Hidden Order in a Perovskite Iridate Revealed by Nonlinear Optics

David Hsieh Institute for Quantum Information and Matter Department of Physics, Caltech

KITP Program: New Phases and Emergent Phenomena in Correlated Materials with Strong Spin-Orbit Coupling 9/15/2015

Electron correlations + spin-orbit coupling

W. Witczak-Krempa et al., Ann. Rev. Condens. Mat. Phys. 5, 57 (2014)

Outline

- Sr_2IrO_4 : A spin-orbit coupled Mott insulator

Nonlinear optical harmonic generation

- A tool for detecting electronic symmetry breaking
- Principles of operation
- High precision rotational anisotropy

Physics of Sr_2IrO_4 revealed through nonlinear optics

- Perfect magneto-elastic locking via structural distortion
- A hidden odd-parity magnetic order

5d transition metal oxides

- Interplay between electron correlations, crystal electric field and spin-orbit coupling and (U ~ SOC ~ CEF)
- Potential for exotic physics driven by strong SOC (~0.5eV)

 $J_{\rm eff} = \frac{1}{2}$ Mott insulators in 5*d* systems

Sr₂IrO₄ (Single-layer perovskite structure)

Sr₂IrO₄ (Orthorhombic magnetic structure)

 $J_{eff} = \frac{1}{2}$ T_N ~ 230 K

In-plane canted dipolar AFM Centrosymmetric *mmm1*'

Neutron diffraction

Q. Huang *et al.*, J. Sol. State. Chem. 112, 355 (1994)
C. Dhital *et al.*, PRB 87, 144405 (2013)
F. Ye *et al.*, PRB 87, 140406(R) (2013)

Resonant x-ray diffraction

- B. J. Kim et al., Science, 323, 1329 (2009)
- S. Boseggia et al., J. Phys. CM 25, 422202 (2013)
- S. Boseggia et al., PRL 110, 117207 (2013)
- M. Moretti Sala et al., PRL 112, 026403 (2014)

Sr₂IrO₄ (Electronic structure)

Kim et al., PRL 101, 076402 (2008)

Fermi arcs in surface K doped Sr₂IrO₄ (electron doping)

Y. K. Kim et al., Science 345, 187 (2014)

Fermi arcs and pseudogap in bulk doped Sr₂IrO₄

Observation of Fermi Arcs in ARPES measurements

Y. Cao et al., http://arxiv.org/abs/1406.4978 (2014)

Broken symmetry phases proximate to AF order in cuprates

B. Keimer et al., Nature Review 518, 179 (2015)

Exotic phases in iridates?

Doping

A tensor describing any physical property of a crystal must be invariant under all symmetry operations of the crystal

If $\chi_{ijk...n}$ is a property tensor

- and T_{ip} is an element in the symmetry group of the crystal

then:

 $\chi_{ijk\dots n} = T_{ip}T_{jq}T_{kr}\dots T_{nu}\chi_{pqr\dots u}$

 The set of relationships between χ's greatly reduced the number of non-zero independent tensor components Higher rank tensors \rightarrow greater symmetry resolution

$\chi^{(1)}_{ij}$	$\chi^{(2)}_{ijk}$		$\chi^{(3)}_{ijkl}$, ,
Tetragonal # elem. Trigonal 2 Hexagonal	$4 = C_4$ $\overline{4} = S_4$ $422 = D_4$	7 6 3	$4 = C_4$ $\overline{4} = S_4$ $422 = D_4$	21 21 11
$\begin{bmatrix} xx & 0 & 0 \\ 0 & xx & 0 \\ 0 & 0 & zz \end{bmatrix}$	$4mm = C_{4v}$ $\overline{4}2m = D_{2d}$ $4/m = C_{4h}$ $4/mmm = D_{4h}$	4 3* 0 0	$4mm = C_{4v}$ $\overline{4}2m = D_{2d}$ $4/m = C_{4h}$ $4/mmm = D_{4h}$	11 11 21 11

Nonlinear optics

Multipole expansion of radiation source term

$$\vec{S} \propto \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2} + \mu_0 \left(\vec{\nabla} \times \frac{\partial \vec{M}}{\partial t} \right) - \mu_0 \left(\vec{\nabla} \frac{\partial^2 \hat{Q}}{\partial t^2} \right) + \dots$$

Expansion of electric dipole (P), magnetic dipole (M) and electric quadrupole (Q) contributions

$$P_{i} = \chi_{ij}^{ee} E_{j}(\omega) + \chi_{ijk}^{em} H_{j}(\omega) + \chi_{ijk}^{eee} E_{j}(\omega) E_{k}(\omega) + \chi_{ijk}^{eem} E_{j}(\omega) H_{k}(\omega) + \chi_{ijk}^{emm} H_{j}(\omega) H_{k}(\omega) + \dots$$

$$M_{i} = \chi_{ij}^{me} E_{j}(\omega) + \chi_{ij}^{mm} H_{j}(\omega) + \chi_{ijk}^{mee} E_{j}(\omega) E_{k}(\omega) + \chi_{ijk}^{mem} E_{j}(\omega) H_{k}(\omega) + \chi_{ijk}^{mmm} H_{j}(\omega) H_{k}(\omega) + \dots$$

$$\hat{Q}_{ij} = \chi^{qe}_{ijk} E_k(\omega) + \chi^{qm}_{ijk} H_k(\omega) + \chi^{qee}_{ijkl} E_k(\omega) E_l(\omega) + \chi^{qem}_{ijkl} E_k(\omega) H_l(\omega) + \chi^{qmm}_{ijkl} H_k(\omega) H_l(\omega) + \dots$$
1st order responses
2nd order responses

Optical second harmonic generation (SHG)

 $\chi_{ijk}^{ED} = 0$ if system has inversion symmetry $\chi_{ijkl}^{EQ} \neq 0$ even if system has inversion symmetry much weaker than ED contribution (~ λ /a)

Rotational anisotropy

Technical limitations of conventional rotational anisotropy

Alignment problems:

- Beam walk on sample
- Precession of reflected light
- Need large area flat single crystals (e.g. thin-film, polishing)

Need for rotating sample creates additional challenges for:

- Cryogenic measurements
- Magnetic field measurements
- Strained samples
- Imaging measurements

Rotating scattering plane based RA-SHG

Instead of rotating the sample, the scattering plane is rotated.

Measurement is performed at oblique angle θ

Rotating scattering plane based RA-SHG

Only a handful of optics rotate.

Rotating scattering plane based RA-SHG

Sample is totally stationary. Thus, we may perform measurements:

- in ultracold environments \checkmark
- in a magnetic field \checkmark
- on small single crystals \checkmark
- as a scanning experiment \checkmark

Characterization of spot size and local repeatability

Beam walking on sample ~ 1 μm
 Always measure the same portion of the sample

D. H. Torchinsky et al., Rev. Sci. Instrum. 85, 083102 (2014)

Characterization of scattering angle precession

Precession of scattering plane with respect to surface normal $< 0.05^{\circ}$ \checkmark

D. H. Torchinsky et al., Rev. Sci. Instrum. 85, 083102 (2014)

Structural symmetry

Unexplained forbidden neutron peaks

(1994 - 2013) space group I4₁/acd

M. K. Crawford *et al.*, PRB 49, 9198 (1994)
Q. Huang *et al.*, J. Sol. State. Chem. 112, 355 (1994)
B. J. Kim *et al.*, Science, 323, 1329 (2009)

(2013) (h = 2n, 0, l = 2n) peaks observed Violation of I4₁/acd Structural defects? Spatial inhomogeneity? Lower crystal symmetry? C. Dhital *et al.*, PRB 87, 144405 (2013)

F. Ye et al., PRB 87, 140406(R) (2013)

(b)

0.1

(f)

I $_{PS}^{max}(2\omega)/I_{PP}^{max}(2\omega)$

b

b

а

0

Non-centrosymmetric (bulk ED)

С_s

(a)

 $_{ss}(2\omega)/I_{pp}^{max}(2\omega)$

0.05

0.00

0.05

(e)

S

Centrosymmetric (surface ED)

b

b

Non-centrosymmetric (bulk ED)

(a)

0.05

(e)

 $I_{SS}(2\omega)/I_{PP}^{max}(2\omega)$ 00.0
000
000
000

I4₁/acd

4h

(b)

 $I_{ps}(2\omega)/I_{pp}^{max}(2\omega)$

0.1

0.0

0.1

(f)

b

b

(a)

0.05

8

(e)

 $\lambda_{in} = 800 \text{ nm}$ $\lambda_{out} = 400 \text{ nm}$

Non-centrosymmetric (bulk ED) Centrosymmetric (bulk EQ) Proposed ΄4h ้ร I4₁/acd

(b)

0.1

(a)

0.05

 $\lambda_{in} = 800 \text{ nm}$

I $_{\rm SS}^{\rm max}(2\omega)/I_{\rm PP}^{\rm max}(2\omega)$ I $_{PS}(2\omega)/I_{PP}^{max}(2\omega)$ 0.0 0.1 (e) (f) b Centrosymmetric (bulk EQ) Non-centrosymmetric (bulk ED) Proposed С_s 4 h I4₁/a

Nonlinear optical microscopy

Spatially resolved symmetry mapping

No evidence of spatial inhomogeneity or parasitic phases

Lowered global symmetry $I4_1/acd \rightarrow I4_1/a$

Consequences of lowered global symmetry

$$H = \Sigma_{n,n'} J \mathbf{S}_n \mathbf{S}_{n'} - D(S_n^x S_{n'}^y - S_n^y S_{n'}^x) + \delta J_z S_n^z S_{n'}^z + \delta J_{xy} \left(\mathbf{S}_n \cdot \mathbf{r}_{n,n'} \right) \left(\mathbf{S}_{n'} \cdot \mathbf{r}_{n,n'} \right)$$

Consequences of lowered global symmetry

RA-SHG data at T = 295 K

Inversion sym.

Rotational sym.

RA-SHG data at T = 170 K

 $\chi^{EQ} E \nabla E + \chi^{ED} E E$ cryst. magn. $4/m \qquad 2'/m (m1')$

Inversion sym.

Rotational sym.

Symmetries of Θ_{II} loop current order (magneto-electric)

Properties: C₄

- $\mathbf{Q} = \mathbf{0}$;
- No Net Magnetization per unit cell;
- Non-Dipolar;
- Domain Average. 🔊

C₁ & Broken Inv. & T. R.

Ref:

C. M. Varma PRB, 55, 14554 (1997)
C. M. Varma PRL, 83, 3538 (1999)
C. M. Varma PRB, 73, 155113 (2006)
C. Weber *et al.* PRL, 102, 017005 (2009)
Y. F. Kung *et al.* PRB, 90, 224507 (2014)
J. Orenstein PRL, 107, 067002 (2011)
V. Yakovenko Physica B, 460, 159 (2015)

Nonlinear optical microscopy images

T = 295 K

Nonlinear optical microscopy images

T = 175 K

Hidden order domain orientations in Sr₂IrO₄

Hole doped Sr₂Ir_{1-x}Rh_xO₄

Hole doped Sr₂Ir_{1-x}Rh_xO₄

J. P. Clancy *et al.*, PRB 89, 054409 (2014)

Hidden symmetry breaking below T_{Ω}

L. Zhao et al. in review

Hidden symmetry breaking below T_{Ω}

_{SS}(w) Norm.

L. Zhao et al. in review

Doping dependence of T_{Ω} in $Sr_2Ir_{1-x}Rh_xO_4$

L. Zhao et al. in review

Exotic phases in iridates?

L. Zhao et al. in review

Y. Cao et al., http://arxiv.org/abs/1406.4978 (2014)

Conclusions and Outlook

- Nonlinear optical response is an effective probe of bulk structural and electronic symmetry breaking.
- Complementary to neutron and (non-) resonant x-ray diffraction.
 Small crystals ✓ Spatial resolution ✓ Multipolar order parameters ✓ Strong neutron absorbers (e.g. Ir) ✓
- Lower global structural symmetry revealed in Sr₂IrO₄.
 Supports perfect magneto-elastic locking.
- Hidden parity-odd magnetic phase revealed in parent and doped Sr_2IrO_4 consistent with Θ_{II} loop-current symmetry. Not trivially tied to Neel order.
 - Possible relationship to pseudogap temperature?

Acknowledgements

Dr. Liuyan Zhao

Dr. Darius Torchinsky

Hao Chu

Prof. Natalia Perkins Dr. Yuriy Sizyuk

Prof. Gang Cao Prof. Rebecca Flint Prof. Ron Lifshitz Tongfei Qi

