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Outline

• Exotic topological phase transitions in (2+1)D

• Bilayer QSH, by Quantum Monte Carlo (QMC)

• QSH-Mott transition: O(4) NLSM  
with exact SO(4) symmetry, and topological Θ-term

• Semimetal-Mott transition:        classification of 3He B

• Characterize topological transitions by strange correlator.

• Decode the boundary feature from bulk wave function.

• Tested on the single-layer QSH, matches Luttinger liquid 
theory of edge states.

ℤ16
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• Weak Correlation

• Gapped Phase (SPT) 
TI, TSC,TCI…

• Gapless Phase  
Weyl SM…

• Well described by 
band theory on the 
free fermion / mean-
field level

• Strong Correlation

• SSB order, topological 
order (spin liquid)…

• Interacting SPT

Quantum Matter with SOC

4

U/t ⌧ 1, a metallic or semi-conducting state at small U may be converted to a semi-metal or to a

TI. What happens when both SOC and correlations are present? Several arguments suggest that

� and U tend to cooperate rather than compete, in generating insulating states. Including SOC

first, we have already remarked upon the splitting of degeneracies and the consequent generation

of multiple narrow bands from relatively mixed ones. The narrow bands generated by SOC are

more susceptible to Mott localization by U , which implies that the horizontal boundary in Figure 1

shifts downward with increasing �. If we include correlations first, the U tends to localize electrons,

diminishing their kinetic energy. Consequently the on-site SOC �, which is insensitive to or even

reduced by delocalization, is relatively enhanced. Indeed, in the strong Mott regime U/t � 1,

one should compare � with the spin exchange coupling J / t2/U , rather than t. As a result, the

vertical boundary shifts to the left for large U/t. We see that there is an intermediate regime in

which insulating states are obtained only from the combined influence of SOC and correlations –

these may be considered spin-orbit assisted Mott insulators. Here we are using the term “Mott

insulator” to denote any state which is insulating by virtue of electron-electron interactions. In

Sec. IV, we will remark briefly on a somewhat philosophical debate as to what should “properly”

be called a Mott insulator.

Terminology aside, an increasing number of experimental systems have appeared in recent

years in this interesting correlated SOC regime. Most prolific are a collection of iridates, weakly

conducting or insulating oxides containing iridium, primarily in the Ir4+ oxidation state. This

FIG. 1. Sketch of a generic phase diagram for electronic materials, in terms of the interaction strength
U/t and SOC �/t. The materials in this review reside on the right half of the figure.

Witczak-Krampa, Chen, Kim, Balents (2013)



• Weak Correlation

• Gapped Phase (SPT) 
TI, TSC,TCI…

• Gapless Phase  
Weyl SM…

• Well described by 
band theory on the 
free fermion / mean-
field level

• Strong Correlation

• SSB order, topological 
order (spin liquid)…

• Interacting SPT

Quantum Matter with SOC

4

U/t ⌧ 1, a metallic or semi-conducting state at small U may be converted to a semi-metal or to a

TI. What happens when both SOC and correlations are present? Several arguments suggest that

� and U tend to cooperate rather than compete, in generating insulating states. Including SOC

first, we have already remarked upon the splitting of degeneracies and the consequent generation

of multiple narrow bands from relatively mixed ones. The narrow bands generated by SOC are

more susceptible to Mott localization by U , which implies that the horizontal boundary in Figure 1

shifts downward with increasing �. If we include correlations first, the U tends to localize electrons,

diminishing their kinetic energy. Consequently the on-site SOC �, which is insensitive to or even

reduced by delocalization, is relatively enhanced. Indeed, in the strong Mott regime U/t � 1,

one should compare � with the spin exchange coupling J / t2/U , rather than t. As a result, the

vertical boundary shifts to the left for large U/t. We see that there is an intermediate regime in

which insulating states are obtained only from the combined influence of SOC and correlations –

these may be considered spin-orbit assisted Mott insulators. Here we are using the term “Mott

insulator” to denote any state which is insulating by virtue of electron-electron interactions. In

Sec. IV, we will remark briefly on a somewhat philosophical debate as to what should “properly”

be called a Mott insulator.

Terminology aside, an increasing number of experimental systems have appeared in recent

years in this interesting correlated SOC regime. Most prolific are a collection of iridates, weakly

conducting or insulating oxides containing iridium, primarily in the Ir4+ oxidation state. This

FIG. 1. Sketch of a generic phase diagram for electronic materials, in terms of the interaction strength
U/t and SOC �/t. The materials in this review reside on the right half of the figure.

Witczak-Krampa, Chen, Kim, Balents (2013)



Fermionic SPT States
• Fermionic Symmetry Protected Topological (SPT) States

• Bulk: fully gapped and non-degenerated.

• Boundary: gapless or degenerated, symmetry protected.

• Within the free fermion band theory:

• Bulk: separated from trivial phase by fermion gap closing.

• Boundary: can not gap out, unless breaking the symmetry.

• With interaction, the story can be modified.

• Bulk: Topological transition without closing fermion gap.

• Interaction can drive the fermionic system to a spin (bosonic) 
system.

• Boundary: Gap out fermions without breaking symmetry.

• Interaction can introduce surface topological order.

• Interaction can reduce SPT classifications.

• Interaction can also lead to new SPT states …

Vishwanath, 
Senthil (2013) …

Fidkowski, Kitaev (2010) …

Gu, Wen (2009) …
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Bilayer Kane-Mele-Hubbard-Heisenberg Model
• Spin-1/2 fermions on a  

bilayer honeycomb lattice.

• Model Hamiltonian  

• Bilayer Kane-Mele model  
 
 

• Hubbard-Heisenberg interaction

λ

�

�

�
�

• λ - Kane-Mele SOC

• U - on-site Hubbard

H = Hband +Hint

Hband =
ℓ=1,2

-t
〈i j〉

ciℓ
† c jℓ +

〈〈i j〉〉

ⅈ λi j ciℓ
† σz c jℓ +H.c.

Hint =
U
2 �

i,ℓ
(niℓ - 1)2 + J�

i
�Si1 ·Si2 +

1
4 (ni1 - 1) (ni2 - 1) - 1

4 �

• J - interlayer Heisenberg



Phase Diagram

���
σH
spin = +2

���
σH
spin = -2

��

������� ����
σH
spin = 0

� λ

U, J

λ

�

interaction

SOC

• Strong interaction limit 
Hubbard + Heisenberg interaction  
→ interlayer spin-singlet (dimer) 
→ trivial Mott

=
1
2

-⇒�
�

�

• Weak interaction limit 
Kane-Mele model x 2  
→ spin Hall conductance ± 2

•     classification U(1)spin ×[U(1)×U(1)]charge ×Z2Tℤ

Slagle, You, Xu. 
PRB 91, 115121
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• Weak interaction limit 
Kane-Mele model x 2  
→ spin Hall conductance ± 2

•     classification U(1)spin ×[U(1)×U(1)]charge ×Z2Tℤ

• QSH-QSH: gapless fermion 

• QSH-Mott: gapped fermion + 
gapless collective boson

Slagle, You, Xu. 
PRB 91, 115121



SO(4) Symmetric Point
• At U = 0, the model has an exact SO(4) symmetry

• SDW (XY-AFM) 
 
 
 
 

• New fermions:

• O(4) vector

• Model Hamiltonian

• SC (inter-layer singlet)
Δ = ci1 ⅈ σ y ci2S+ = (-)i+ℓ ciℓ

† σ+ ciℓ

fi↑ = �
ci1↑

(-)i ci2↑† �, fi↓ = (-)i ci1↓
ci2↓† SO(4)≃ SU(2)↑ ×SU(2)↓

(Sx, Im Δ, Re Δ, Sy ) = fi↓† τ0 , ⅈτ1 , ⅈτ2 , ⅈτ3 fi↑ + h.c.

H=
i, j,σ

(-)σ fiσ† (-ti j + ⅈλi j ) f jσ + h.c.- J
16 i

Di Di† + Di† Di
Di = σ

fiσ ⅈτ2 fiσ



Quantum Spin Hall → Trivial Mott

• Topological-Trivial Transition

• Driven by interaction

• Fermion: gapped

• Spin/charge: gapless

������ ��

������� ����

� λ

U, J

Slagle et. al. 
(2014)

c†(τ) c(0) ~ⅇ-Δsp τ

S+(τ) S-(0) ~ⅇ-ΔS τ
Δ†(τ)Δ(0) ~ⅇ-ΔD τ

Y-Y He, et.al., arXiv:1508.06389
Jc

QSH
Mott
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QSH
Mott

• Fermions are gapped → 
only bosonic d.o.f. involved  
→ Bosonic SPT transition

• Bilayer QSH + Interaction  
→ Bosonic SPT

• Boundary: interaction 
marginally relevant 
→ gaps out all fermion 
edge modes



Bosonic SPT Transition
• Effective field theory: non-linear σ model (bosonic SPT)

• O(4) vector n:

S = ⅆ2 x ⅆτ
1
g

∂μ n 2 +
Θ

2 π2
ϵabcd na ∂τ nb ∂x nc ∂y nd

n1 Sx + n2 Sy + n3 Re Δ + n4 Im Δ

• Θ	  =	  2π: spin-1 ~ 2π vortex of Δ = π-flux of fermion  
→ QSH insulator with 

• Θ	  =	  0: trivial insulator

• Sign-free QMC for O(4) NLSM and 2d bosonic SPT’s. 

σH
spin = 2

���
Θ = +2 π

���
Θ = -2 π

��

������� ����
Θ = 0

Θ = πΘ = -π

λ

U, J
Xu, Ludwig (2013)

�-�π -π +π +�π Θ

�/�



Semimetal → Trivial Mott (λ	  =	  0) 
• Continuous phase transition

• At J=2U, the model has SO(5) symmetry

• Gaps open continuously at the same point 
→ No symmetry breaking

single particle gap

spin gap

charge gap

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

U/t

ga
p
/t

gaps with λ=0

semimetal  
(SM)

trivial Mott

������ ��

������� ����

� λ

U, J

• In general, SSB 
phases may set in.

�

��

���

��

������� ����

�
�

��(
�)

�=�
�

�

�

Slagle et. al. (2014)



Interaction Reduced SPT Classification
• Continuous phase transition

• There must be a field theory

• Semimetal ~ 16 Majorana cones 
 
 

• Same as the boundary of 16 copies of 3He B-phase TSC.

• Gapped out by interaction  
without breaking symmetry.

• Beyond Landau’s paradigm.

• Consistent with the         
classification of 3He-B TSC.

ℤ16

• layers (×2)

• spins (×2)
• valleys (×2)

• particle-hole (×2)

Wang, Senthil (2014).
Fidkowski, Chen, Vishwanath (2013).

������ ��

������� ����

Uc

-��� ��� ��� ��� λ /t
�

�

�

�
U /t



• Spin Chern number 
 
 
 
 
 

Spin Chern Number ≠ Spin Hall Conductance

Cs =
1

48 π2
ⅆ3 k ϵμνλ

Tr -σz G ∂μ G-1 G ∂νG-1 G ∂λG-1

G(k) = -�ck ck
†�Green’s function ���

σH
s = Cs = +2

���
σH
s = Cs = -2

������� ����
σH
s = 0

Cs = ? Cs = ?

� λ

U, J
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C
s

topological numberwith U=2 • Not a phase transition

• Transition of Cs via zeros 
of G at zero frequency

• Pole of G	  −1= Zero of G 

• Fermions are gapped  
→ no poles, only zeros

You, Wang, Oon, Xu, 
 PRB 90, 060502

• QMC Result
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Strange Correlator ~ Boundary Correlator
• Physical correlator: short-ranged  
 

• Strange correlator: long-ranged or power-law

h |�(r)�(r0)| i
h | i ⇠ e�|r�r0|/⇠

h⌦|�(r)�(r0)| i
h⌦| i ⇠ |r � r0|�⌘

or const.trivial direct 
product state non-trivial SPT (to probe)

fi

Under 
space-time rotation

Shankar, Vishwanath (2011)

You et. al., PRL 
112, 247202

(in 1d and 2d)



C(k) =
〈Ω ckA↑+ ckB↑ Ψ〉

〈Ω Ψ〉

� � Γ
�
�
�
�
�
��

��
�†
��
��

Γ
�
�

Examples of Strange Correlator
• Bosonic SPT: 2d AKLT • Free fermionic SPT: 2d QSH

|⌦i = |000 · · ·i
| i =

Sz = 0

singlet

C(r, r0) =
h⌦|S+

r S�
r0 | i

h⌦| i
By DMRG:

�
∼
� - � ′ -����

� � � �
-���
-���
-���
-���
-���
-���

���� - � ′�

��
��

(�
��

′ )�

power-law

|⌦i | i

power-law

⇠ k�1

C(k)~
1

kx + ⅈ ky
⇒ C(r)~

1
x + ⅈ y



Examples of Strange Correlator

� � Γ �
���
���
���
���
���
���

〈�
+
�

- 〉
�

Γ
�
�

• Bosonic channels

• Spin:

• Charge:
SA+ = cA↑† cA↓

C(k) =
〈Ω ckA↑+ ckB↑ Ψ〉

〈Ω Ψ〉

� � Γ
�
�
�
�
�
��

��
�†
��
��

Γ
�
�

• Free fermionic SPT: 2d QSH
|⌦i | i

power-law

⇠ k�1

C(k)~
1

kx + ⅈ ky
⇒ C(r)~

1
x + ⅈ y

ΔA = cA↑ cA↓

S =
〈Ω SrA+ Sr′ A- Ψ〉

〈Ω Ψ〉
D =

〈Ω ΔrA
† Δr′ A Ψ〉
〈Ω Ψ〉

S(r)~r-2 ⇒ S(k)~-ln k
D(r)~r-2 ⇒ D(k)~-ln k



• Spin-1/2 fermion on single-layer honeycomb
Single-Layer Kane-Mele-Hubbard Model

H= -t
〈i j〉
ci† c j +

〈〈i j〉〉
ⅈλi j ci† σz c j + U

i
ni↑ ni↓

U(1)charge ×U(1)spin ×Z2T
• QSH (SPT nontrivial)

symmetry
→     classification (~ A class)ℤ

4

C(r, r′) can be viewed as a correlation function at the
temporal domain wall. Because most of the topologi-
cal insulators have an effective Lorentz invariant descrip-
tion43, after a space-time rotation C(r, r′) becomes the
space-time correlation at the spatial interface between
|Ψ⟩ and |Ω⟩, which may have gapless modes depending
on the nature of the two states.
The proposition given in Ref. 26 is that if |Ψ⟩ is a

nontrivial topological insulator (or more generally a SPT
state) in one or two spatial dimension, i.e., there exit
one or more gapless edge modes at the spatial bound-
ary of |Ψ⟩, then for local operator φ(r) that transforms
nontrivially under symmetry, C(r, r′) will either develop
long-range order (saturate to a constant) or decay as a
power law in the limit |r − r′| → +∞, which mimics the
edge states of |Ψ⟩. In the momentum space, this corre-
sponds to a singularity at certain symmetric momentum
point ks: Ck ∼ 1/|k − ks|α, if |Ψ⟩ is in a nontrivial
topological insulator phase. Based on the space-time ro-
tation argument given above, the 2D strange-correlator
C(r, r′) should behave very similarly to the (1+1)D cor-
relation functions at the boundary. For example, if |Ψ⟩
is a generic noninteracting 2D TI, and φ(r) is simply the
electron operator, i.e. C(r, r′) = ⟨Ω|c†(r)c(r′)|Ψ⟩/⟨Ω|Ψ⟩,
then α = 1. The strange correlator has been success-
fully applied to detect topological phase transitions in 1D
and 2D spin systems26,28,29, as well as in non-interacting
fermionic system26.
In our QMC simulations, to detect the correlated QSH

phase and the interaction driven phase transition in the
KMHmodel, we prepare |Ω⟩ as the wave function of Eq. 1
with U = 0, but keep td different from t. At the non-
interacting level, with finite λ, td/t will drive a topo-
logical phase transition between QSH and trivial band
insulator at td = 2t37,39,40, therefore, throughout this
paper we choose |Ω⟩ with λ = 0.2t and td = 100t, which
guarantees it is a topologically trivial band insulator. On
the other hand, |Ψ⟩ is prepared as the ground state wave
function of interacting Hamiltonian in Eq. 1 with td = t.
In the quantum Monte Carlo simulation, it is prepared
as |Ψ⟩ = e−ΘĤ |ΨT ⟩, where |ΨT ⟩ is the wave function of
noninteracting Hamiltonian in Eq. 1 with U = 0, λ = 0.2t
and td = t, the projection operator e−ΘĤ is applied onto
|ΨT ⟩ in quantum Monte Carlo sampling such that when
the projection parameter Θ is sufficiently large, the QMC
ensemble average guarantees |Ψ⟩ is the ground state of
the interacting Hamiltonian Ĥ . In most of the simula-
tions, we set Θ = 50t.
In this paper, we define the strange correlator in the

momentum space. The strange correlator in single-
particle channel for spin flavor σ is then defined as

Cσ
kAB =

⟨Ω|c†
kAσckBσ|Ψ⟩
⟨Ω|Ψ⟩

, (3)

where c†
kAσ = 1

L

∑

i e
ik·Ri,Ac†i,A,σ with k inside the BZ

shown in Fig. 2, and A, B are the two sublattices of the
honeycomb lattice in Fig. 1 (a). The schematic plot of

FIG. 3. (color online) 1/|C↑
kAB | as a function of td in |Ψ⟩.

The linear divergence of |C↑
kAB | around M point holds robust

until td > 2t. We can use the divergent to nondivergent be-
havior of |C↑

kAB | to determine the critical point precisely in
this noninteracting case.

FIG. 4. (color online) (a). Finite size scaling of xy antifer-
romagnetic structure factor for various values of U/t, with
linear system size L goes to 27. The extrapolated values of
magnetic moment mxy is plotted in (b).

Fig. 1 (b) depicts the idea of the strange correlator in
KMH model, on the left hand side, the wave function
|Ω⟩ is a trivial band insulator (with spin Chern number
Cs = 0); on the right hand side, the projection opera-

tor e−ΘĤ guarantees |Ψ⟩ = e−ΘĤ |ΨT ⟩ is the many-body
ground state wave function of KMH Hamiltonian at cer-
tain U/t, although the trial wave function |ΨT ⟩ is non-
interacting (with spin Chern number Cs = 1). In this
way, as we gradually increase the interaction strength U/t
in the KMH Hamiltonian, the nature of |Ψ⟩ will change
from QSH at weak interaction (U ≤ Uc) to AFMI at
strong interaction (U > Uc).

We also measure the strange correlator in the spin and

QSH XY-AFM

Uc~6t

order 
parameter

λ = 0.2 t

• AFM (SPT trivial) 
 
 

• No protected gapless fermion 
edge mode.

U(1)charge ⋊Z2T′ ��2 = 1� symmetry
Z2T

′ : ci → σx ci
→ trivial classification (AIII class)



Strange Correlator of Interacting QSH
• Helical Luttinger Liquid

• Fermion channel: 

• Spin channel:

• Charge channel:

C(r)~r-g/2-1/2 g ⇒ C(k)~kg/2+1/2 g-2

S(r)~r-2 g ⇒ S(k = Γ)~L2-2 g

D(r)~r-2/g ⇒ D(k = Γ)~L2-2/g

7

gapless (though still strongly interacting).
The technical advantage of strange correlator in QMC

over other numerical diagnoses of interacting TIs is man-
ifestly presented, i.e., we have performed simulations
on finite size system with periodic boundary condition
(PBC), yet, still are able to extract information of the
edge modes which, in the past, could only be obtained
with systems with OBC33,34. It is well known that QMC
simulations with OBC suffer from greater finite size ef-
fect, apparently, strange correlator avoids this difficulty.
Moreover, direct probe of edge modes with OBC requires
analytical continuation of imaginary time Green’s func-
tion, i.e., from G(k, τ) to A(k,ω), and that usually ren-
ders ambiguity in the real-frequency data. However, with
strange correlator, we only need to measure static (equal

time) single-particle Green’s function in PBC system,
which is the easiest and most reliable observables in the
QMC simulations. Thirdly, as mentioned in the Intro-
duction, in comparison with measurements of entangle-
ment spectrum to detect the interaction-driven topolog-
ical transition21–23, strange correlator is also physically
more transparent and technically more robust, as in the
entanglement spectrum measurements one has to bifur-
cate the already small finite size system and analytically
continue the imaginary time data, whereas in the strange
correlator both problems are avoided. Hence, at the tech-
nical level, to the best of our knowledge, strange corre-
lator is indeed the easiest diagnosis of the topological
states and the topological quantum phase transition in
interacting systems.
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In this section, we discuss the QMC results on strange
correlators in two-particle sector, i.e., the spin and pair-
ing strange correlators in the presence of interaction.
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tion of the strange correlator, we can likewise analyze
the spin and pairing strange correlators using the helical
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Strange Correlator of Interacting QSH
• Helical Luttinger Liquid

• Fermion channel: C(r)~r-g/2-1/2 g ⇒ C(k)~kg/2+1/2 g-2
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correlator, we can analyze the single-particle strange
correlator using the helical Luttinger liquid theory at
the (1+1)D boundary45–48, according to which, the
real-space strange correlator in the single-particle sector
scales as

Cσ
rAB ∼ r

−g/2−1/2g, (7)

where g is the Luttinger parameter related to U/t, g ∈
[0, 1]. After Fourier transform to the momentum space,
it becomes

Cσ
kAB ∼ k̃

g/2+1/2g−2, (8)

where k̃ = |k− kM |. Unlike the noninteracting case, the
single-particle strange correlator in the momentum space
may actually stop diverging before the QSH to AFMI
transition point. To see this point more clearly, the criti-
cal gc can be solved from the equation g/2+1/2g−2 = 0,

which gives gc = 2 −
√
3 ≈ 0.268. If g < gc, there

would be no divergent behavior around the M point in
the momentum space of single-particle strange correla-
tor, although the real space strange correlator still obeys
a power-law decay. For g > gc, the power-law divergent
behavior of the single-particle strange correlator around
the M point clearly signifies that the interacting QSH
phase and the trivial band insulator belongs to distinct
SPT phases, and the two states must be separated by
gapless fermion edge modes when they are adjacent in the
space. From the data in Fig. 6, the divergent behavior
persists up to U = 5.5t, which is very close to the quan-
tum critical point extracted from previous QMC simula-
tions. From Fig. 6 here and Fig. 8 in Sec. III B, we can
see that the divergent exponent of single-particle strange
correlator is reduced by the interaction which cannot be
captured by noninteracting topological phase transition
in Fig. 3 and clearly beyond the mean-field level.

FIG. 6. (color online) The inverse amplitude of single-particle strange correlator 1/|C↑
kAB | along high-symmetry path for various

U/t and system sizes. When the interaction U/t ≤ 5.5t, see (a-d), there is a divergent tendency in |C↑
kAB | around M point.

However, the divergent exponent is reduced due to the correlation effects according to the helical Luttinger liquid theory (see
the main text). In the AFMI regime (e-f), 1/|C↑

kAB | shows upturn behavior around M point. there is no divergence at all.

We notice that the data points exactly at k = kM in
Fig. 6 (a-d) suddenly jump up and have larger errobars.
This is unphysical, and we will discuss the behavior of
C↑

kAB in the presence of small AF order ∆SDW around
the M point in a mean-field context in Appendix A, where
this unphysical singularity at k = kM will be understood.

We want to stress that based on the Luttinger liquid
theory the single-particle strange correlator, and equiva-
lently the single particle Green’s function at the physical

edge of the system always follow a power-law decay, be-
fore the system develops a true long range order in the
bulk. This is mainly because that when the bulk is fully
gapped, all the low energy physics occur at the boundary
of the system. Then based on the Mermin-Wagner the-
orem49, continuous symmetries cannot be spontaneously
broken in a (1 + 1)D system, and without a true long
range correlation of magnetic or superconductor order
parameter, the fermions at the boundary should remain
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Summary
• Topology + Interaction → Exotic quantum phase transitions:

• Interaction can make a fermionic SPT state into a bosonic 
SPT state, such that the topological-trivial transition can 
happen by closing the boson gap only.

• Interaction can gap out the Dirac / Majorana cones without 
generating any mean-field mass term, without breaking the 
symmetry.

• Strange correlator as a (numerical) diagnosis for SPT states 
based on bulk wave function, for both bosonic and fermionic 
systems, free and strong interacting.

• Outlook: QSH insulators may be realized in cold atom 
systems by shaking the optical lattice.
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