Field-Induced Metal-Insulator Transition in the Pyrochlore Iridate Nd₂Ir₂O₇

Hiroaki Ishizuka¹

Collaborators:

Timothy Hsieh 1,2, Leon Balents 1

Experiments:

Z. Tian³, Y. Kohama³, T. Tomita³, J. Ishikawa³, K. Kindo³, S. Nakatsuji³

¹ Kavli Institute for Theoretical Physics, University of California Santa Barbara
² Department of Physics, Massachusetts Institute of Technology
³Institute for Solid State Physics, the University of Tokyo

Rare-Earth Moments in Pyrochlore Iridates

Does the rare-earth moments affect magnetic/transport properties?

Iridium ions:

- Conduction electrons
- Moderately interacting
- Unique properties: quadratic band touching, Weyl semimetal, ...

Rare-earth ions:

- Often form localized moment.
- Ignored in most of theoretical studies.

Rare-Earth Moments in Pyrochlore Iridates

Does the rare-earth moments affect magnetic/transport properties?

<u>Ir pyrochlore ~ physics of Ir electrons?</u>

- Band width W and Hubbard U ~ 1 eV; much larger than expected Kondo coupling J_K ~ 10 meV.
- MIT (mostly) takes place in the order of 100 K, and has weak dependence to *Ln* ions, <u>magnetic or non-magnetic</u>.

Rare-Earth Moments in Pyrochlore Iridates

Does the rare-earth moments affect magnetic/transport properties?

<u>Ir pyrochlore ~ physics of Ir electrons?</u>

- Band width W and Hubbard U ~ 1 eV; much larger than expected Kondo coupling J_K ~ 10 meV.
- MIT (mostly) takes place in the order of 100 K, and has weak dependence to *Ln* ions, <u>magnetic or non-magnetic</u>.

Kondo coupling may take important role if Ir electrons are at PM/AFM boundary. $\rightarrow Nd_2Ir_2O_7$ may be one such example. Field-Induced MIT in Nd₂Ir₂O₇

Zero-Field MIT in Nd₂Ir₂O₇

Resistivity Measurements:

- 1. Metal-insulator transition takes place at $T_{\text{MI}} \sim 30 \text{ K}$.
- 2. T_{MI} associated with the onset of AIAO order (mainly on Ir sites).

Neutron Diffraction:

- 1. Neutron being sensitive to Nd moments than the small Ir moments.
- Onset of AIAO order on Nd sites (T_{Nd}~15 K) being lower than T_{MI} (~30K); <u>ferromagnetic</u> <u>interactions between Nd moments?</u>

Magnetization Process

Magnetization Curve:

- Saturation at magnetic field H~7 T.
- 2. Hysteresis for field along <111> while not for <100>.
- 3. Contribution mainly from Nd moments; the magnetization at saturation consistent with single-ion moment for Nd: $\mu_{Nd} \sim 2.4 \mu_{B}$.
- 4. The result is also consistent with the expected small moments for Ir electrons $1/3 1/2\mu_{\rm B}$.

<u>Ising spins with local <111> axis (spin-ice):</u>

- 1. AIAO for weak field.
- 2. 2-in 2-out for field along <100>, while 3-in 1-out for field along <111>.

Field-Induced Metal-Insulator Transition

Metal-Insulator Transition

- 1. Sudden decrease of resistivity at *B*~10 *T* for field along [001].
- 2. Sharp metal-insulator transitions observed only for field close to [100] direction.
- 3. Hysteresis indicates 1st order transition.

Angle dependence of resistivity:

- 1. Large negative magneto-resistance observed only for field close to [001] direction.
- 2. Highly anisotropic behavior, unusual for cubic magnets.

Similar results: K. Ueda et al., Phys. Rev. Lett. <u>115</u>, 056402 (2015).

Field-Induced Metal-Insulator Transition

Suppression of MIT with magnetic field:

- 1. Metal-insulator transition suppressed by application of external magnetic field.
- Hysteresis observed for MIT under strong magnetic field (no hysteresis for B=0); tricritical point at ~20 K and 2-6 T?
- 3. Weak temperature dependence of ρ in the high field (semi)metal phase.

Phase Diagram:

- 1. Ground state for low-field is a AIAO insulator.
- 2. High-field (semi)metal show very weak temperature dependence of ρ .

Similar results: K. Ueda et al., Phys. Rev. Lett. <u>115</u>, 056402 (2015).

Effective Nd Spin Model

Rare-Earth Moments in *Ln*₂Ir₂O₇

Localized moments on R ions:

1. 4*f* electrons on *Ln* ions form localized moments, often with large *J*:

J=4 for Pr³⁺ and J=9/2 for Nd³⁺

- 2. Crystal field splits the degeneracy of moments.
- May form pseudo-spins with multi-polar (quadrupolar/octupolar) moments with dipolar (magnetic) moments along the local z axis.

Interaction with Ir electrons:

- 1. 6 nearest Ir sites surrounding the *Ln* moments.
- 2. Kondo coupling between Ir electrons and *R* moments may have unconventional form due to the multi-polar nature of *R* moments.
- Mediates RKKY interaction between Nd moments.

Doublets of Nd Moments

- 1. Due to the highly anisotropic crystal field, the J=9/2 Nd moments split into 5 Kramers doublets.
- 2. The resultant ground state doublet is a dipolar-octupolar doublet.

 (Huang `14)
- 3. Investigated by neutron scattering measurement.

Table 1. Calculated CEF parameters, eigenenergies and eigenstates for Nd^{3+} (J = 9/2). Ten coefficients with respect to $|J_z\rangle$ are given for each eigenstates.

CEF parameters [meV]										
B_2^{0}		B_4^{0}		B_4^{3}		$B_6^{\ 0}$		B_6^{-3}	B_6^6	
-0.28(0)		$-0.95(9) \times 10^{-2}$		-0.33(9) -0.44(3)×1		44(3)×10	$0.17(7) \times 10^{-2}$		$-0.45(7) \times 10^{-2}$	
eigenenergies [meV] and eigenstates										
E_i	1-9/2>	1-7/2>	1-5/2>	1-3/2>	1-1/2>	1/2>	13/2>	15/2>	17/2>	19/2>
123	0	0	0.375	0	0	0.533	0	0	-0.758	0
123	0	-0.758	0	0	-0.533	0	0	0.375	0	0
57	0.135	0	0	-0.289	0	0	-0.772	0	0	0.550
57	0.550	0	0	0.772	0	0	-0.289	0	0	-0.135
42	0	0	-0.439	0	0	-0.617	0	0	-0.653	0
42	0	0.653	0	0	-0.617	0	0	0.439	0	0
26	0	0	0.816	0	0	-0.578	0	0	-0.003	0
26	0	0.003	0	0	0.578	-0-	-0-	0.816	0	0
0	-0.057	0	0	-0.286	0	0	-0.489	0	0	-0.822
0	-0.822	0	0	0.489	0	0	-0.286	0	0	0.057

Model: Effective spin model for Nd moments

$$\mathcal{H}_{Nd}^{(\text{eff})} = \sum_{\langle i,j\rangle} J_z \tau_i^z \tau_j^z + J_y \tau_i^y \tau_j^y + J_x \tau_i^x \tau_j^x + J_{xz} (\tau_i^x \tau_j^z + \tau_i^z \tau_j^x) - A_H \sum_i \tau_i^z - g \sum_i \tau_i^z (\boldsymbol{a}_i \cdot \boldsymbol{h})$$

- Spin model on a pyrochlore lattice with nearest-neighbor interactions.
- 2. The moments are dipolaroctupolar moments.
- 3. Interactions and Zeeman coupling terms allowed by symmetry.

Parameters: $J_x = J_y = -0.0001$, $J_{xz} = 0.0001$, g = 0.001

Magnetization Process

- 1. Magnetization process of Nd moments coupled to AIAO field from iridium ions (A_{H}) with external field applied along <100> (green), <110> (red), <111> (blue).
- 2. A_{H} is flipped at H=0 to mimic the behavior of order parameter.
- Ferromagnetic J_z reproduces hysteresis for <111> at h~0, while other terms (J_x, J_y, ...) contributes to smooth out the curves.

Kondo Lattice Model

Model: Ir Electrons + Nd Moments

Iridium Electrons:

Tight-binding model for J_{eff} =1/2 bands with 2nd neighbor hopping + onsite Hubbard U. (Witczak-Krempa `13)

Kondo Coupling between Ir and Nd ions:

$$\mathcal{H}_K = J_K \sum_{ij} \Lambda_{ij}^{\mu\nu} S_i^{\mu} \tau_j^{\nu} \quad \mathcal{H}_h^{\text{Nd}} = -\gamma \sum_i (\mathbf{h} \cdot \boldsymbol{a}_i) \tau_i^z$$

$$\Lambda_{ij}^{\mu\nu} = \begin{cases}
G_1^x \, \mathbf{a}_j \cdot \hat{e}_{\mu} + G_2^x \, \mathbf{a}_j \bar{\times} (\mathbf{d}_{ij} \bar{\times} \mathbf{d}_{ij}) \cdot \hat{e}_{\mu} & (\nu = x) \\
G_1^y \, \mathbf{a}_j \times (\mathbf{d}_{ij} \bar{\times} \mathbf{d}_{ij}) \cdot \hat{e}_{\mu} & (\nu = y) \\
G_1^z \, \mathbf{a}_j \cdot \hat{e}_a + G_2^z \, \mathbf{a}_j \bar{\times} (\mathbf{d}_{ij} \bar{\times} \mathbf{d}_{ij}) \cdot \hat{e}_{\mu} & (\nu = z)
\end{cases}$$

- We consider effective Hamiltonian taking into account of the lowest energy doublets for Nd ions (dipolar-octupolar doublets).
 (Huang `14)
- 2. We only consider coupling of Nd moments to Ir electrons (Kondo couplings) due to the highly localized nature of Nd 4*f* electrons.
- 3. We consider all types of couplings allowed by symmetry.

Mean Field Theory

$$\mathcal{H}_{U} \simeq U \sum_{i\sigma} \langle c_{i\sigma}^{\dagger} c_{i\sigma} \rangle c_{i\bar{\sigma}}^{\dagger} c_{i\bar{\sigma}} - \langle c_{i\sigma}^{\dagger} c_{i\bar{\sigma}} \rangle c_{i\bar{\sigma}}^{\dagger} c_{i\sigma} - U \sum_{i} \langle c_{i\uparrow}^{\dagger} c_{i\uparrow} \rangle \langle c_{i\downarrow}^{\dagger} c_{i\downarrow} \rangle - \langle c_{i\uparrow}^{\dagger} c_{i\downarrow} \rangle \langle c_{i\downarrow}^{\dagger} c_{i\uparrow} \rangle$$

$$\mathcal{H}_{K} \simeq J_{K} \sum_{ij} \Lambda_{ij}^{\mu\nu} [\langle S_{i}^{\mu} \rangle \tau_{j}^{\nu} + S_{i}^{\mu} \langle \tau_{j}^{\nu} \rangle - \langle S_{i}^{\mu} \rangle \langle \tau_{j}^{\nu} \rangle]$$

$$= J_{K} \sum_{ij} \Lambda_{ij}^{\mu\nu} S_{i}^{\mu} \langle \tau_{j}^{\nu} \rangle.$$
Nd

- 1. To take into account of the spacial correlation, we consider eight site cluster with four spins and four half-filled electron sites.
- Mean-field expansion using unrestricted
 Hartree-Fock method for Ir electrons and mean-field treatment for localized Nd moments.

Fermion-Mediated Interactions

- We first look for the appropriate set of Kondo couplings with ferromagnetic nearest-neighbor interaction along z axis.
- 2. Ground state energy for (meta-)stable all-in all-out, two-in two-out, and three-in one-out states by mean-field calculation with different ratio of G_1^z and G_2^z .
- 3. All-in all-out become the ground state when G_2^z is dominant while two-in two-out is favored for G_1^z . This implies the nearest-neighbor interaction to be ferromagnetic when G_1^z is dominant while antiferromagnetic for G_2^z .
- 4. In the following, we consider $|G_1^z| \gg |G_2^z|$.

Enhanced AIAO Order by Kondo Coupling

- 1. AIAO order parameter for Ir electrons (green) and the charge gap (red).
- 2. AIAO order being enhanced by the Kondo coupling, and AIAO order appears in weak U region where AIAO does not exists for J_K =0.
- 3. The <u>charge gap induced</u> by the Kondo coupling.
- 4. (below) Schematic phase diagram with $J_{\rm K}$ and U.

Parameters:

$$t_{\text{oxy}}$$
=1, t_{σ} =-1.1, t_{π} =-(2/3) t_{σ} , $t_{\pi,\sigma}$ =0.02 $t_{\pi,\sigma}$
 G_1^{x} =0.0, G_2^{x} =0.006, G^{y} =0.01,
 G_1^{z} =-0.06, G_2^{z} =-0.02

Magnetization Process

Parameters:

$$t_{\text{oxy}} = 1$$
, $t_{\sigma} = -1.1$, $t_{\pi} = -(2/3)$ t_{σ} , $t'_{\pi,\sigma} = 0.02$ $t_{\pi,\sigma}$
 $G_1^{\text{x}} = 0.0$, $G_2^{\text{x}} = 0.006$, $G_2^{\text{y}} = 0.01$,
 $G_1^{\text{z}} = -0.06$, $G_2^{\text{z}} = -0.02$, $\gamma = 5.0$

- 1. AIAO order parameter for Ir electrons (green), charge gap (red), and net magnetization along the external field (orange).
- A metal-insulator transition occurs when the field is applied along <100> direction, while no transition for <111>. They are highly anisotropic.
- The magnetization curve show hysteresis for field along <111>. This is due to the lifting of the degeneracy of two AIAO ground states at h=0.
- Very small critical *h* (~0.01) compared to *U* (~ 1) , due to large γ .

Zhaoming Tian et al., submitted.

Summary

- 1. We studied magnetization process and metalinsulator transition in Nd₂Ir₂O₇.
- 2. We found a field-induced metal-insulator transition.
- The MIT is highly anisotropic, unusual for cubic magnets.
- The form of magnetization curves being strongly affected by the effective interaction between Nd localized moments.
- The Kondo coupling between Nd moments and Ir electrons has significant effects over magnetic and electronic property of the material.
 - ✓ Very low h_c compared to Hubbard U.
 - Highly anisotropic MIT with applied magnetic field.
- 6. Anisotropic hysteresis in magnetization curve is a consequence of AIAO ground state.

