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Motivation

 Developing new methods to reliably simulate phase diagrams of
correlated electronic models in the presence of doping.

----can one say something sharp?
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Motivation

Developing new methods to reliably simulate phase diagrams of
correlated electronic models in the presence of doping.

----can one say something sharp?

Searching for correlation-driven topological phases in simple
realistic models (Hubbard, t-J)

What would happen if graphene is doped to % ?




Bindungsenergie in aV

Graphene at % doping

Hexagonal Fermi surface

Two features:

e Nested Fermi surface

e Van Hove singularity at three M-points

One expects instability even in the presence of weak interaction.

Graphene is intermediately correlated: short-range part U/t =2 ~3 --- What will happen?



Previous proposals:

1) Chiral SDW (cSDW)

A | Raghu et al (2010); Li (2012)
Mandkishore ef al (2012)

Wang et al (2012); Kiesel ef al (2012)



Previous proposals:

1) Chiral SDW (cSDW)

2) d+id superconductor
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Raghu et al (2010); Li (2012)
Mandkishore ef al (2012)

Wang et al (2012); Kiesel ef al (2012)



Interestingly, both proposed phases are correlation-driven
topological phases

1) Chiral SDW (cSDW) 2) d+id superconductor

Quantum anomalous hall effect: Spin quantum hall effect (NOT quantum spin hall):
(Handane 1988, Nagaosa, Niu, Qi, Dai, (Senthil et.al, 1999)
Fang, Zhang..., Xue’s group 2013)
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 This motivates us to carefully study the phase diagrams of
correlated models on the honeycomb lattice at % doping, from
intermediate to strong correlation strength

Hubbard model:

Hy = —t Z {ELCJ-& 4+ h.c.) + UZ 1T
i

<17 >0
t-J model:

Hiy=Ps Y —t(clycja+he)Po +Ps Y J(Si-S; — ~n;-nj)Ps.

4] 0 <ij=
Limitation of previous studies:

e Mean-field type studies: biased
 RG type studies: reliable for weak-couplings.



Our results:

Using a combination of analytical construction of wavefunctions
and various numerical simulations (ED, DMRG, VMC...):

Phase diagrams:
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SCCL is a new type of topologically ordered phase: featuring charge-1/2 7/4-anyon excitations.

SCCL is the resulting phase after magnetic order in c-SDW is quantum melted.
In our finite-size numerical simulations, we cannot sharply distinguish SCCL from c-SDW.



Our results:

e Using a combination of analytical construction of wavefunctions
and various numerical simulations (ED, DMRG, VMC...):

Phase diagrams:
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c-SD

SCCL is a new type of topologically ordered phase: featuring charge-1/2 7/4-anyon excitations.

SCCL is the resulting phase after magnetic order in c-SDW is quantum melted.
In our finite-size numerical simulations, we cannot sharply distinguish SCCL from c-SDW.
Nevertheless they can be sharply distinguished in tunneling conductance experiment:

At low temperatures, SCCL: G(T)~ T Metallic
(assuming G<<eZ/h) c-SDW: G(T)~Const. point contact



Our results:

e Using a combination of analytical construction of wavefunctions
and various numerical simulations (ED, DMRG, VMC...):

Phase diagrams:
SCCL: Spin-Charge-Chern Liquid
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What we learned from these results:
e Y -doped graphene is likely not a d+id superconductor

e d+id superconductor is realized in a regime in the t-) model: J/t>0.8

* Proposed a new state of matter: SCCL with exotic anyon excitations, possibly realized in
practical materials, and has characteristic transport experiment signature! G(T)~ T*



My plan

c-SDW/SCCL d+id SC c-SDW/SCCL
o g 1
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(1) Explain our method to reliably simulate doped correlated
electronic systems.

It allows us to sharply distinguish d+id superconductor from the c-
SDW/SCCL phase.

(2) More details on the new phase: SCCL



How did we obtain the phase diagrams?

e Historically, writing down quantum wavefunctions are known to
be useful.



How did we obtain the phase diagrams?

e We analytically constructed symmetric quantum wavefunctions
for the c-SDW/SCCL phase and the d+id SC phase on lattice,

using slave-particle methods. 2) 0,9, b)

—_ —_ — = F

e —_— —_ _ — =

Examples of symmetric lattices:
(a) 8-site,32-site (b) 24-site

why we bother to use these highly technical methods?



How did we obtain the phase diagrams?

e We analytically constructed symmetric quantum wavefunctions
for the c-SDW/SCCL phase and the d+id SC phase on lattice,

using slave-particle methods. j)

Note: no symmetry breaking on - _?r____‘:"____‘-' :

finite lattices. Wavefunctions
should be symmetric (e.g, spin singlet).
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Examples of symmetric lattices:
(a) 8-site,32-site (b) 24-site

(This is also why c-SDW and SCCL cannot be sharply distinguished on finite lattices)

The slave-particle methods allow one to construct fully symmetric
wavefunctions on symmetric finite-size lattice.



How did we obtain the phase diagrams?

e We analytically constructed symmetric qguantum wavefunctions
for the c-SDW/SCCL phase and the d+id SC phase on lattice,

using slave-particle methods. a) 6%0°6%0° b) .o c.¢
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Some detail: Constructing c-SDW/SCCL wavefunctions

Cia = biafi.T a) /&‘\ A b) A\ N
A A - A o —-X—I—;
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Definition of wavefunction:
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FIG. 4. (color online) The real space pattern of the slave-
fermion amplitudes describing the e-SDW /SCCL phases. The
dashed line encircles the doubled unit-cell. (a): The nearest
neighbor(NN) and next nearest neighbor(NNN) boson pair-
ing amplitudes A;; are directional (labeled by arrows) since
Ai; = —Aji. A;; on the NN(NNN) bonds have the same mag-
nitude respectively. Their different phases are represented by
different colors. Black: 1; Violet: €'™/?: Green: ™% Or-
ange: ¢™/% Red: 7/3; Blue: e'27/3. {b} The NN[NNN)
boson/fermion hopping amplitudes B;; /x;; also have uniform
magnitudes respectively. When they are complex, the ampli-
tudes are directional B;; = B7;, xi; = XG: (labeled by arrows).
The phases are illustrated by colors. Black: £1; Blue: e';
Red: —e'®. Here the real number ¢ = ¢ for bosons and
¢ = ¢ for fermions. ¢, and ¢; can be viewed as two varia-
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Some detail: Constructing c-SDW/SCCL wavefunctions

Cin = bt’af: a) 7/ ,fm h} - -
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Definition of wavefunction: The complicated pattern is to ensure:

(s1, 52, ---SNW.—: SDW;SCCL)

(1) Full lattice symmetry
_ MFy
=(0[[ f anT H blb: (2) Tetrahedral magnetic pattern

Sig_T S%b_l

ol TT 1wy
g;,.=0

A product of permanent and determinant



Some detail: Constructing c-SDW/SCCL wavefunctions

Cia = biaij

Hﬂl

ij

— 1y Y _ bl bia,

Hj{gm&-’fﬁsccz-{f) :Z (i fin;r' + h.c.) — py Z f;r fi.
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Definition of wavefunction:

Y
(s1,82,--sN|¥._spw/scor)

of TT ol ¢ TT #l,.0 1w

Sl'a:T Sf-il_;,:l

IT 71w

Sfr.‘ =l

Mean-field picture:
* Fermionic holon fills a Chern band.
e Bosonic spinon band structure:

CEEDH"{SC’C‘L{E}) = Z (Bijblabja + Aijbiabjgeas + h.c.)

Boson band minima touch zero?

Yes: (possible only in thermodynamic limit)
Boson condensation = long-range c-SDW

No: SCCL (fully gapped in bulk)



How did we obtain the phase diagrams?

32-site is still too large for exact diagonalization, so we
performed the DMRG(density matrix RG) simulation on 32-site.

DMRG results: (using ltensor software: itensor.org)

t-J model Hubbard model
c-SDW/SCCL d+id SC c-SDW/SCCL
0.1 0.8 2 J/t 1 20yt
Blue: lattice quantum number matches c-SDW/SCCL e -,’._o—.—-/T. ,/,’
Red: lattice quantum number matches d+id AR o35

But can there be other phases?



How did we obtain the phase diagrams?

e (Can there be other phases?
c-SDW/SCCL  d+id SC

S,
0.1 0.8 2 J/t

First check: comparing with variational Monte Carlo results for the d+id wavefunction.

) S — |

1.00¢ : 1 Blue: 24-site sample

095} Red: 32-site sample
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Single-parameter d+id variational wavefunction captures ~97-99% ground state energy
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How did we obtain the phase diagrams?

e (Can there be other phases?

c-SDW/SCCL d+id SC c-SDW/SCCL
I g
0. 0.8 2 I/t 1 20/t

Spin-Spin correlation function in the c-SDW/SCCL regimes:

Red: S(green-site)-S <0,
Blue: S(green-site)-S >0 exactly matches the tetrahedral pattern.

J/t=0.5, Max=0.052 b)  U/t=8.0, Max=0.048
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<Si-Sj > in the DMRG ground state



How did we obtain the phase diagrams?
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How did we obtain the phase diagrams?

e (Can there be other phases?

c-SDW/SCCL  d+id SC c-SDW/SCCL
oi.1 O.|8 2 )/t 1 20yt
Pair-pair correlation function in the d+id regimes: exactly matches the d+id pattern
) \ ) d+id superconductor
J/t =0.2 Jit=2
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My plan
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(1) Explain our method to reliably simulate doped correlated
electronic systems.

A combination of analytical and reliable numerical methods shows
strong evidences supporting these phase diagrams.

(2) More details on the new phase: SCCL
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(2) More details on the new phase: SCCL



The Spin-Charge-Chern Liquid

SCCL can be viewed as the resulting phase after the magnetic order in
the c-SDW is gquantum melted. Fully gapped in the bulk.

Similar magnetic-order-melted phases have been discussed in the
undoped systems --- quantum spin liquids (QSL)



The Spin-Charge-Chern Liquid

e SCCL can be viewed as the resulting phase after the magnetic order in
the c-SDW is quantum melted. Fully gapped in the bulk.

e Similar magnetic-order-melted phases have been discussed in the
undoped systems --- quantum spin liquids (QSL)

e TwO comments:

(1) SCCL may be easier to be stabilized in the doped system, comparing
with QSL in undoped systems.

In the slave-fermion MF description, doping affects spin dynamics simply
as: S=1/2 2 S=1/2(1-x). Reduced spin—>stronger fluctuation



The Spin-Charge-Chern Liquid

e SCCL can be viewed as the resulting phase after the magnetic order in
the c-SDW is quantum melted. Fully gapped in the bulk.

e Similar magnetic-order-melted phases have been discussed in the
undoped systems --- quantum spin liquids (QSL)

e TwO comments:

(1) SCCL may be easier to be stabilized in the doped system, comparing
with QSL in undoped systems.

In the slave-fermion MF description, doping affects spin dynamics simply
as: S=1/2 2 S=1/2(1-x). Reduced spin—>stronger fluctuation

(2) SCCL may be easier to be detected, comparing with QSL.
SCCL has characteristic electric transport signature! G(T)~ T4



The Spin-Charge-Chern Liquid: intuitive understanding

* |nthe bulk, the spin-neutral charge-1/2 w/4-anyon (visons) can
be viewed as the counterpart of the Z2 vortex in the c-SDW.

Note: c-SDW order parameter manifold= SO(3), SU(2)/SO(3)=22

/2 vortex carries m-Berry’s phase, coupling to a Chern-band, giving
charge-1/2.



The Spin-Charge-Chern Liquid: intuitive understanding

* |nthe bulk, the spin-neutral charge-1/2 w/4-anyon (visons) can
be viewed as the counterpart of the Z2 vortex in the c-SDW.

Note: c-SDW order parameter manifold= SO(3), SU(2)/SO(3)=22

/2 vortex carries m-Berry’s phase, coupling to a Chern-band, giving
charge-1/2.

e On the edge, the chiral electron mode in the c-SDW lost spin-
coherence, and became change-1, spin-neutral chiral holon

Holon f carries charge-1 but spin-0.




The Spin-Charge-Chern Liquid: exp. signatures

Bulk: QAH E&M response: j, = 0, F, where 0., = e*/h

Boundary: Gapless chiral holon f, —=>insulating

Metallic
point contact

[Pair-tunneling —> G ~T* (c-SDW has G ~ const ) }

(assuming weak-tunneling regime: G<< e?/h)



Some detail: tunneling conductance

(I

(assuming weak-tunneling regime: G<< e?/h)

* Point junction Metallic
point contact

Consider SCCL: pair-tunneling into edge is allowed due to the bosonic spinon pairing:

Htunn = [th(l — :an I = U)L\[T(I — U)L"_‘\[_l (:I — U] -+ h.C’.]

f: holon at SCCL edge : electron in the metal lead

Perturbative RG: dimension analysis
f1=1]=1/2, f(x =0)f(z = &) ~ fO.f

tepp(T) ~ TCHU-L =72 conductance: G ~ tesy (1) ~ T



Some detail: tunneling conductance

e Line junction: (the usual experiment setup)
can be modeled as an irregular array of point junctions
(assuming each point contact is in weak-tunneling regime: G<< e?/h)

We find in SCCL: G(T) _ % [1 - 6_ h]

Even for the SCCL phase, universal conductance
G=e?/h can be reached in regime T>T,.

T, is non-universal energy scale determined
by the microscopic details of the line-junction.

Note: G=e?/h has been viewed as one signature of the QAH edge mode in c-SDW.
This calculation shows that G=e?/h CANNOT distinguish c-SDW and SCCL: need G<<e?/h regime



The Spin-Charge-Chern Liquid: full effective theory

e SCCL has an unusual Z, topological order.
The low energy effective theory:
multi-component Chern-Simons theory (X-G Wen...)

Lejs = 4237, ;a, K1 0,03

I 0 —1 charge vector t. = (1,0,0)

K= 0 0 2]
—-1 2 0 S, vector tg, = (1/2,—1,0)

Charge Spin Statistics
Spinon 0 iz 0

Vison Y2 0 /4
Bound SV 2 V2, o11/4




Summary

 Simple realistic models realizing correlation-driven topological
phases. Relevant for graphene and other correlated solid-state
or cold-atom systems on the honeycomb lattice.

c-SDW/SCCL d+id SC c-SDW/SCCL
T -
0.1 0.8 2 I/t 1 20yt

e We propose a new topologically ordered phase: SCCL, with
anyon excitations in the bulk and characteristic transport
signatures. SCCL may be realized in practical materials.



An advertisement --- symmetric tensor networks (arXiv:1505.03171 )

* One major challenge of numerical simulations:
Variational wavefunctions = optimize energy --- a local property
Quantum phases --- generally need thermodynamic limit to define

To fully determine phase diagram:
require scaling to larger sample sizes ---often very challenging
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An advertisement --- symmetric tensor networks (arXiv:1505.03171 )

* One major challenge of numerical simulations:
Variational wavefunctions = optimize energy --- a local property
Quantum phases --- generally need thermodynamic limit to define

e But do we always need large sample sizes to distinguish
candidate phases?

NO:

candidate phases could have distinct guantum numbers on finite
size samples.

trivial example: ferromagnet vs. antiferromagnet
In this talk: c-SDW/SCCL vs. d+id SC



An advertisement --- symmetric tensor networks (arXiv:1505.03171 )

* One major challenge of numerical simulations:
Variational wavefunctions = optimize energy --- a local property
Quantum phases --- generally need thermodynamic limit to define

e But do we always need large sample sizes to distinguish
candidate phases?

NO:
candidate phases could have distinct quantum numbers on finite
size samples.

These candidate phases have completely different short-range
physics. And distinguishing them should be much easier.



An advertisement --- symmetric tensor networks (arXiv:1505.03171)

e This discussion motivates the following intuitive picture:
--- a crude classification of quantum phases

Short-range
Different

Class-A Class-B

Phase-Al Phase-BI — Long-range
Phase-All Phase-BlI| different

All guantum phases of Hamiltonians
with a given symmetry group

Different phases in different classes are distinguished by short-range physics (how
symmetry is implemented in local patches of the wavefunction is different.)
Different Phases in the same class are distinguished by long-range physics(symmetry
breaking)
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e This discussion motivates the following intuitive picture:
--- a crude classification of quantum phases

Short-range
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Class-A Class-B

Phase-Al Phase-BI — Long-range
Phase-All Phase-BlI| different

All guantum phases of Hamiltonians
with a given symmetry group

e Can one systematically classify such crude classes?
e Can one write down generic variational wavefunctions for each class for efficient
numerical simulations?



An advertisement --- symmetric tensor networks (arXiv:1505.03171)

e This discussion motivates the following intuitive picture:
--- a crude classification of quantum phases

Short-range
Class-A Different Class-B

Phase-Al Phase-BI — Long-range
Phase-All Phase-BlI| different

All guantum phases of Hamiltonians
with a given symmetry group

e Can one systematically classify such crude classes?

e Can one write down generic variational wavefunctions for each class for efficient
numerical simulations?

--These are important questions:

solutions would lead to a systematic numerical method to perform the “short-range” part of

the simulation task, which is also very useful for the “long-range” part.



An advertisement --- symmetric tensor networks (arXiv:1505.03171)

e This discussion motivates the following intuitive picture:
--- a crude classification of quantum phases

Short-range
Class-A Different Class-B

Phase-Al Phase-BI — Long-range
Phase-All Phase-BlI| different

All guantum phases of Hamiltonians
with a given symmetry group

e Can one systematically classify such crude classes?

e Can one write down generic variational wavefunctions for each class for efficient
numerical simulations?

--These are important questions:

Recall in the system studied in this talk, we are lucky --- we have a good guess of what are the

candidate phases. But answers to these questions solve the general problems.



An advertisement --- symmetric tensor networks (arXiv:1505.03171)

e This discussion motivates the following intuitive picture:
--- a crude classification of quantum phases

Short-range
Class-A Different Class-B

Phase-Al Phase-BI — Long-range
Phase-All Phase-BlI| different

All guantum phases of Hamiltonians
with a given symmetry group

Can one systematically classify such crude classes?

Can one write down generic variational wavefunctions for each class for efficient
numerical simulations?

Our work arXiv:1505.03171 is an partial answer for these questions using tensor networks:
We develop a general machinery: If symmetry and microscopic d.o.f are specified, our
machinery classifies crude classes/constructs generic wavefunctions for each class.



An advertisement --- symmetric tensor networks (arXiv:1505.03171)

e This discussion motivates the following intuitive picture:
--- a crude classification of quantum phases

Short-range
Class-A Different Class-B

Phase-Al Phase-BI — Long-range
Phase-All Phase-BlI| different

All guantum phases of Hamiltonians
with a given symmetry group

Can one systematically classify such crude classes?
Can one write down generic variational wavefunctions for each class for efficient
numerical simulations?

Our work arXiv:1505.03171 is an partial answer for these questions using tensor networks:
e.g. for half-integer spin systems on the kagome lattice, under natural assumptions, 32 crude
classes are constructed with sharp knowledge on member phases in each class.



Thank you!



