pyrochlores. | Sample | Fit region / K | θ / K | μ_{eff} / μ_B | |------------------|----------------|--------------|---------------------| | | 150 - 300 | 158(1) | 1.89(1) | | $Lu_2Mo_2O_7$ | 200 - 300 | 171(1) | 1.92(1) | | | 250 - 300 | 184(2) | 1.85(1) | | | 150 - 300 | 121(1) | 1.11(1) | | $Lu_2Mo_2O_5N_2$ | 200 - 300 | 135(1) | 1.13(1) | | | 250 - 300 | 152(2) | 1.16(1) | L. Clark et al., PRL, 113 117201, 2014 ### Topochemical nitration of Lu₂Mo₂O₇ $$Lu_{2}Mo_{2}O_{7} (Mo^{4+}, 4d^{2}, S = 1) \xrightarrow{NH_{3}(g), 250 \text{ cm}^{3} \text{ min}^{-1}} Lu_{2}Mo_{2}O_{5}N_{2} (Mo^{5+}, 4d^{1}, S = \frac{1}{2})$$ $$a = 10.1452(8) \text{ Å}$$ $$a = 10.1499(1) \text{ Å}$$ L. Clark et al., PRL, 113 117201, 2014 # Elastic Neutron Scattering: Lu₂Mo₂O₇ vs Lu₂Mo₂O₅N₂ High resolution inelastic scattering res +/- 0.1 meV Polarized Neutron Diffraction ## Elastic Neutron Scattering: Lu₂Mo₂O₇ vs Y₂Mo₂O₇ vs Lu₂Mo₂O₅N₂ ### Modeling the inelastic scattering Lu₂Mo₂O₅N₂ $$S(E) = \frac{1}{\pi} \chi''(E) [1 + n(E)], \quad \chi''(E) = \chi_0 \arctan\left(\frac{E}{\Gamma}\right)$$ # Inelastic Neutron Scattering: Lu₂Mo₂O₇ vs Lu₂Mo₂O₅N₂ L. Clark et al., PRL, 113 117201, 2014 # Inelastic Neutron Scattering: Y₂Mo₂O₇ vs Lu₂Mo₂O₅N₂ S=1 Moly Oxides freeze at $T_f \sim 20 \text{ K}$ S=1/2 Oxynitride doesn't freeze! # Inelastic Neutron Scattering: Lu₂Mo₂O₇ vs Lu₂Mo₂O₅N₂ S=1/2 degrees of freedom are strongly fluctuating at T=1.5 K ~ 0.012 T_{CW} Gapless - with gap < $\Delta \sim 0.05 \text{ meV or } \Delta/|\theta| \sim 0.004$ Scattering follows $F(Q)^2$ for Mo^{5+} only #### Conclusions: • TOF neutron techniques have made great recent advances, and are well suited to exotic magnetism as they measure very effectively across wide dynamic range in Q and energy • $R_2Mo_2O_7$ with heavy R^{3+} displays robust spin glass phase below $\sim 20~K$ Disorder-free glassiness or role of weak disorder? Isotropic static, short range correlations at low T - why? • Topochemical nitration of Lu₂Mo₂O₇ yields Lu₂Mo₂O₅N₂ Variation of S=1/2 pyrochlore antiferromagnet? Gapless, strongly fluctuating ground state - no freezing! ## Collaboration: