Machine Learning for Lattice Field Theory

The structure of matter

What is everything made of?

What laws describe the properties of matter?

The structure of matter

The Standard Model of nuclear and particle physics

The search for new physics

Precise experiments seek new physics at the "Intensity Frontier"

- Sensitivity to probe the rarest Standard Model interactions
- Search for beyond—Standard-Model effects

- Dark matter direct detection
- Neutrino physics

• Charged lepton flavour violation, $\beta\beta$ -decay, proton decay, neutron-antineutron oscillations...

The search for new physics

Precise experiments seek new physics at the "Intensity Frontier"

- Sensitivity to probe the rarest Standard Model interactions
- Search for beyond—Standard-Model effects

EXPERIMENTS USE NUCLEAR TARGETS

NEED TO UNDERSTAND STANDARD MODEL PHYSICS OF NUCLEI

The structure of matter

Nuclear structure from the Standard Model

Emergence of complex structure in nature

Backgrounds and benchmarks for searches for new physics

Strong interactions

Study nuclear structure from the strong interactions

Quantum Chromodynamics (QCD)

Strongest of the four forces in nature

Binds quarks and gluons into protons, neutrons, pions etc.

Binds protons and neutrons into nuclei

Forms other types of exotic matter e.g., quark-gluon plasma

Numerical first-principles approach to non-perturbative QCD

- Discretise QCD onto 4D space-time lattice
- Approximate QCD path integral using Monte-Carlo methods and importance sampling
- Run on supercomputers and dedicated clusters
- Take limit of vanishing discretisation, infinite volume, physical quark masses

Numerical first-principles approach to non-perturbative QCD

INPUT

- Lattice QCD action has same free parameters as QCD: quark masses, α_S
- Fix quark masses by matching to measured hadron masses, e.g., π, K, D_s, B_s for u, d, s, c, b
- One experimental input to fix lattice spacing in GeV (and also α_S), e.g., 2S-1S splitting in Y, or f_π or Ω mass

OUTPUT

Calculations of all other quantities are QCD predictions

- Numerical first-principles approach to non-perturbative QCD
- lacksquare Euclidean space-time t
 ightarrow i au
 - Finite lattice spacing *a*
 - Volume $L^3 \times T \approx 32^3 \times 64$
 - Boundary conditions
- Some calculations use largerthan-physical quark masses (cheaper)

Approximate the QCD path integral by Monte Carlo

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \mathcal{D}\overline{\psi} \mathcal{D}\psi \mathcal{O}[A, \overline{\psi}\psi] e^{-S[A, \overline{\psi}\psi]} \longrightarrow \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$$

with field configurations U^i distributed according to $e^{-S[U]}$

Workflow of a lattice QCD calculation

- Generate configurations via Hybrid Monte Carlo
 - Leadership-class computing
 - ~100K cores or 1000GPUs, 10's of TF-years
 - O(100-1000) configurations, each \sim 10-100GB
- 2 Compute propagators
 - Large sparse matrix inversion
 - ~few IOOs GPUs
 - I 0x gauge field in size, many per config

- Contract into correlation functions
- ~few GPUs
- O(100k-1M) copies

Lattice QCD works

- Ground state hadron spectrum reproduced
- p-n mass splitting reproduced

...

 Predictions for new states with controlled uncertainties

Nuclear physics from LQCD

Nuclei on the lattice: HARD

Noise:
Statistical uncertainty grows exponentially with number of nucleons

Complexity:
 Number of contractions grows factorially

Calculations possible for A<5 (unphysically heavy quark masses)

Dark matter

How do we find dark matter?

- Dark (does not interact with light)
- Interacts through gravity

WIMP
Weakly-interacting
massive particles

Direct detection Wait for DM to hit us

Detection rate depends on

- Dark matter properties
- Probability for interaction with nucleus

Dark matter direct detection

Limits on WIMPnucleon interaction from direct detection experiments

Ruled out above the solid lines

Background

Dark matter direct detection

Limits on WIMPnucleon interaction from direct detection experiments

Ruled out above the solid lines

Projected limits from future experiments

Background

Dark matter

Determine interaction cross-section (with nucleus) for a given dark matter model

Born approximation – interacts with a single nucleon

known from LQCD

Interacts non-trivially with multiple nucleons

$$\sigma \sim |A \ \langle N|DM|N\rangle + \alpha \ \langle NN|DM|NN\rangle + \dots|^2$$
 poorly known!

Scalar matrix elements

- Spin-independent scattering of many WIMP candidates governed by scalar matrix elements
- Lattice QCD calculation shows 10% nuclear effects!
 (CAVEAT: still significant systematics, computation limited)

Scalar matrix elements

- Spin-independent scattering of many WIMP candidates governed by scalar matrix elements
- Lattice QCD calculation shows 10% nuclear effects!
 (CAVEAT: still significant systematics, computation limited)

Motivation: ML for LQCD

First-principles nuclear physics beyond A=4

How finely tuned is the emergence of nuclear structure in nature?

Interpretation of intensity-frontier experiments

- Scalar matrix elements in A=131
 XENONIT dark matter direct detection search
- Axial form factors of Argon A=40 DUNE long-baseline neutrino expt.
- Double-beta decay rates of Calcium A=48

Exponentially harder problems

Need exponentially improved algorithms

Machine learning for LQCD

APPROACH

Machine learning as ancillary tool for lattice QCD

- Accelerate gauge-field generation
- Optimise extraction of physics from gauge field ensemble

Will need to accelerate all stages of lattice QCD workflow to achieve physics goals

ONLY apply where quantum field theory can be rigorously preserved

Generate QCD gauge fields

Generate field configurations $\phi(x)$ with probability

$$P[\phi(x)] \sim e^{-S[\phi(x)]}$$

Molecular dynamics

Classical motion with

$$H = \sum_{x} \frac{\pi^{2}(x)}{2} + S[\phi(x)]$$

- Reversible
- Volume-preserving

BUT

 Energy non-conservation for numerical integrators

Markov Chain Monte Carlo

Propose update using integrated molecular dynamics trajectory

Accept/ reject with probability

$$\alpha = \min(1, e^{(-S[\phi'(x)] + S[\phi(x)])})$$

 Numerical error corrected by accept/reject

BUT

Short trajectories for high acceptance

Accelerating HMC: action matching

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

Number of updates to change fixed physical length scale

"Critical slowing-down" of generation of uncorrelated samples

Multi-scale HMC updates

Given coarsening and refinement procedures...

Endres et al., PRD 92, 114516 (2015)

Multi-scale HMC updates

Perform HMC updates at coarse level

Multiple layers of

coarsening

Significantly cheaper approach to continuum limit

Fine ensemble

rethermalise with fine action to make exact

Endres et al., PRD 92, 114516 (2015)

Multi-scale HMC updates

Perform HMC updates at coarse level

MUST KNOW

parameters of coarse QCD action that reproduce ALL physics parameters of fine simulation Map a subset of physics parameters in the coarse space and match to coarsened ensemble

OR

Solve regression problem directly: "Given a coarse ensemble, what parameters generated it?"

Machine learning LQCD

Neural networks excel on problems where

Basic data unit has little meaning

Combination of units is meaningful

Image recognition

Pixel

Image

network

"Colliding black holes"

Label

Machine learning LQCD

Neural networks excel on problems where

Basic data unit has little meaning

Combination of units is meaningful

Parameter identification

Element of a colour matrix at one discrete space-time point

0 637₅ 284 1

Ensemble of lattice QCD gauge field configurations

Label

Parameters of action

Machine learning LQCD

CIFAR benchmark image set for machine learning

- 32×32 pixels $\times 3$ cols ≈ 3000 numbers
- 60000 samples
- Each image has meaning
- Local structures are important
- Translation-invariance within frame

Ensemble of lattice QCD gauge fields

- $64^3 \times 128 \times 4 \times N_c^2 \times 2$ ≈ 10^9 numbers
- \sim 1000 samples
- Ensemble of gauge fields has meaning
- Long-distance correlations are important
- Gauge and translationinvariant with periodic boundaries

Symmetries of LQCD gauge fields

Physics encoded by lattice QCD gauge fields is invariant under specific field transformations

- Rotation (4D)
- Translation

with periodic boundary conditions

Encode same physics

Symmetries of LQCD gauge fields

Physics encoded by lattice QCD gauge fields is invariant under specific field transformations

Gauge transformation

Separate group transformation of each link matrix $U_{\mu}(x)$

$$U_{\mu}(x) \to U'_{\mu}(x) = \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x+\hat{\mu})$$

for all $\Omega(x) \in SU(3)$

Encode same physics

Regression by neural network

- Complete: not restricted to affordable subset of physics parameters
- Instant: once trained over a parameter range

Simplest approach | Ignore physics symmetries

Train simple neural network on regression task

- Fully-connected structure
- Far more degrees of freedom than number of training samples available

"Inverted data hierarchy"

Recipe for overfitting!

Training and validation datasets

Parameter related to lattice spacing

Spacing in evolution stream >> correlation time of physics observables

Neural net predictions on validation data sets

Parameter related to lattice spacing

- * True parameter values
- Confidence interval from ensemble of gauge fields

SUCCESS?

No sign of overfitting

- Training and validation loss equal
- Accurate predictions for validation data

BUT fails to generalise to

- Ensembles at other parameters
- New streams at same parameters

NOT POSSIBLE IF CONFIGS ARE UNCORRELATED

Stream of generated gauge fields at given parameters

- Network succeeds for validation configs from same stream as training configs
- Network fails for configs from new stream at same parameters

Network has identified feature with a longer correlation length than any known physics observable

Naive neural network

 Naive neural network that does not respect symmetries fails at parameter regression task

BUT

Identifies unknown feature of gauge fields with a longer correlation length than any known physics observable

Network feature autocorrelation

Regression by neural network

- Complete: not restricted to affordable subset of physics parameters
- Instant: once trained over a parameter range

Regression by neural network

Lattice QCD gauge field

~10⁷-10⁹ real numbers

Custom network structures (or data preprocessing)

- Respects gauge-invariance, translation-invariance, boundary conditions
- Emphasises QCD-scale physics
- Range of neural network structures find same minimum

Parameters of lattice action

Few real numbers

- Complete: not restricted to affordable subset of physics parameters
- Instant: once trained over a parameter range

Symmetry-preserving network

Network based on symmetry-invariant features

Closed Wilson loops (gauge-invariant)

- Loops
- Correlated products of loops at various length scales
- Volume-averaged and rotation-averaged

Symmetry-preserving network

Network based on symmetry-invariant features

Number of degrees of freedom of network comparable to size of training dataset

- Fully-connected network structure
- First layer samples from set of possible symmetry-invariant features

Gauge field parameter regression

Neural net predictions on validation data sets

Parameter related to lattice spacing

Predictions on new datasets

 True parameter values
 Confidence interval from ensemble of gauge fields

Tests of network success

How does neural network regression perform compared with other approaches?

Consider very closely-spaced validation ensembles at new parameters

Tests of network success

How does neural network regression perform compared with other approaches?

Consider very closely-spaced validation ensembles at new parameters: **not distinguishable to principal component analysis** in loop space

Tests of network success

How does neural network regression perform compared with other approaches?

Consider very closely-spaced validation ensembles at new parameters: distinguishable to trained neural network

- Correct ordering of central values
- Accurate regression differences even at very fine resolution

Gauge field parameter regression

Predictions on new datasets

Parameter related to lattice spacing

* True parameter values

Confidence interval from ensemble of gauge fields

Gauge field parameter regression

PROOF OF PRINCIPLE

Step towards fine lattice generation at reduced cost

- Generate one fine configuration
- 2. Find matching coarse action
- 3. HMC updates in coarse space
- 4. Refine and rethermalise

Guarantees correctness

Accurate matching minimises cost of updates in fine space

Machine learning QCD

Accelerate gauge-field generation

Multi-scale matching PROOF OF PRINCIPLE

Generative models to replace expensive HMC IN PROGRESS

Learn parameters of a complicated pure-gauge action (cheap) to reproduce action with dynamical fermions (expensive)

Machine learning QCD

Optimise extraction of physics from gauge fields

Optimise source operator construction

New analysis approaches to maximise signal-to-noise

EXPONENTIAL IMPROVEMENTS

Huge potential to enable first-principles nuclear physics studies