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Quantum spin models on the lattice

H=J> Sk Sw

(R:R")

e Classical limit (S — c0): broken O(3) symmetry
(magnetization can be collinear, coplanar, or non-coplanar)

e Semi-classical corrections (linear spin waves): gapless excitations

Magnons carrying S = 1 quantum number (Goldstone modes)

Holstein and Primakoff, Phys. Rev. 58, 1098 (1940)
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Renormalization of the classical state

The classical ground state is “dressed” by quantum quctuationsJ

e The lattice breaks up into sublattices
e Each sublattice keeps an
extensive magnetization

1 iq(R—R')
5(q) \uo Z SgeR |w0 o I§<wo|sR - Spi[Wo)e
S(q) = 0(1) for all g's — short-range correlations
| S(qo) x N forg=qo — long-range order
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Mechanisms to destroy the long-range order

We have to stay away from the classical limit

e Small value of the spin S, eg.,, S=1/20orS=1

e Frustration of the super-exchange interactions
(not all terms of the energy can be optimized simultaneously)

e Low spatial dimensionality: D = 2 is the “best” choice
In D =1 there is no magnetic order, given the Mermin-Wagner theorem
(not possible to break a continuous symmetry in D=1, even at T = 0)

Pitaevskii and Stringari, J. Low Temp. Phys. 85, 377 (1991)

o [Large continuous rotation symmetry group, e.g., SU(2), SU(N) or Sp(2N)]

Arovas and Auerbach, Phys. Rev. B 38, 316 (1988); Arovas and Auerbach, Phys. Rev. Lett. 61, 617 (1988)

Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991); Read and Sachdev, Nucl. Phys. B316, 609 (1989)
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What's happening when destroying magnetic order: valence-bond solids

N
NN
NN

S~

E

J1—J> Heisenberg model on the hexagonal lattice

Fouet, Sindzingre, and Lhuillier, Eur. Phys. J. B 20, 241 (2001)

‘ —:%qNH”)) Singlet, total spin S=0

Properties: |

e Short-range spin-spin correlations
e Spontaneous breakdown of some lattice symmetries — ground-state degeneracy

e Gapped S = 1 excitations (triplons)
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Valence-bond solids have conventional excitations

Federico Becca
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What's happening when destroying magnetic order: spin liquids

e Anderson’s idea: the short-range resonating-valence bond (RVB) state:

Anderson, Mater. Res. Bull. 8, 153 (1973)

Linear superposition of many (an exponential number) of valence-bond configurations

/@\ / g; \ & & Spatially uniform state

e Spin excitations? No dimer order — we may have deconfined spinons

/'\

e Spinon fractionalization and topological degeneracy

EE =

Distinct ground states that are not connected by any local operator -

Wen, Phys. Rev. B 44, 2664 (1991); Oshikawa and Senthil, Phys. Rev. Lett. 96, 060601 (2006)
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Spin liquids are “highly-entangled” states

pa = Tre|V)(V|
Ertin Vo S(A) = —Trapalog pa
FEANANG =
e g S(A)mcxl-vy

| Txgart
| yuoruaara

(L is the length of the boundary)
o

v > 0 = NO product state

[This highly-entangled state has been introduced by Chernyshev (HFM 2018, unpublished)]

Some general features of highly-entangled phases are:

@ The ground state cannot be smoothly deformed into a product state
@ The entanglement entropy shows deviations from the strict area law
@ Some elementary excitations are non-local

(they cannot be created individually by any set of local operators)

@ These quasiparticles exhibit some form of long-range interactions
(anyonic mutual statistics)

Savary and Balents, Rep. Prog. Phys. 80, 016502 (2017)
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The frustrated Heisenberg model in two dimensions

e The simplest model on the square lattice

3
N
H=u, g Sr:-Spr + )2 E Sr - Sw
(RR") (RRY) A1 Le
. \/J
e Infinitely many papers with partially contradictory results !
Gong et al., Phys. Rev. Lett. 113, 027201 (2014)
Wang et al., Phys. Rev. B 94, 075143 (2016)
Poilblanc and Mambrini, Phys. Rev. B 96, 014414 (2017)
Haghshenas and Sheng, Phys. Rev. B 97, 174408 (2018)
Wang and Sandvik, Phys. Rev. Lett. 121, 107202 (2018)
e Possibly, a gapless spin liquid (SL) emerges between two AF phases
7
\ —
SL
00 ~0.48 ~0.60 NYAS
Hu et al., Phys. Rev. B 88, 060402 (2013)
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Jastrow wave functions for magnetically ordered phases

e Start from a (classical) ordered state in the XY plane

[®a) =TT (1 e+ €| 1r)

R

The weight of every spin configuration (along z) is 1

Relative phases are determined by Q

e Include a two-body Jastrow factor to modify the weights

1 Z Z
V) = exp 3 Z Vr,r' SRSk | |Par)

R,R
Vr,r’ is a pseudo-potential that can be optimized
The Jastrow factor creates entanglement (typically area law)

This wave function corresponds to the one of the spin-wave approximation

Manousakis, Rev. Mod. Phys. 63, 1 (1991)

Franjic and Sorella, Prog. Theor. Phys. 97, 399 (1997)
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Accuracy of Jastrow wave function

e Size consistent wave function
O(N) variational parameters (with translational invariance)
O(N?) scaling for sampling: easy calculations up to N ~ 500 + 1000 (on a desktop)
e The accuracy depends upon the lattice
Rather good variational energy for unfrustrated lattices: AE/Ecx =~ 1%
Accuracy on observables follows (e on E — /e on O): AM/Mex ~ 10%
e It breaks spin SU(2) symmetry
Bad for finite lattices (the ground state is fully symmetric)
Good for the thermodynamic limit (if the ground state breaks the symmetry)
e The Jastrow factor gives the correct physics
For small momenta: 5%(q) «x q: Goldstone modes from the Feynman construction

|Wq) = S5 |V) gives E; — E g%
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Standard mean-field approach

Consider the spin-1/2 Heisenberg model on a generic lattice
H= Z Jr,r"SR * Srr
R,R!

In a standard mean-field approach, each spin couples to an effective field generated by
the surrounding spins:

Hate = ) Jrr {(Sk) - Skr +Si - (Swr) — (Sk) - (Srr)}

R,R’

However, by definition, spin liquids have a zero magnetization:

(Sr) =0
How can we construct a mean-field approach for such disordered states?
We need to construct a theory in which all classical order parameters are vanishing J
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From spins to electrons...

e Consider the spin-1/2 Heisenberg model on a generic lattice
H= Z Jr,r'SR - Sk
R,R!

e A faithful representation of spin-1/2 is given by

P SU(2) gauge r%dundancy
R = 2%R,a%,8CR,8 J e.g., Cry— € Rcgy

e The spin model is transformed into a purely interacting electronic system

_ = t 1 t t
H= § Jr,R! E <‘7C’ CR,0cCR,0CR o' CR! ot T 550’76CR,UCR,U'CR/,U'CR’,U

R,R’ o,0’

e One spin per site — we must impose the constraint

t t
CiaCia GGy = 1J
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...and back to spins

e The SU(2) symmetric mean-field approximation gives a BCS-like form

Ho = Z tRyR/c};’(,cR,yg + Z AR g C);,TC;/,J, + h.c.

R,R o R,R

{tr,r } and {Ag g/} define the mean-field Ansatz — BCS spectrum {e.}
The constraint is no longer satisfied locally (only on average)

e The constraint can be inserted by the Gutzwiller projector — RVB

L

[Wo) = P |Po)

Pe = [ [(nrr = nr.1)’
3 J

e The exact projection can be treated within the variational Monte Carlo approach

F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems
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The projected wave function

e The mean-field wave function has a BCS-like form

2
_ t ot _ Pl t ot
|®o) = exp {Z;,j fi,jcmcj,i} 0) = {1 + 20Tt 2 (Zi,j fi,jcimcj,i) +.. } 0) l
It is a linear superposition of all singlet configurations (that may overlap)
o A
: + ..
~ ¢
e After projection, only non-overlapping singlets survive:
the resonating valence-bond (RVB) wave function Anderson, Science 235, 1196 (1987)
LY G N
5\ X -~
RIS TN

( o u
A GIE ST S
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The projected wave function

e The mean-field wave function has a BCS-like form

2
|Po) = exp {Zu f,.,jc,.chL} 0) = {1 + X fuclacl 2 (Zu f,-’jc,.chJh) t- } |O>J

e Depending on the pairing function f;;, different RVB states may be obtained...

CCC&E“«E ~CC~CC CCCC%CC

Com G AN AR CnC o~
RS g‘<2<€§ Foidet: M
CCCNC AN AR

e ...even with valence-bond order (valence-bond crystals)

29223220
29223220
29223220
29223220
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A variational wave function for all seasons

e For a non-magnetic (spin liquid or valence-bond solid) state

|Wo) = Pc|®o)

Z tR,R,C;’,UCR’,o' —+ Z AR,R’ C'L’TCI’J_[”,L =+ h.c.

R,R',o R,R

e For an antiferromagnetic state

‘ [Wo) = Ps, T Pc|Po) ‘

Z tr R/CR(,CR/ +AAFZC‘ (CRTCRi—'_CRlCRT)

R,R!,c
In analogy with the Jastrow wave function, the magnetic moment in the x — y plane

J = exp (% > RR vR)R/Sf;Sf-\,/) is the spin-spin Jastrow factor

Federico Becca Variational WFs for spin models Machinel9 18 /39



How can we improve the variational state?
By the application of a few Lanczos steps!

|\Up LS <1+ Z amH

) [Wvmc)

@ For p — 00, |W,_s) converges to the exact ground state, provided (Wo|Wypmc) # 0

@ On large systems, only FEW Lanczos steps are affordable: We can do up to p =2

DA
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The variance extrapolation

@ A zero-variance extrapolation can be done

Whenever |Wyuc) is sufficiently close to the ground state:

L 2 E=MH)/N
E ~ Ey + const X o 2 (<7_[2> _ Ez)/N

How does it work?

(3 0.1y w w (b)-0.501

OF [>—o Random Initidlization 2| 1
© -0.1- 4 Q
7 ‘7 -0.502 1
3-0.27 8 2
B .03k 1 B
g—O.S HC:
8 g4 1 5-0503 1

-0.5mooee@ “poo 1
‘ ‘ ‘ ‘ i ‘
0 01 02 03 04 -0.504; 0.003 0.006
Variance of energy Variance of energy
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A few energies

on L x L clusters with PBC

J, = 0.40 | DMRG (8192) | VMC (p=0) | VMC (p =2) | VMC (p = )
L=6 —0.529744 | —0.52715(1) | —0.52957(1) | —0.52972(1)
[=8 —0.525196 | —0.52302(1) | —0.52539(1) | —0.52556(1)
L=10 —0.522391 | —052188(1) | —0.5240(1) | —0.52429(2)

J, = 0.45 | DMRG (8192) | VMC (p=0) | VMC (p =2) | VMC (p = )
L=6 —0.515655 | —0.51364(1) | —0.51558(1) | —0.51566(1)
[=8 —0.510740 | —0.50930(1) | —0.51125(1) | —0.51140(1)
L=10 —0.507976 | —0.50811(1) | —0.51001(1) | —0.51017(2)

J, =050 | DMRG (8192) | VMC (p=0) | VMC (p=2) | VMC (p = )
[=6 —0.503805 | —0.50117(1) | —0.50357(1) | —0.50382(1)
[=8 —0.498175 | —0.49656(1) | —0.49886(1) | —0.49906(1)
L=10 —0.495530 | —0.49521(1) | —0.49755(1) | —0.49781(2)

J, = 0.55 | DMRG (8192) | VMC (p=0) | VMC (p =2) | VMC (p = )
L=6 —0.495167 | —0.48992(1) | —0.49399(1) | —0.49521(7)
[=8 —0.488160 | —0.48487(1) | —0.48841(2) | —0.48894(3)
[=10 —0.485434 | —0.48335(1) | —0.48693(3) | —0.48766(6)

Hu, Becca, Parola, and Sorella,

Phys. Rev. B 88, 060402 (2013)

Gong, Zhu, Sheng, Motrunich, and Fisher, Phys. Rev. Lett. 113, 027201 (2014)
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Extrapolations to the ground state energy

ouod (@) (b) (© 20.492 : : .
0.475] _ _
m oa0al. (B) ©1,=0.5,L=10 ]
~0.496) 3 2 2048 .
. -0.480| -0.494 /Q” b
2 4096.-7
D _o.408 0475} -0.495F 8192 o 1
3 —0.485| o g
@ ] -0.496}- 6144 ]
T-05000  m 10x10 -
+ ipas o0 04 0497 o ]
o5 0498 -7 -
-0.495] o.405] -0.499 > ) . , L
O 31076103910 000 00T 002 001 002 3e-05 6e-05 9e-05 0.00012
Variance Variance Variance €
W.-J. Hu et al., Phys. Rev. B 88, 060402 (2013) S.-S. Gong et al., Phys. Rev. Lett. 113, 027201 (2014)
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0.35

Magnetization

2
m

lim (S, - So)

r—oo

e Magnetization computed for finite clusters from 10 x 10 to 22 x 22
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e A finite staggered magnetization is related to a finite Aar in the wave function
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The present understanding of the magnetically disordered phase

e Valence-bond solid

Read and Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

Sachdev and Bhatt, Phys. Rev. B 41, 9323 (1990)

Singh, Weihong, Hamer, and Oitmaa, Phys. Rev. B 60, 7278 (1999)
Capriotti and Sorella, Phys. Rev. Lett. 84, 3173 (2000)

Mambrini, Lauchli, Poilblanc, and Mila, Phys. Rev. B 74, 144422 (2006)

Gong et al., Phys. Rev. Lett. 113, 027201 (2014)

e Gapped or gapless spin liquid

Capriotti, Becca, Parola, and Sorella, Phys. Rev. Lett. 87, 097201 (2001)
Jiang, Yao, and Balents, Phys. Rev. B 86, 024424 (2012)

Wang, Poilblanc, Gu, Wen, and Verstraete, Phys. Rev. Lett. 111, 037202 (2013)

Poilblanc and Mambrini, Phys. Rev. B 96, 014414 (2017)
Haghshenas and Sheng, Phys. Rev. B 97, 174408 (2018)

Wang and Sandvik, Phys. Rev. Lett. 121, 107202 (2018)

Dac
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Restricted Boltzmann Machines (RBMs) entered into the game...

MANY-BODY PHYSICS

Solving the quantum many-body
problem with artificial
neural networks

Giuseppe Carleo'* and Matthias Troyer"*

Wren) = D exp [Z Wk,aSkha + Zbaha] D)

hy==+1 R,a a
} ‘¢Cl>

e Generalization of the Jastrow factor that includes many-body interactions

|WrBM) H exp {Iog cosh

ba + Z WR,aS;’
R

e Hidden spin variables (hy, ..., ha)
o Network parameters (b, W)
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The “sign problem”

e With a real parametrization (b and W), the sign structure is fixed by the reference state
e A complex parametrization is often needed to “learn” the correct signs

l J2/J1 ‘ <S> ‘
0.00 1
0.05 1
0.10 1
0.15 1
0.20 1
0.25 1
0.30 1
0.35 | 0.9999937
0.40 | 0.9995104
0.45 | 0.9927903
0.50 | 0.9608835
0.55 | 0.8704279
0.60 | 0.6144326

Federico Becca

The average Marshall sign on the 6 x 6 cluster

(5) = 2 [ (x| Wex) PPsign{ M (x) (x| Wex) }
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e Fixing the sign to the exact one and optimizing amplitudes

[A wosmnetris W tashtions @ all symmetrics |
e N R5 =03
a -
0 N 0 a N
" N H
0 Al 0e ®
[
= 5 ® "
0 n 0 ° .
)
[ -
0 . 0
]
.
0 0

e Optimizing only the sign

F(x)=]]exp {i log cosh [ba + WR,anz?(X)] }

co1- ‘z V() Psign {F () V()

| « | CforJz/J1:0.0 | | « | CfOI’Jz/J1:0.5 |
1 0.30381655 1 0.02770868
4 0.00000004 4 0.00312562

F = ] E DA

[}
R e R A | R



The unfrustrated Heisenberg model: fermions + RBM

e We combine Gutzwiller-projected fermionic states and RBMs

(x|VrBM) = H H exp {Iog cosh | b, + Z Wk,.ST R):| } (x|Po)

=
where |®g) is the ground state of a quadratic Hamiltonian

Different from Choo, Carleo, and Neupert, talk at the conference
e We impose translational symmetry (Q = 0) on the RBM
e We consider real parameters for J> = 0 to impose the Marshall-sign rule

e We consider complex parameters for J, > 0 to change the fermionic signs

Federico Becca Variational WFs for spin models Machinel9

29/39



%103 Jp=10.0 %10-3 Jy=0.0
4.04
partons+Jastrow
JTTTTTTTTTTTTTTTTT 3.5 partons+Jastrow
3.01
3 2.5
2.01
%] 1.5
1.0
1.
0.5 1
07 ; - 0.0 -—— ; .
12 4 8 12 12 4 8 12
a a
«O> «F>r «=Zr « =) = Q>



The unfrustrated Heisenberg model
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With a poor accuracy we see a hat...

Antoine de Saint-Exupéry, Le Petit Prince (1943)

Machinel9
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Antoine de Saint-Exupéry, Le Petit Prince (1943)

By increasing the accuracy we identify an elephant!

DAy
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Problems where a good accuracy is needed: the highly-frustrated region

Maybe by further improving the accuracy we will discover the truth...

Antoine de Saint-Exupéry, Le Petit Prince (1943)

Federico Becca
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(x|WVrBM) H H exp {Iog cosh [b + Z Wg aST(R):| } (x|Po)

T «
><10—3 J2 =0.5 J2 =0.5
[ —0.494
partons
61 partons
“““““““““““ —0.495 1
5] \\*ﬁ‘
41 —0.496 1
3 —0.497 -
21 Lanczos steps extrap
—0.498 1
1 4
DMRG extrap
0+ T T —0.499
12 4 8 12 12 4 8 12
o o

a
u}
a
v
a
!
-
int
v
[
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x1073

| partons+Jastrow

><10_3 JQ = 00
partons—+Jastrow
12 4 8

«4O> 4« Fr «=Z)» « =

Jy=0.38




energy difference per site, € — &n,

A VMC-Fermions

o DMRG .
0.004 1 CNN
A
A
0.002{ & .
4 a
o
A
0.000 T
o
-0.002
o
0.0 02 0.4 0.6 0.8

e CNN with about 4000 variational parameters
e Fermionic state with about 40 variational parameters




e Heisenberg model on the triangular lattice
The exact sign structure is not known
The ground state has coplanar magnetic order
2.5
2.01
1.5

1.0

0.51

0.0

—0.5455
partons-+Jastrow

—0.5460 1

—0.5465 1

—0.5470 1

—0.5475 1

—0.5480 1

—0.5485 1

A lattice (12 x 12)

partons-+Jastrow
12 4 8 12
@
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What is wrong with these RBMs?

These RBMs assume that

@ Spin degrees of freedom S; are the relevant objects

@ A particular form of the spin-spin correlation is present log cosh(z)

The first assumption is correct for (collinear) magnetically ordered phase

The second assumption limits the flexibility of the wave function
Many variational parameters

o Difficult optimizations

@ No transparent description to understand the physical properties

Often there are many local minima, with completely different parameters
Calculations are limited to O(100) sites

A more educated guess would be desirable

@ Parametrization in terms of spinons and not spins
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