Exotic Topological Phase Transitions in Correlated SOC Systems

Yi-Zhuang You University of California, Santa Barbara

New Phases and Emergent Phenomena in Correlated Materials with Strong Spin-Orbit Coupling Sep. 2015, KITP

Outline

- Exotic topological phase transitions in (2+1)D
 - Bilayer QSH, by Quantum Monte Carlo (QMC)
 - QSH-Mott transition: O(4) NLSM with exact SO(4) symmetry, and topological Θ-term
 - Semimetal-Mott transition: \mathbb{Z}_{16} classification of ³He B
- Characterize topological transitions by strange correlator.
 - Decode the boundary feature from bulk wave function.
 - Tested on the single-layer QSH, matches Luttinger liquid theory of edge states.

Collaborators

• UCSB

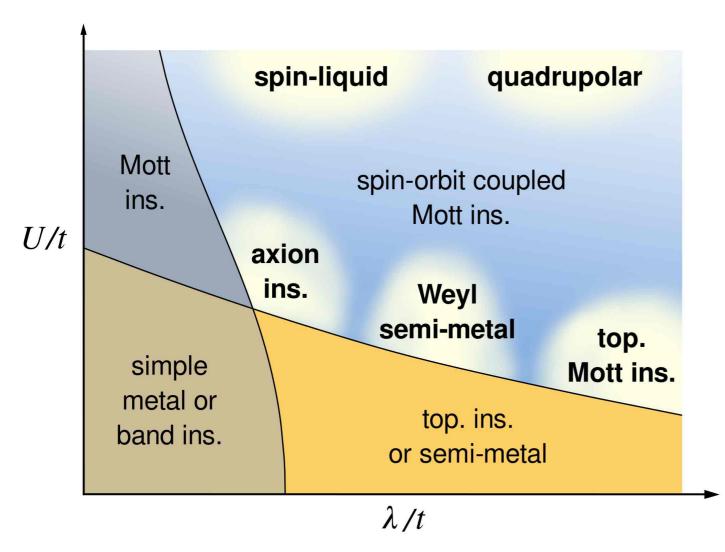
Cenke Xu Kevin Slagle Zhen Bi Jeremy Oon Alex Rasmussen

Institute of Physics, China Zi-Yang Meng Han-Qing Wu Yuan-Yao He

- Tsinghua University, China Zhong Wang
- Fundings / Supports

国家自然科学 基金委员会 National Natural Science Foundation of China

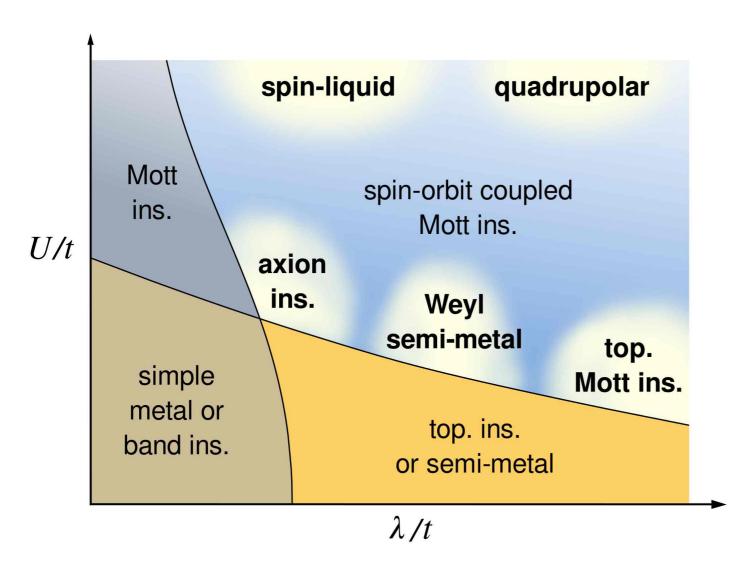
Quantum Matter with SOC



Witczak-Krampa, Chen, Kim, Balents (2013)

- Weak Correlation
 - Gapped Phase (SPT) TI, TSC,TCI...
 - Gapless Phase Weyl SM…
 - Well described by band theory on the free fermion / meanfield level
- Strong Correlation
 - SSB order, topological order (spin liquid)...
 - Interacting SPT

Quantum Matter with SOC



Witczak-Krampa, Chen, Kim, Balents (2013)

- Weak Correlation
 - Gapped Phase (SPT) TI, TSC,TCI...
 - Gapless Phase Weyl SM…
 - Well described by band theory on the free fermion / meanfield level
- Strong Correlation
 - SSB order, topological order (spin liquid)...
 - Interacting SPT

Fermionic SPT States

- Fermionic Symmetry Protected Topological (SPT) States Gu, Wen (2009) ...
 - Bulk: fully gapped and non-degenerated.
 - Boundary: gapless or degenerated, symmetry protected.
- Within the **free** fermion band theory:
 - Bulk: separated from trivial phase by fermion gap closing.
 - Boundary: can not gap out, unless breaking the symmetry.
- With interaction, the story can be modified.
 - Bulk: Topological transition without closing fermion gap.
 - Interaction can drive the fermionic system to a spin (bosonic) system.
 - Boundary: Gap out fermions without breaking symmetry.
 - Interaction can introduce surface topological order.
 - Interaction can reduce SPT classifications.
- Interaction can also lead to new SPT states ...

Fidkowski, Kitaev (2010) ...

Fermionic SPT States

- Fermionic Symmetry Protected Topological (SPT) States Gu, Wen (2009) ...
 - Bulk: fully gapped and non-degenerated.
 - **Boundary**: gapless or degenerated, symmetry protected.
- Within the **free** fermion band theory:
 - Bulk: separated from trivial phase by fermion gap closing.
 - Boundary: can not gap out, unless breaking the symmetry.
- With interaction, the story can be modified.
 - Bulk: Topological transition without closing fermion gap.
 - Interaction can drive the fermionic system to a spin (bosonic) system.
 - Boundary: Gap out fermions without breaking symmetry.
 - Interaction can introduce surface topological order.

Fidkowski, Kitaev (2010) ...

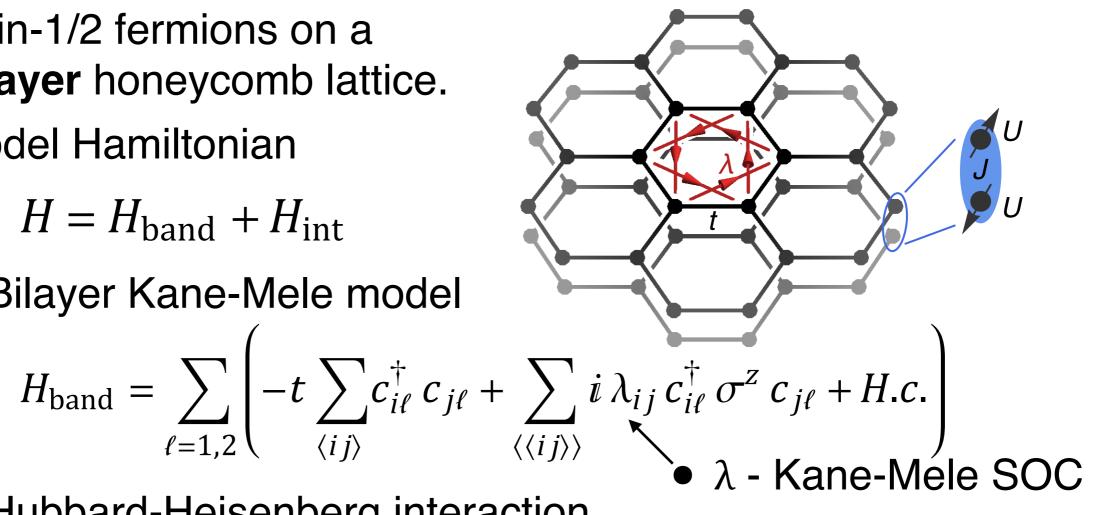
- Interaction can reduce SPT classifications.
- Interaction can also lead to new SPT states ...

Bilayer Kane-Mele-Hubbard-Heisenberg Model

- Spin-1/2 fermions on a **bilayer** honeycomb lattice.
- Model Hamiltonian

 $H = H_{\text{hand}} + H_{\text{int}}$

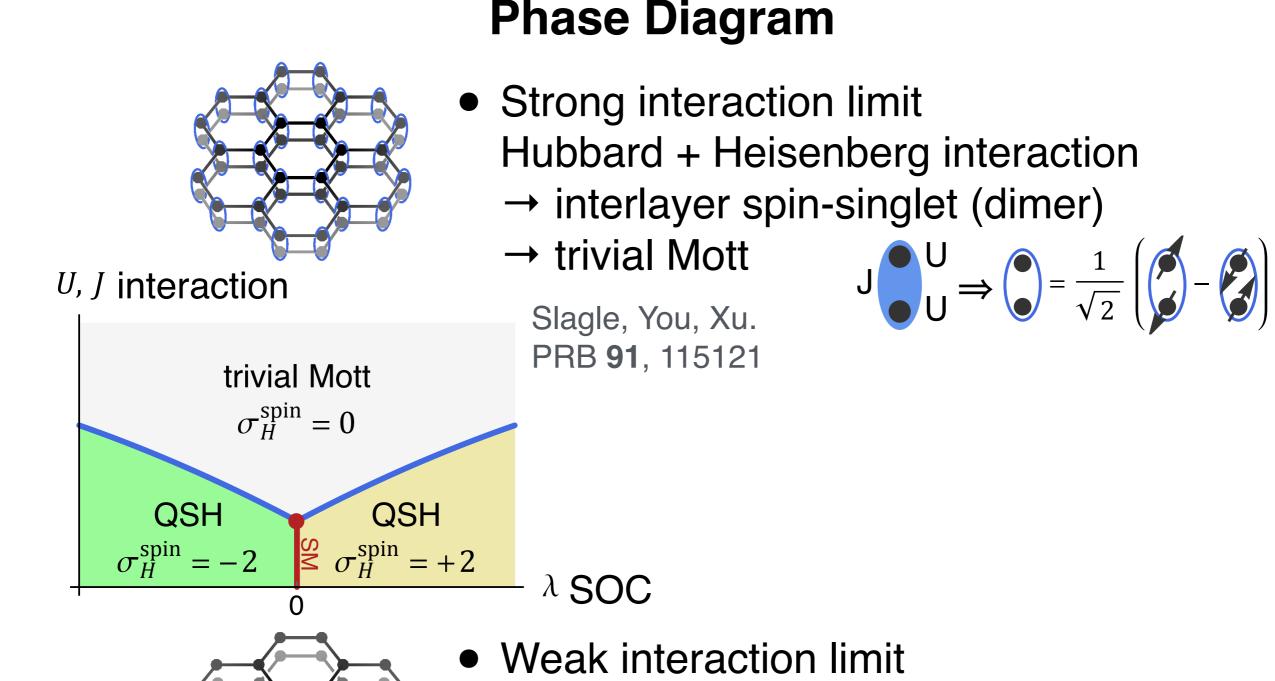
Bilayer Kane-Mele model



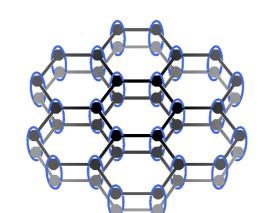
Hubbard-Heisenberg interaction

$$H_{\text{int}} = \frac{U}{2} \sum_{i,\ell} (n_{i\ell} - 1)^2 + J \sum_i \left(\boldsymbol{S}_{i1} \cdot \boldsymbol{S}_{i2} + \frac{1}{4} \left(n_{i1} - 1 \right) \left(n_{i2} - 1 \right) - \frac{1}{4} \right)$$

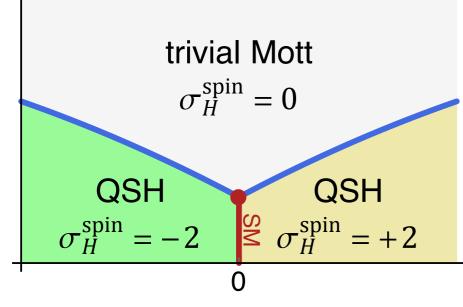
• U - on-site Hubbard • *I* - interlayer Heisenberg

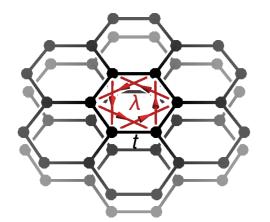


- Kane-Mele model x 2
- \rightarrow spin Hall conductance ± 2
- \mathbb{Z} classification $U(1)_{spin} \times [U(1) \times U(1)]_{charge} \times Z_2^T$



U, J interaction





Phase Diagram

- Strong interaction limit Hubbard + Heisenberg interaction
 - → interlayer spin-singlet (dimer)
 - → trivial Mott

Slagle, You, Xu.

PRB 91, 115121

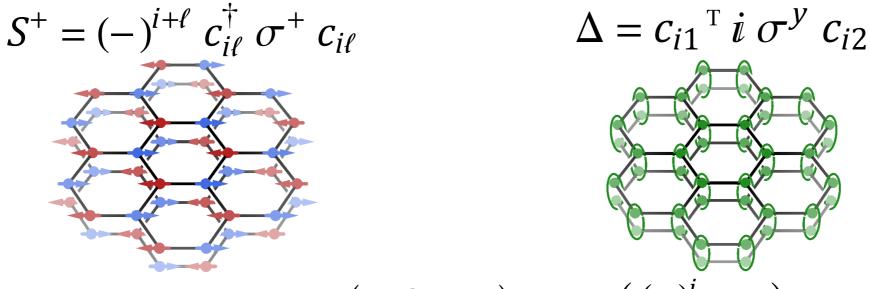
 λ SOC

 $J \bigcirc U \\ U \Rightarrow \bigcirc = \frac{1}{\sqrt{2}} \left(\checkmark - \checkmark \right)$

- QSH-QSH: gapless fermion
- QSH-Mott: gapped fermion + gapless collective boson
- Weak interaction limit Kane-Mele model x 2
 → spin Hall conductance ± 2
- \mathbb{Z} classification $U(1)_{spin} \times [U(1) \times U(1)]_{charge} \times Z_2^T$

SO(4) Symmetric Point

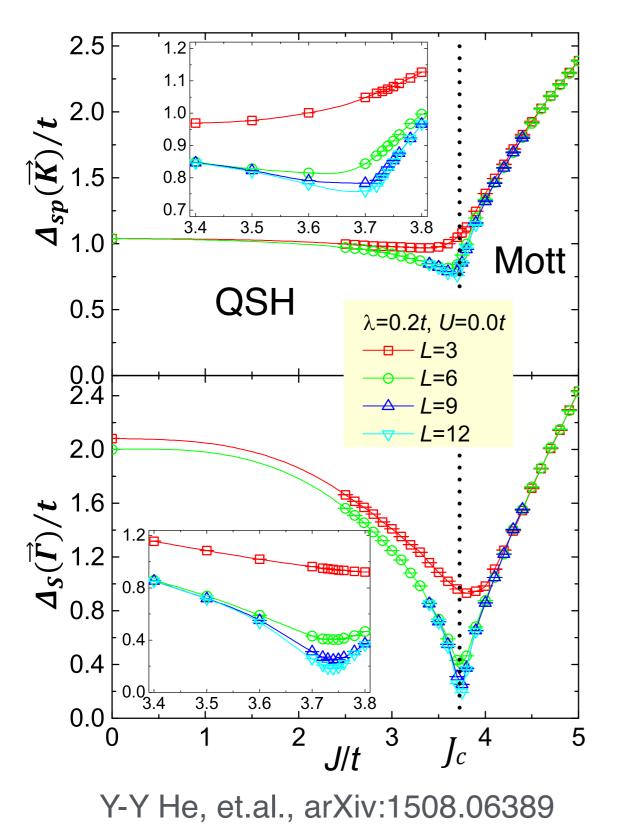
- At U = 0, the model has an exact SO(4) symmetry
 - SDW (XY-AFM)
 SC (inter-layer singlet)

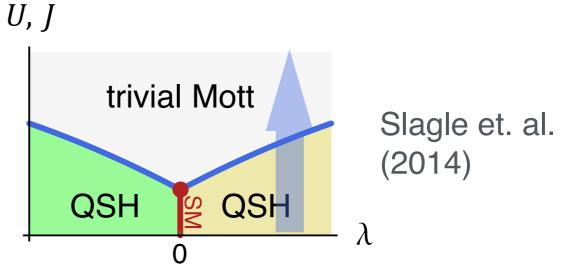


- New fermions: $f_{i\uparrow} = \begin{pmatrix} c_{i1\uparrow} \\ (-)^i c_{i2\uparrow}^{\dagger} \end{pmatrix}, f_{i\downarrow} = \begin{pmatrix} (-)^l c_{i1\downarrow} \\ c_{i2\downarrow}^{\dagger} \end{pmatrix}$ SO(4) \simeq SU(2) $_{\uparrow} \times$ SU(2) $_{\downarrow}$
- O(4) vector $(S^x, \operatorname{Im} \Delta, \operatorname{Re} \Delta, S^y) = f_{i\downarrow}^{\dagger}(\tau^0, i\tau^1, i\tau^2, i\tau^3) f_{i\uparrow} + h.c.$
- Model Hamiltonian

$$H = \sum_{i,j,\sigma} (-)^{\sigma} f_{i\sigma}^{\dagger} (-t_{ij} + i\lambda_{ij}) f_{j\sigma} + h.c. - \frac{J}{16} \sum_{i} \left(D_i D_i^{\dagger} + D_i^{\dagger} D_i \right) D_i = \sum_{\sigma} f_{i\sigma} i\tau^2 f_{i\sigma}$$

Quantum Spin Hall → Trivial Mott

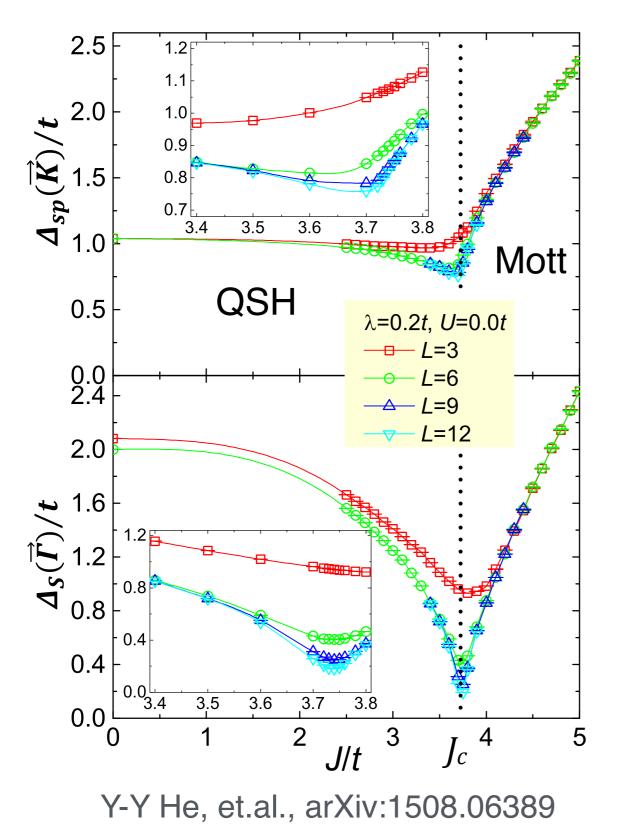


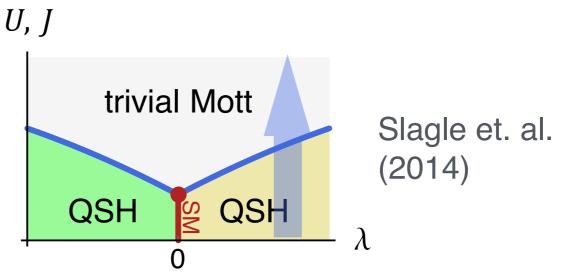


- Topological-Trivial Transition
 - Driven by interaction
 - Fermion: gapped
 - Spin/charge: gapless

 $\left\langle c^{\dagger}(\tau) c(0) \right\rangle \sim e^{-\Delta_{\rm sp} \tau} \\ \left\langle S^{+}(\tau) S^{-}(0) \right\rangle \sim e^{-\Delta_{S} \tau} \\ \left\langle \Delta^{\dagger}(\tau) \Delta(0) \right\rangle \sim e^{-\Delta_{D} \tau}$

Quantum Spin Hall → Trivial Mott





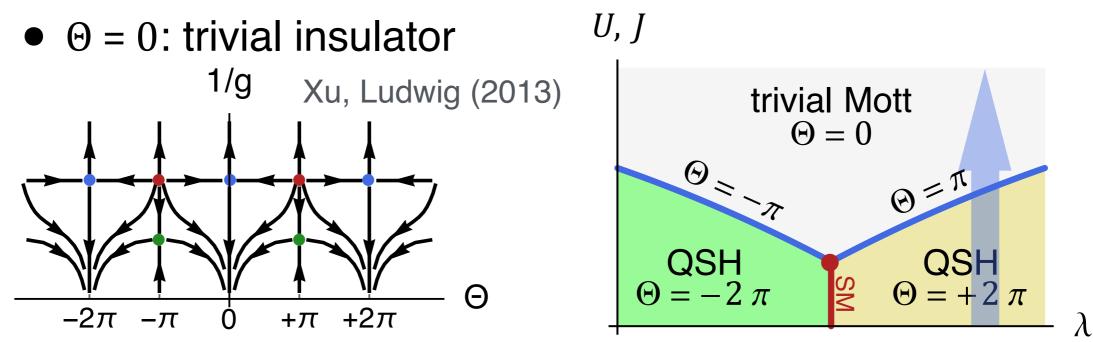
- Fermions are gapped → only bosonic d.o.f. involved → Bosonic SPT transition
- Bilayer QSH + Interaction
 → Bosonic SPT
 - Boundary: interaction marginally relevant
 → gaps out all fermion edge modes

Bosonic SPT Transition

- Effective field theory: non-linear σ model (bosonic SPT)
 - O(4) vector \boldsymbol{n} : $n_1 S^x + n_2 S^y + n_3 \operatorname{Re} \Delta + n_4 \operatorname{Im} \Delta$

$$S = \int d^2 x \, d\tau \, \frac{1}{g} \left(\partial_\mu \, \boldsymbol{n} \right)^2 + \frac{\Theta}{2 \, \pi^2} \, \epsilon^{abcd} \, n_a \, \partial_\tau \, n_b \, \partial_x \, n_c \, \partial_y \, n_d$$

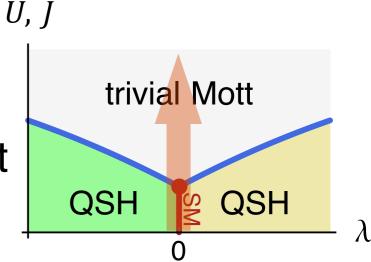
• $\Theta = 2\pi$: spin-1 ~ 2π vortex of $\Delta = \pi$ -flux of fermion → QSH insulator with $\sigma_H^{\text{spin}} = 2$

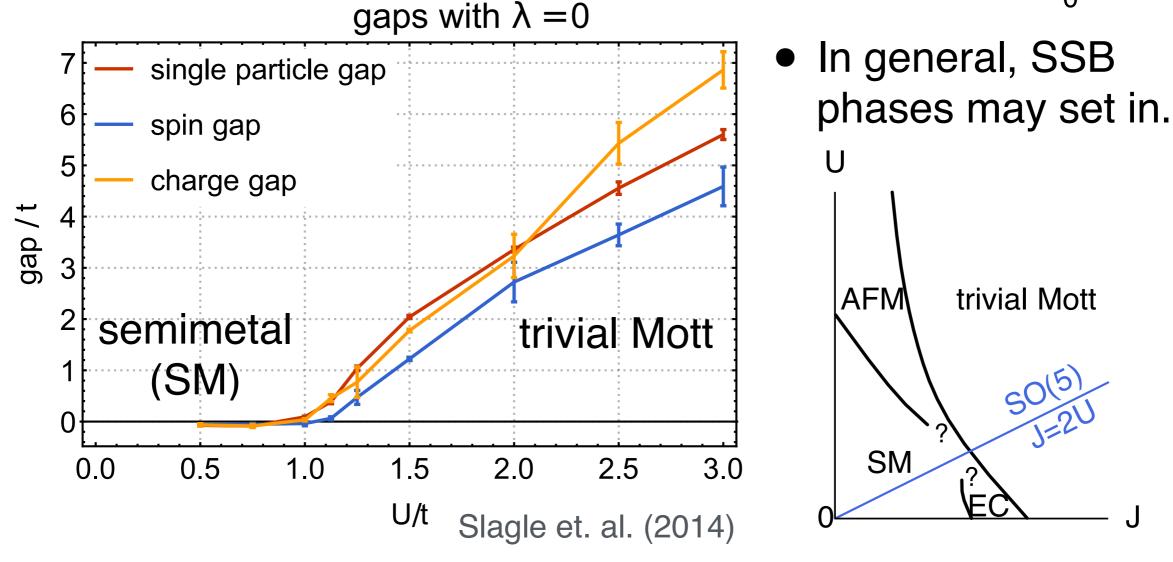


• Sign-free QMC for O(4) NLSM and 2d bosonic SPT's.

Semimetal \rightarrow Trivial Mott ($\lambda = 0$)

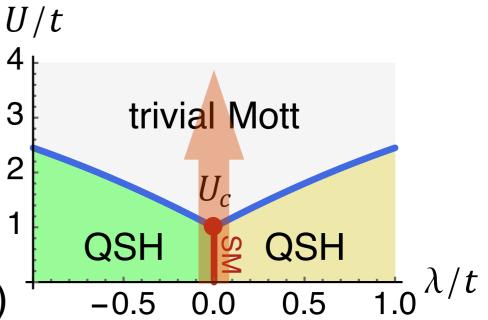
- Continuous phase transition
 - At J=2U, the model has SO(5) symmetry
 - Gaps open continuously at the same point
 - → No symmetry breaking



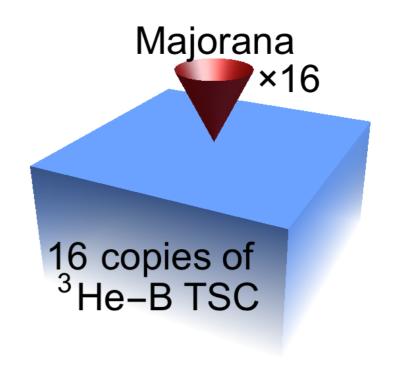


Interaction Reduced SPT Classification

- Continuous phase transition
 - There must be a field theory
 - Semimetal ~ 16 Majorana cones
 - layers (x2)
 valleys (x2)
 - spins (×2)
 particle-hole (×2)



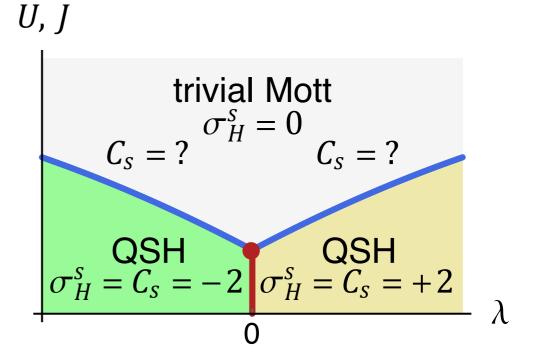
- Same as the boundary of 16 copies of ³He B-phase TSC.
- Gapped out by interaction without breaking symmetry.
- Beyond Landau's paradigm.
- Consistent with the Z₁₆ classification of ³He-B TSC.
 Wang, Senthil (2014).
 Fidkowski, Chen, Vishwanath (2013).



• Spin Chern number

$$C_{s} = \frac{1}{48 \pi^{2}} \int d^{3}k \, e^{\mu\nu\lambda}$$

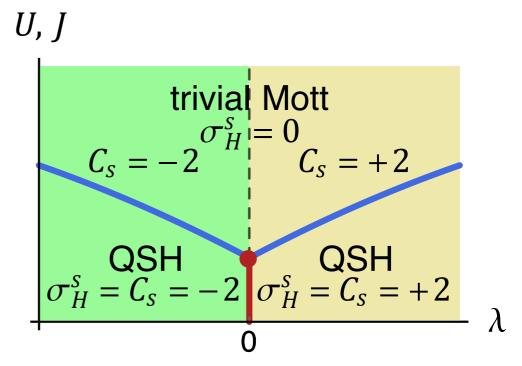
Tr $\left(-\sigma^{z} G \partial_{\mu} G^{-1} G \partial_{\nu} G^{-1} G \partial_{\lambda} G^{-1}\right)$
Green's function $G(k) = -\left\langle c_{k} c_{k}^{\dagger} \right\rangle$



• Spin Chern number

$$C_{s} = \frac{1}{48 \pi^{2}} \int d^{3} k e^{\mu \nu \lambda}$$

Tr $\left(-\sigma^{z} G \partial_{\mu} G^{-1} G \partial_{\nu} G^{-1} G \partial_{\lambda} G^{-1}\right)$
Green's function $G(k) = -\left\langle c_{k} c_{k}^{\dagger} \right\rangle$

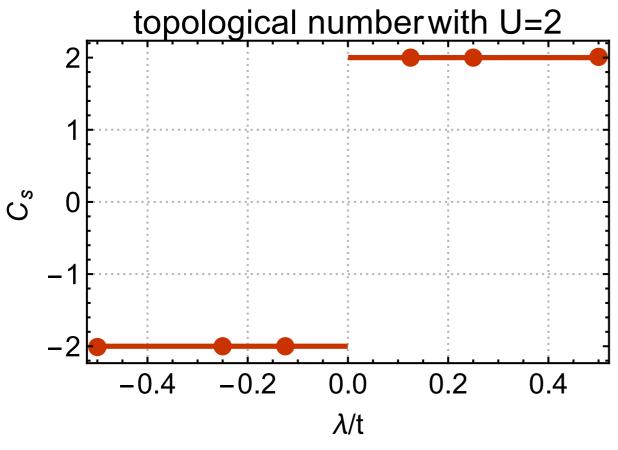


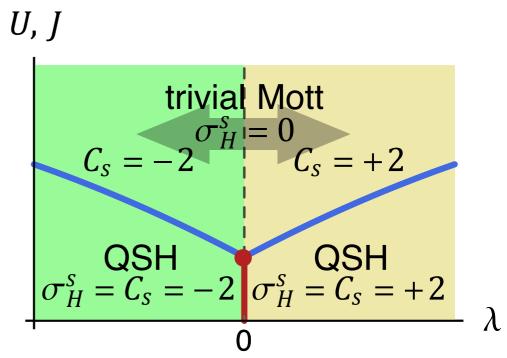
• Spin Chern number

$$C_{s} = \frac{1}{48 \pi^{2}} \int d^{3}k \,\epsilon^{\mu\nu\lambda}$$

Tr $\left(-\sigma^{z} G \partial_{\mu} G^{-1} G \partial_{\nu} G^{-1} G \partial_{\lambda} G^{-1}\right)$
Green's function $G(k) = -\left\langle c_{k} c_{k}^{\dagger} \right\rangle$

• QMC Result





- Not a phase transition
- Transition of *C_s* via zeros of *G* at zero frequency
- Pole of G^{-1} = Zero of G
- Fermions are gapped
 → no poles, only zeros

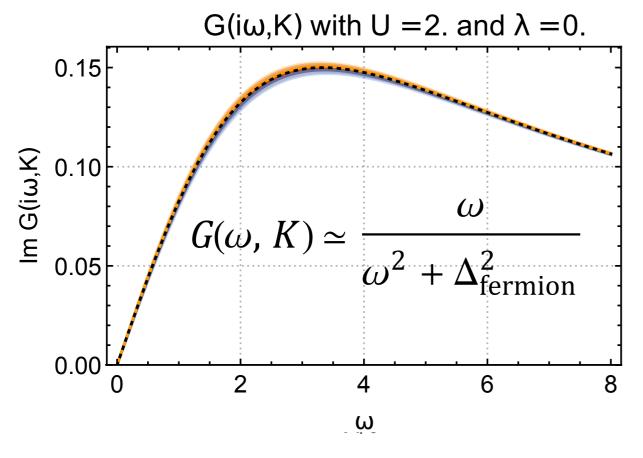
You, Wang, Oon, Xu, PRB **90**, 060502

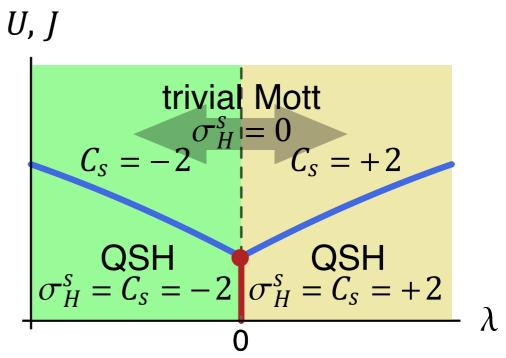
• Spin Chern number

$$C_{s} = \frac{1}{48 \pi^{2}} \int d^{3}k \, \epsilon^{\mu\nu\lambda}$$

Tr $\left(-\sigma^{z} G \partial_{\mu} G^{-1} G \partial_{\nu} G^{-1} G \partial_{\lambda} G^{-1}\right)$
Green's function $G(k) = -\left\langle c_{k} c_{k}^{\dagger} \right\rangle$

QMC Result





- Not a phase transition
- Transition of *C_s* via zeros of *G* at zero frequency
- Pole of G^{-1} = Zero of G
- Fermions are gapped
 → no poles, only zeros

You, Wang, Oon, Xu, PRB **90**, 060502

Strange Correlator ~ Boundary Correlator

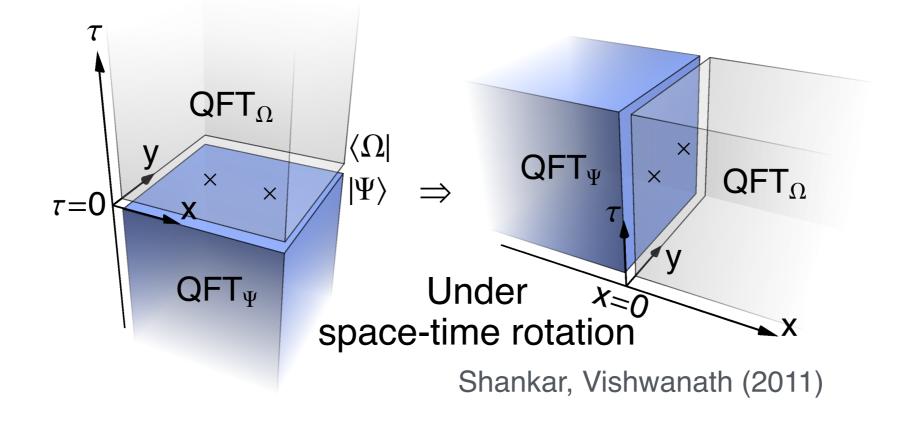
• Physical correlator: short-ranged

$$\frac{\langle \Psi | \phi(r) \phi(r') | \Psi \rangle}{\langle \Psi | \Psi \rangle} \sim e^{-|r-r'|/\xi}$$

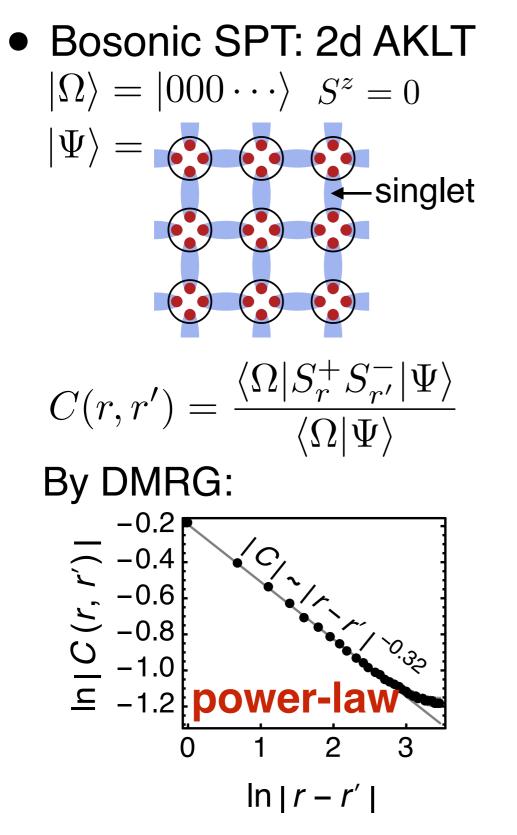
• Strange correlator: long-ranged or power-law (in 1d and 2d)

trivial direct $\frac{\langle \Omega | \phi(r) \phi(r') | \Psi \rangle}{\swarrow \langle \Omega | \Psi \rangle} \uparrow \sim |r - r'|^{-\eta}$ or const. product state non-trivial SPT (to probe)

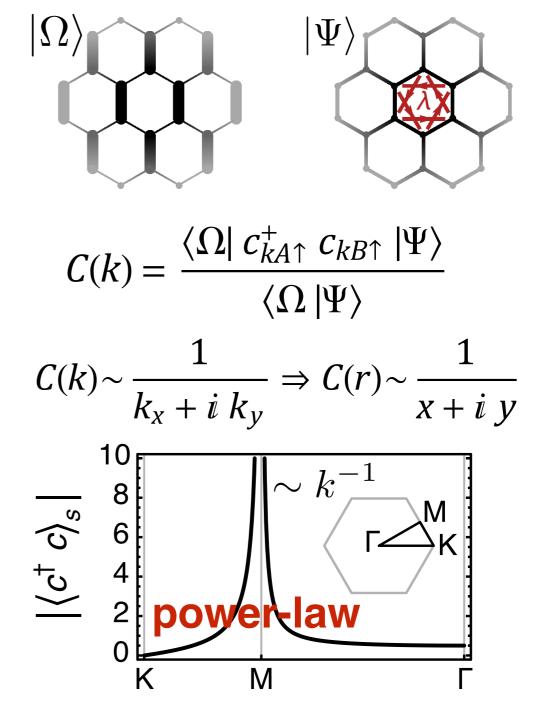
You et. al., PRL **112**, 247202



Examples of Strange Correlator



• Free fermionic SPT: 2d QSH



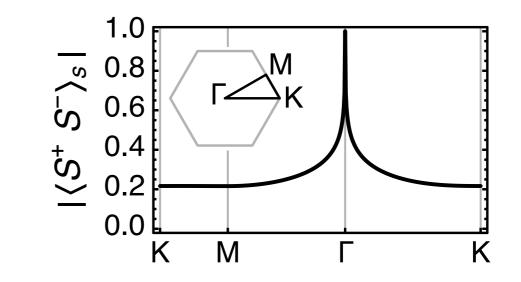
Examples of Strange Correlator

- Free fermionic SPT: 2d QSH $|\Psi
 angle$ $|\Sigma\rangle$ $C(k) = \frac{\langle \Omega | c_{kA\uparrow}^+ c_{kB\uparrow} | \Psi \rangle}{\langle \Omega | \Psi \rangle}$ $C(k) \sim \frac{1}{k_x + i \; k_y} \Rightarrow C(r) \sim \frac{1}{x + i \; y}$ 10 $\sim k^{-1}$ 8 $|\langle c^{\dagger} c \rangle_{s}|$ 6 4 2 powe **∖**law 0 Μ Κ
- Bosonic channels
 - Spin: $S_A^+ = c_{A\uparrow}^\dagger c_{A\downarrow}$

• Charge:
$$\Delta_A = c_{A\uparrow} c_{A\downarrow}$$

$$S = \frac{\langle \Omega | S_{rA}^{+} S_{r'A}^{-} | \Psi \rangle}{\langle \Omega | \Psi \rangle} \quad D = \frac{\langle \Omega | \Delta_{rA}^{\dagger} \Delta_{r'A} | \Psi \rangle}{\langle \Omega | \Psi \rangle}$$

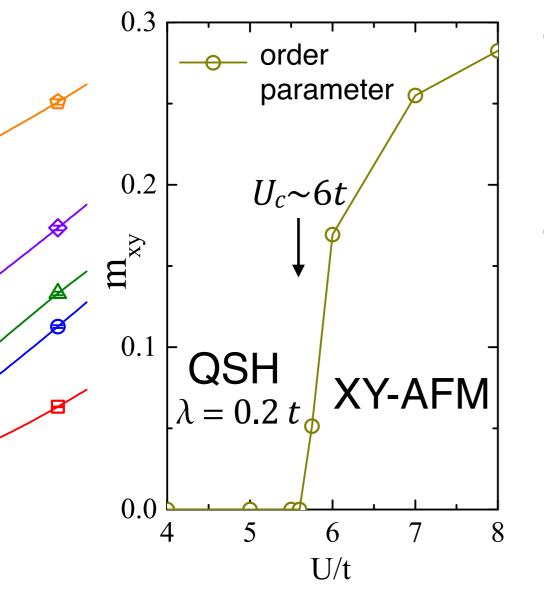
$$S(r) \sim r^{-2} \Rightarrow S(k) \sim -\ln k$$
$$D(r) \sim r^{-2} \Rightarrow D(k) \sim -\ln k$$



Single-Layer Kane-Mele-Hubbard Model

• Spin-1/2 fermion on single-layer honeycomb

$$H = -t \sum_{\langle ij \rangle} c_i^{\dagger} c_j + \sum_{\langle \langle ij \rangle \rangle} i \lambda_{ij} c_i^{\dagger} \sigma^z c_j + U \sum_i n_{i\uparrow} n_{i\downarrow}$$



- QSH (SPT nontrivial) $U(1)_{charge} \times U(1)_{spin} \times Z_2^T$ symmetry $\rightarrow \mathbb{Z}$ classification (~ A class)
- AFM (SPT trivial) $U(1)_{\text{charge}} \rtimes Z_2^{T'} (\mathcal{T}^2 = 1)$ symmetry $Z_2^{T'} : c_i \to \mathcal{K} \sigma^x c_i$
 - → trivial classification (AIII class)
 - No protected gapless fermion edge mode.

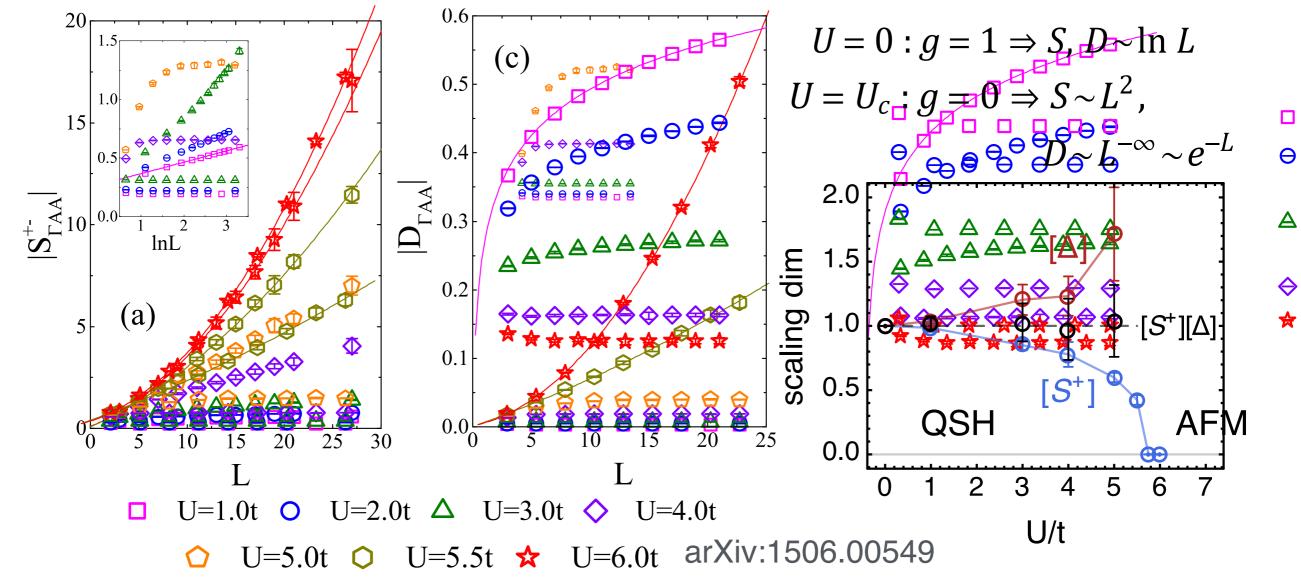
Strange Correlator of Interacting QSH

• Helical Luttinger Liquid

 Φ

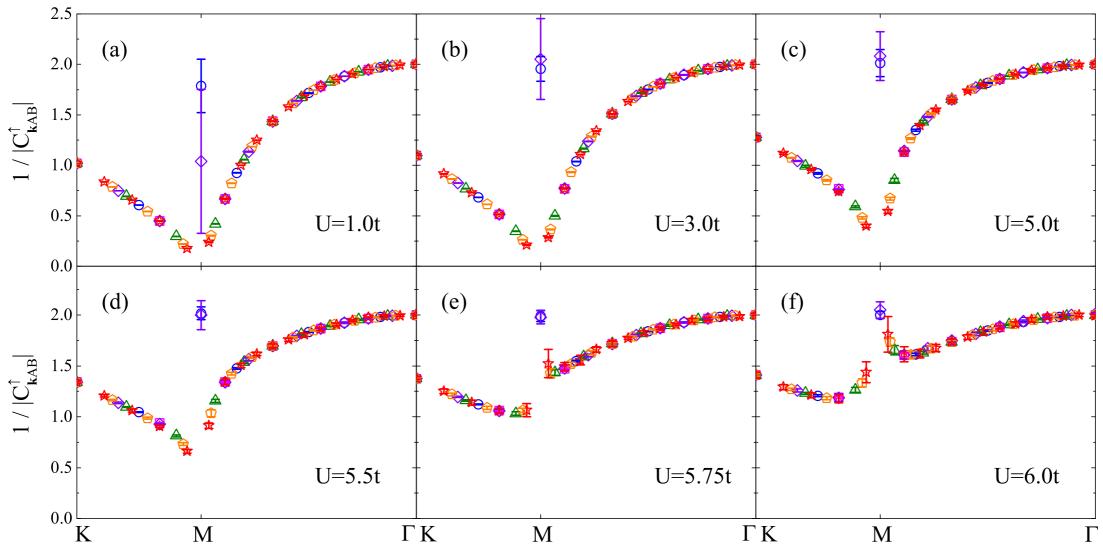
 Φ

- Fermion channel: $C(r) \sim r^{-g/2-1/2} g \Rightarrow C(k) \sim k^{g/2+1/2} g^{-2}$
- Spin channel: $S(r) \sim r^{-2g} \Rightarrow S(k = \Gamma) \sim L^{2-2g}$
- Charge channel: $D(r) \sim r^{-2/g} \Rightarrow D(k = \Gamma) \sim L^{2-2/g}$



Strange Correlator of Interacting QSH

- Helical Luttinger Liquid
 - Fermion channel: $C(r) \sim r^{-g/2-1/2} g \Rightarrow C(k) \sim k^{g/2+1/2} g^{-2}$

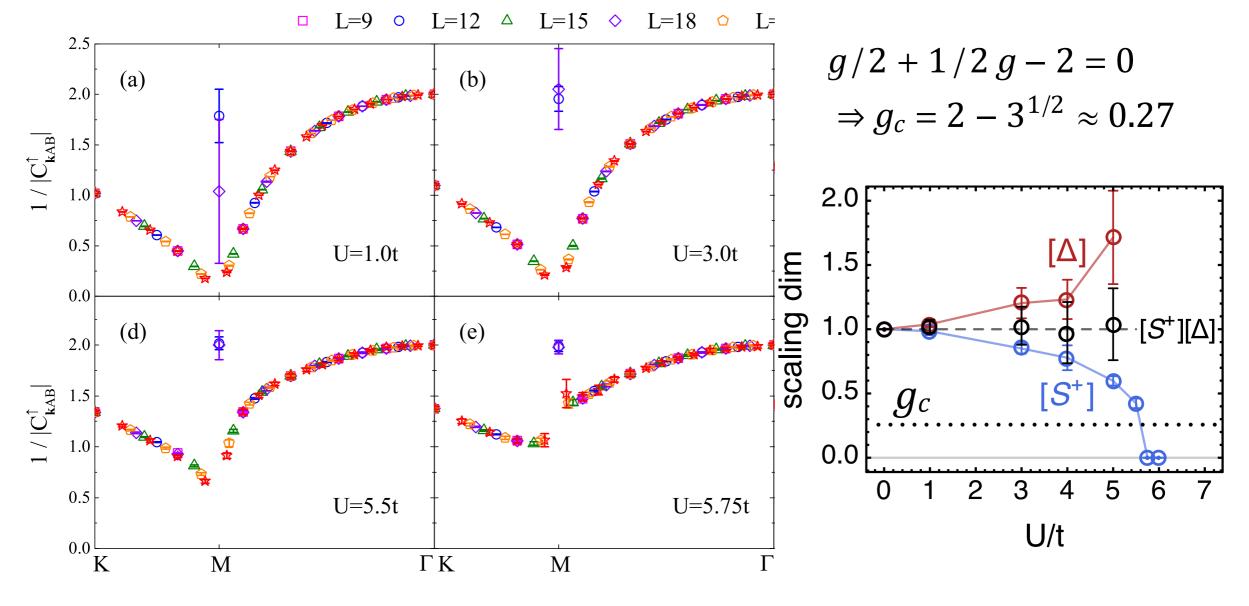


 $\Box L=9 \circ L=12 \land L=15 \diamond L=18 \circ L=21 \bigstar L=27$

Wu et.al. arXiv:1506.00549

Strange Correlator of Interacting QSH

- Helical Luttinger Liquid
 - Fermion channel: $C(r) \sim r^{-g/2-1/2} g \Rightarrow C(k) \sim k^{g/2+1/2} g^{-2}$



Wu et.al. arXiv:1506.00549

Summary

- Topology + Interaction \rightarrow Exotic quantum phase transitions:
 - Interaction can make a fermionic SPT state into a bosonic SPT state, such that the topological-trivial transition can happen by closing the boson gap only.
 - Interaction can gap out the Dirac / Majorana cones without generating any mean-field mass term, without breaking the symmetry.
- Strange correlator as a (numerical) diagnosis for SPT states based on bulk wave function, for both bosonic and fermionic systems, free and strong interacting.
- Outlook: QSH insulators may be realized in cold atom systems by shaking the optical lattice.

Summary

- Topology + Interaction \rightarrow Exotic quantum phase transitions:
 - Interaction can make a fermionic SPT state into a bosonic SPT state, such that the topological-trivial transition can happen by closing the boson gap only.
 - Interaction can gap out the Dirac / Majorana cones without generating any mean-field mass term, without breaking the symmetry.
- Strange correlator as a (numerical) diagnosis for SPT states based on bulk wave function, for both bosonic and fermionic systems, free and strong interacting.
- Outlook: QSH insulators may be realized in cold atom systems by shaking the optical lattice.

Thanks for Your Attention!