Variational wave functions for frustrated spin models: from traditional methods to neural networks... and back

Federico Becca

Machine Learning for Quantum Many-Body Physics, KITP 2019

F. Ferrari, W.-J. Hu (SISSA \rightarrow Rice), and S. Sorella (SISSA, Trieste), F. Ferrari and J. Carrasquilla (Vector Institute)

naa

イロト イボト イヨト イヨ

Spin models: from classical order to quantum spin liquids

- Unfrustrated spin models and magnetically ordered phases
- Frustrated spin models, quantum paramagnets, and spin liquids
- 2 "Conventional" variational wave functions
 - Jastrow wave functions for magnetically ordered phases
 - Resonating valence-bond wave functions for spin liquids

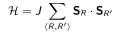
8 Results for "conventional" wave functions

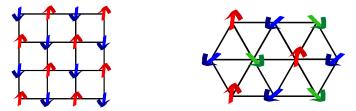
- 4 Restricted Boltzmann Machines
- 5 Results for RBM wave functions

6 Conclusions

イロト イヨト イヨト

Quantum spin models on the lattice



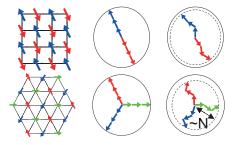


- Classical limit (S → ∞): broken O(3) symmetry (magnetization can be collinear, coplanar, or non-coplanar)
- Semi-classical corrections (linear spin waves): gapless excitations Magnons carrying S = 1 quantum number (Goldstone modes) Holstein and Primakoff, Phys. Rev. 58, 1098 (1940)

nar

・ロト ・回ト ・ヨト ・ヨト

The classical ground state is "dressed" by quantum fluctuations



- The lattice breaks up into sublattices
- Each sublattice keeps an extensive magnetization

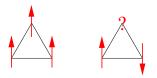
$$\mathcal{S}(q) = rac{1}{N} \langle \Psi_0 | \left| \sum_R \mathbf{S}_R e^{iqR}
ight|^2 | \Psi_0
angle = rac{1}{N} \sum_{R,R'} \langle \Psi_0 | \mathbf{S}_R \cdot \mathbf{S}_{R'} | \Psi_0
angle e^{iq(R-R')}$$

 $S(q) = \left\{ egin{array}{cc} O(1) & ext{ for all } q's & o ext{ short-range correlations} \ S(q_0) \propto N & ext{ for } q = q_0 & o ext{ long-range order} \end{array}
ight.$

nar

We have to stay away from the classical limit

- Small value of the spin S, e.g., S = 1/2 or S = 1
- Frustration of the super-exchange interactions (not all terms of the energy can be optimized simultaneously)



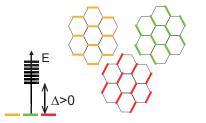
- Low spatial dimensionality: D = 2 is the "best" choice In D = 1 there is no magnetic order, given the Mermin-Wagner theorem (not possible to break a continuous symmetry in D=1, even at T = 0) Pitaevskii and Stringari, J. Low Temp. Phys. 85, 377 (1991)
- [Large continuous rotation symmetry group, e.g., SU(2), SU(N) or Sp(2N)]

Arovas and Auerbach, Phys. Rev. B 38, 316 (1988); Arovas and Auerbach, Phys. Rev. Lett. 61, 617 (1988)

Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991); Read and Sachdev, Nucl. Phys. B316, 609 (1989)

Federico Becca

What's happening when destroying magnetic order: valence-bond solids



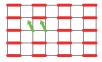
$$= \frac{1}{\sqrt{2}} \left(\left| \downarrow \uparrow \right\rangle \right) \text{ Singlet, total spin S=0}$$

・ロト ・同ト ・ヨト ・

$J_1 - J_2$ Heisenberg model on the hexagonal lattice

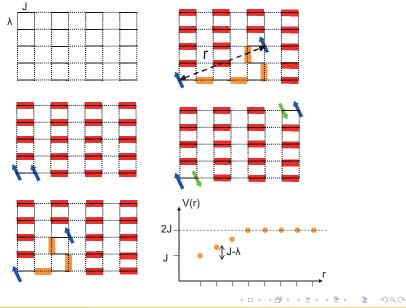
Fouet, Sindzingre, and Lhuillier, Eur. Phys. J. B 20, 241 (2001)

- Short-range spin-spin correlations
- \bullet Spontaneous breakdown of some lattice symmetries \rightarrow ground-state degeneracy
- **Gapped** *S* = 1 **excitations** (triplons)



naa

Valence-bond solids have conventional excitations



Federico Becca

Machine19 7 / 39

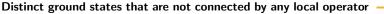
What's happening when destroying magnetic order: spin liquids

• Anderson's idea: the short-range resonating-valence bond (RVB) state:

Anderson, Mater. Res. Bull. 8, 153 (1973)

Linear superposition of many (an exponential number) of valence-bond configurations

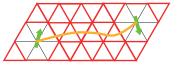
 \bullet Spin excitations? No dimer order \rightarrow we may have deconfined spinons



Wen, Phys. Rev. B 44, 2664 (1991); Oshikawa and Senthil, Phys. Rev. Lett. 96, 060601 (2006)

Federico Becca

naa



Spatially uniform state

Spin liquids are "highly-entangled" states

$$\begin{split} \rho_A &= \mbox{Tr_B} |\Psi\rangle \langle \Psi| \\ S(A) &= -\mbox{Tr_A} \rho_A \log \rho_A \\ S(A) &\approx c \times L - \gamma \\ (L \mbox{ is the length of the boundary}) \\ \gamma &> 0 \implies \mbox{NO product state} \end{split}$$

[This highly-entangled state has been introduced by Chernyshev (HFM 2018, unpublished)]

Some general features of highly-entangled phases are:

- The ground state cannot be smoothly deformed into a product state
- The entanglement entropy shows deviations from the strict area law
- Some elementary excitations are *non-local* (they cannot be created individually by any set of local operators)
- These quasiparticles exhibit some form of long-range interactions (anyonic mutual statistics)

Savary and Balents, Rep. Prog. Phys. 80, 016502 (2017)

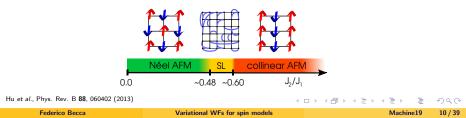
・ロト ・ 同ト ・ ヨト ・ ヨト

The frustrated Heisenberg model in two dimensions

• The simplest model on the square lattice

$$\mathcal{H} = J_1 \sum_{\langle R, R' \rangle} \mathbf{S}_R \cdot \mathbf{S}_{R'} + J_2 \sum_{\langle \langle R, R' \rangle \rangle} \mathbf{S}_R \cdot \mathbf{S}_{R'}$$

- Infinitely many papers with partially contradictory results Gong et al., Phys. Rev. Lett. 113, 027201 (2014)
 Wang et al., Phys. Rev. B 94, 075143 (2016)
 Poilblanc and Mambrini, Phys. Rev. B 96, 014414 (2017)
 Haghshenas and Sheng, Phys. Rev. B 97, 174408 (2018)
 Wang and Sandvik, Phys. Rev. Lett. 121, 107202 (2018)
- Possibly, a gapless spin liquid (SL) emerges between two AF phases



• Start from a (classical) ordered state in the XY plane

$$|\Phi_{
m cl}
angle = \prod_R \left(|\uparrow
angle_R + e^{iQR}|\downarrow
angle_R
ight)$$

The weight of every spin configuration (along z) is 1

Relative phases are determined by Q

• Include a two-body Jastrow factor to modify the weights

$$|\Psi
angle = \exp\left[-rac{1}{2}\sum_{{\it R},{\it R}'} {\it v_{{\it R},{\it R}'}} {\it S}_{\it R}^{z} {\it S}_{\it R'}^{z}
ight] |\Phi_{
m cl}
angle$$

 $v_{R,R'}$ is a pseudo-potential that can be optimized

The Jastrow factor creates entanglement (typically area law) This wave function corresponds to the one of the spin-wave approximation

Manousakis, Rev. Mod. Phys. 63, 1 (1991)

Franjic and Sorella, Prog. Theor. Phys. 97, 399 (1997)

イロト イヨト イヨト

• Size consistent wave function

O(N) variational parameters (with translational invariance) $O(N^2)$ scaling for sampling: easy calculations up to $N \approx 500 \div 1000$ (on a desktop)

• The accuracy depends upon the lattice

Rather good variational energy for unfrustrated lattices: $\Delta E/E_{ex} \approx 1\%$ Accuracy on observables follows (ϵ on $E \rightarrow \sqrt{\epsilon}$ on O): $\Delta M/M_{ex} \approx 10\%$

• It breaks spin SU(2) symmetry

Bad for finite lattices (the ground state is fully symmetric) Good for the thermodynamic limit (if the ground state breaks the symmetry)

• The Jastrow factor gives the correct physics

For small momenta: $S^{z}(q) \propto q$: Goldstone modes from the Feynman construction

$$|\Psi_q
angle = S^z_q |\Psi
angle$$
 gives $E_q - E \propto rac{q^2}{S^2_a}$

Consider the spin-1/2 Heisenberg model on a generic lattice

$$\mathcal{H} = \sum_{R,R'} J_{R,R'} \mathbf{S}_R \cdot \mathbf{S}_{R'}$$

In a standard mean-field approach, each spin couples to an effective field generated by the surrounding spins:

$$\mathcal{H}_{\mathrm{MF}} = \sum_{R,R'} J_{R,R'} \left\{ \langle \mathbf{S}_R \rangle \cdot \mathbf{S}_{R'} + \mathbf{S}_i \cdot \langle \mathbf{S}_{R'} \rangle - \langle \mathbf{S}_R \rangle \cdot \langle \mathbf{S}_{R'} \rangle \right\}$$

However, by definition, spin liquids have a zero magnetization:

$$\langle \mathbf{S}_R \rangle = 0$$

How can we construct a mean-field approach for such disordered states? We need to construct a theory in which all classical order parameters are vanishing

Federico Becca	Fee	lerico	Becca
----------------	-----	--------	-------

naa

イロト イポト イヨト イヨト

From spins to electrons...

• Consider the spin-1/2 Heisenberg model on a generic lattice

$$\mathcal{H} = \sum_{R,R'} J_{R,R'} \mathbf{S}_R \cdot \mathbf{S}_{R'}$$

• A faithful representation of spin-1/2 is given by

$$S_{R}^{a} = \frac{1}{2} c_{R,\alpha}^{\dagger} \sigma_{\alpha,\beta}^{a} c_{R,\beta}$$
SU(2) gauge redundancy
e.g., $c_{R,\beta} \to e^{i\theta_{R}} c_{R,\beta}$

• The spin model is transformed into a purely interacting electronic system

$$\mathcal{H} = \sum_{R,R'} J_{R,R'} \sum_{\sigma,\sigma'} \left(\sigma \sigma' c_{R,\sigma}^{\dagger} c_{R,\sigma} c_{R',\sigma'}^{\dagger} c_{R',\sigma'} + \frac{1}{2} \delta_{\sigma',\bar{\sigma}} c_{R,\sigma}^{\dagger} c_{R,\sigma'} c_{R',\sigma'}^{\dagger} c_{R',\sigma} \right)$$

 \bullet One spin per site \rightarrow we must impose the constraint

$$c^{\dagger}_{i,\uparrow}c_{i,\uparrow}\!+\!c^{\dagger}_{i,\downarrow}c_{i,\downarrow}=1$$

Federico Becca

イロト イヨト イヨト

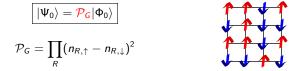
• The SU(2) symmetric mean-field approximation gives a BCS-like form

$$\mathcal{H}_{0} = \sum_{R,R',\sigma} t_{R,R'} c_{R,\sigma}^{\dagger} c_{R',\sigma} + \sum_{R,R'} \Delta_{R,R'} c_{R,\uparrow}^{\dagger} c_{R',\downarrow}^{\dagger} + h.c.$$

 $\{t_{R,R'}\}$ and $\{\Delta_{R,R'}\}$ define the mean-field Ansatz \longrightarrow BCS spectrum $\{\epsilon_{\alpha}\}$

The constraint is no longer satisfied locally (only on average)

 \bullet The constraint can be inserted by the Gutzwiller projector \rightarrow RVB



• The exact projection can be treated within the variational Monte Carlo approach

F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems

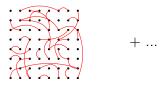
イロト イポト イヨト イヨト

The projected wave function

• The mean-field wave function has a BCS-like form

$$|\Phi_{0}\rangle = \exp\left\{\sum_{i,j}f_{i,j}c_{i,\uparrow}^{\dagger}c_{j,\downarrow}^{\dagger}\right\}|0\rangle = \left[1 + \sum_{i,j}f_{i,j}c_{i,\uparrow}^{\dagger}c_{j,\downarrow}^{\dagger} + \frac{1}{2}\left(\sum_{i,j}f_{i,j}c_{i,\uparrow}^{\dagger}c_{j,\downarrow}^{\dagger}\right)^{2} + \dots\right]|0\rangle$$

It is a linear superposition of all singlet configurations (that may overlap)



• After projection, only non-overlapping singlets survive: the resonating valence-bond (RVB) wave function Anderson

Anderson, Science 235, 1196 (1987)

Federico Becca

SQA

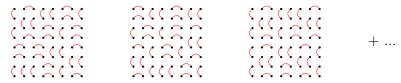
+ ...

The projected wave function

• The mean-field wave function has a BCS-like form

$$|\Phi_{0}\rangle = \exp\left\{\sum_{i,j} f_{i,j} c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger}\right\} |0\rangle = \left[1 + \sum_{i,j} f_{i,j} c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} + \frac{1}{2} \left(\sum_{i,j} f_{i,j} c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger}\right)^{2} + \dots\right] |0\rangle$$

• Depending on the pairing function f_{i,j}, different RVB states may be obtained...



• ...even with valence-bond order (valence-bond crystals)

イロト イヨト イヨト

• For a non-magnetic (spin liquid or valence-bond solid) state

$$|\Psi_0\rangle={\cal P}_{\pmb{G}}|\Phi_0\rangle$$

$$\mathcal{H}_{0} = \sum_{R,R',\sigma} t_{R,R'} c_{R,\sigma}^{\dagger} c_{R',\sigma} + \sum_{R,R'} \Delta_{R,R'} c_{R,\uparrow}^{\dagger} c_{R',\downarrow}^{\dagger} + h.c.$$

• For an antiferromagnetic state

$$|\Psi_0\rangle=\mathcal{P}_{\textit{S}_z}\mathcal{JP}_{\textit{G}}|\Phi_0\rangle$$

$$\mathcal{H}_{0} = \sum_{\textit{R},\textit{R}',\sigma} t_{\textit{R},\textit{R}'} c_{\textit{R},\sigma}^{\dagger} c_{\textit{R}',\sigma} + \Delta_{\mathrm{AF}} \sum_{\textit{R}} e^{i\textit{QR}} \left(c_{\textit{R},\uparrow}^{\dagger} c_{\textit{R},\downarrow} + c_{\textit{R},\downarrow}^{\dagger} c_{\textit{R},\uparrow} \right)$$

In analogy with the Jastrow wave function, the magnetic moment in the x - y plane $\mathcal{J} = \exp\left(\frac{1}{2}\sum_{R,R'} v_{R,R'} S_R^z S_{R'}^z\right)$ is the spin-spin Jastrow factor

<□▶ <□▶ < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How can we improve the variational state? By the application of a few Lanczos steps!

$$|\Psi_{p-LS}\rangle = \left(1 + \sum_{m=1,\dots,p} \alpha_m \mathcal{H}^m\right) |\Psi_{VMC}\rangle$$

• For $p \to \infty$, $|\Psi_{p-LS}\rangle$ converges to the exact ground state, provided $\langle \Psi_0 | \Psi_{VMC} \rangle \neq 0$

• On large systems, only FEW Lanczos steps are affordable: We can do up to p = 2

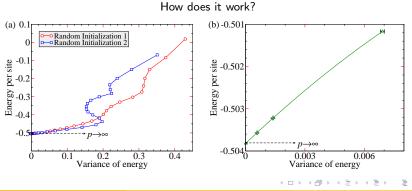
900

◆ロト ◆部 ト ◆注 ト ◆注 ト 一注

• A zero-variance extrapolation can be done

Whenever $|\Psi_{VMC}\rangle$ is sufficiently close to the ground state:

$$E \simeq E_0 + \text{const} \times \sigma^2 \qquad \qquad E = \langle \mathcal{H} \rangle / N \\ \sigma^2 = (\langle \mathcal{H}^2 \rangle - E^2) / N$$



naa

$J_2 = 0.40$	DMRG (8192)	VMC $(p = 0)$	VMC $(p = 2)$	VMC ($p = \infty$)
L = 6	-0.529744	-0.52715(1)	-0.52957(1)	-0.52972(1)
L = 8	-0.525196	-0.52302(1)	-0.52539(1)	-0.52556(1)
L = 10	-0.522391	-0.52188(1)	-0.5240(1)	-0.52429(2)
$J_2 = 0.45$	DMRG (8192)	VMC $(p = 0)$	VMC $(p = 2)$	VMC ($p = \infty$)
L = 6	-0.515655	-0.51364(1)	-0.51558(1)	-0.51566(1)
L = 8	-0.510740	-0.50930(1)	-0.51125(1)	-0.51140(1)
L = 10	-0.507976	-0.50811(1)	-0.51001(1)	-0.51017(2)
$J_2 = 0.50$	DMRG (8192)	VMC $(p = 0)$	VMC $(p = 2)$	VMC ($p = \infty$)
L = 6	-0.503805	-0.50117(1)	-0.50357(1)	-0.50382(1)
L = 8	-0.498175	-0.49656(1)	-0.49886(1)	-0.49906(1)
L = 10	-0.495530	-0.49521(1)	-0.49755(1)	-0.49781(2)
$J_2 = 0.55$	DMRG (8192)	VMC $(p = 0)$	VMC $(p = 2)$	VMC ($p = \infty$)
L = 6	-0.495167	-0.48992(1)	-0.49399(1)	-0.49521(7)
L = 8	-0.488160	-0.48487(1)	-0.48841(2)	-0.48894(3)
<i>L</i> = 10	-0.485434	-0.48335(1)	-0.48693(3)	-0.48766(6)

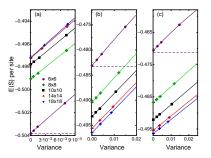
Hu, Becca, Parola, and Sorella, Phys. Rev. B 88, 060402 (2013)

Gong, Zhu, Sheng, Motrunich, and Fisher, Phys. Rev. Lett. 113, 027201 (2014)

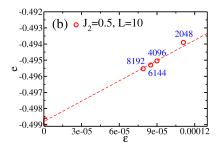
590

イロト イヨト イモト イモト

Extrapolations to the ground state energy



W.-J. Hu et al., Phys. Rev. B 88, 060402 (2013)



S.-S. Gong et al., Phys. Rev. Lett. 113, 027201 (2014)

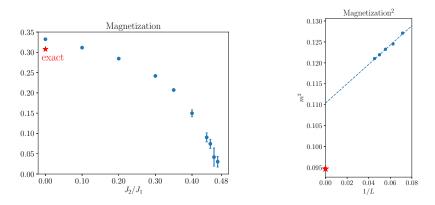
・ロト ・ 同ト ・ ヨト ・

DQC

Our results for the $J_1 - J_2$ model

$$m^2 = \lim_{r \to \infty} \langle \mathbf{S}_r \cdot \mathbf{S}_0 \rangle$$

• Magnetization computed for finite clusters from 10×10 to 22×22



• A finite staggered magnetization is related to a finite Δ_{AF} in the wave function

990

Valence-bond solid

Read and Sachdev, Phys. Rev. Lett. **62**, 1694 (1989) Sachdev and Bhatt, Phys. Rev. B **41**, 9323 (1990) Singh, Weihong, Hamer, and Oitmaa, Phys. Rev. B **60**, 7278 (1999) Capriotti and Sorella, Phys. Rev. Lett. **84**, 3173 (2000) Mambrini, Lauchli, Poilblanc, and Mila, Phys. Rev. B **74**, 144422 (2006) Gong *et al.*, Phys. Rev. Lett. **113**, 027201 (2014)

• Gapped or gapless spin liquid

Capriotti, Becca, Parola, and Sorella, Phys. Rev. Lett. **87**, 097201 (2001) Jiang, Yao, and Balents, Phys. Rev. B **86**, 024424 (2012) Wang, Poilblanc, Gu, Wen, and Verstraete, Phys. Rev. Lett. **111**, 037202 (2013) Poilblanc and Mambrini, Phys. Rev. B **96**, 014414 (2017) Haghshenas and Sheng, Phys. Rev. B **97**, 174408 (2018) Wang and Sandvik, Phys. Rev. Lett. **121**, 107202 (2018)

<ロト < 部ト < 注ト < 注)

MANY-BODY PHYSICS

Solving the quantum many-body problem with artificial neural networks

Giuseppe Carleo^{1*} and Matthias Troyer^{1,2}

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

$$\begin{split} |\Psi_{\rm RBM}\rangle &= \sum_{h_a=\pm 1} \exp\left[\sum_{R,a} W_{R,a} S_R^z h_a + \sum_a b_a h_a\right] |\Phi_{\rm cl}\rangle \\ |\Psi_{\rm RBM}\rangle &\propto \prod_a \exp\left\{\log\cosh\left[b_a + \sum_R W_{R,a} S_R^z\right]\right\} |\Phi_{\rm cl}\rangle \end{split}$$

- Hidden spin variables $(h_1, \ldots, h_{\alpha})$
- Network parameters (b, W)
- · Generalization of the Jastrow factor that includes many-body interactions

The "sign problem"

- With a real parametrization (b and W), the sign structure is fixed by the reference state
- A complex parametrization is often needed to "learn" the correct signs

J_2/J_1	$\langle s \rangle$
0.00	1
0.05	1
0.10	1
0.15	1
0.20	1
0.25	1
0.30	1
0.35	0.9999937
0.40	0.9995104
0.45	0.9927903
0.50	0.9608835
0.55	0.8704279
0.60	0.6144326

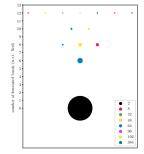
The average Marshall sign on the 6×6 cluster

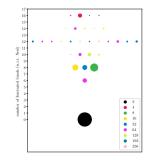
$$\langle s \rangle = \sum_{x} |\langle x | \Psi_{\mathrm{ex}} \rangle|^2 \mathrm{sign} \{ M(x) \langle x | \Psi_{\mathrm{ex}} \rangle \}$$

nar

・ロト ・部 ト ・ヨト ・ヨト

Weights of the exact ground state on the 4×4 cluster





・ロト ・日 ・ ・ ヨ ・ ・

Federico Becca

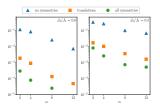
Variational WFs for spin models

Э

500

Learning signs and amplitudes on the 4×4 cluster

• Fixing the sign to the exact one and optimizing amplitudes



• Optimizing only the sign

$$egin{split} F(x) &= \prod_a \exp\left\{i\log\cosh\left[b_a + \sum_R W_{R,a}S_R^z(x)
ight]
ight\}\ C &= 1 - \left|\sum_x |\Psi_{ ext{ex}}(x)|^2 ext{sign}\{F(x)\Psi_{ ext{ex}}(x)\}
ight| \end{split}$$

α	C for $J_2/J_1 = 0.0$	
1	0.30381655	
4	0.0000004	

α	C for $J_2/J_1 = 0.5$	
1	0.02770868	
4	0.00312562	

э

< □ > < 同 >

500

• We combine Gutzwiller-projected fermionic states and RBMs

$$\langle x | \Psi_{\text{RBM}} \rangle = \prod_{T} \prod_{a} \exp \left\{ \log \cosh \left[b_a + \sum_{R} W_{R,a} S_{T(R)}^z \right] \right\} \langle x | \Phi_0 \rangle$$

where $|\Phi_0\rangle$ is the ground state of a quadratic Hamiltonian

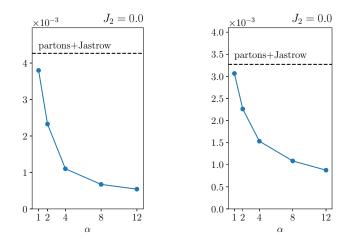
Different from Choo, Carleo, and Neupert, talk at the conference

- We impose translational symmetry (Q = 0) on the RBM
- We consider real parameters for $J_2 = 0$ to impose the Marshall-sign rule
- We consider **complex parameters for** $J_2 > 0$ to change the fermionic signs

nac

イロト イボト イヨト イヨト 三日

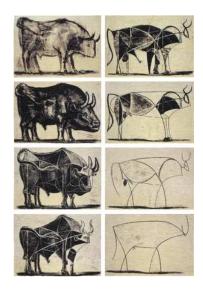
The unfrustrated Heisenberg model



500

▲□▶ ▲□▶ ▲ □▶ ▲ □

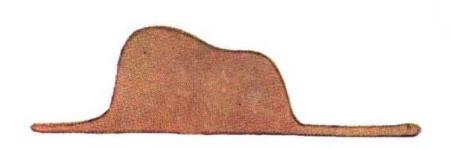
The unfrustrated Heisenberg model



990

メロト メロト メヨト メヨト

With a poor accuracy we see a hat...

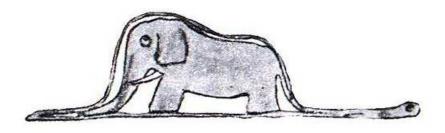


Antoine de Saint-Exupéry, Le Petit Prince (1943)

DQC

<ロト < 部 > < き > < き</p>

By increasing the accuracy we identify an elephant!



Antoine de Saint-Exupéry, Le Petit Prince (1943)

5900

・ロト (雪ト (ヨト)

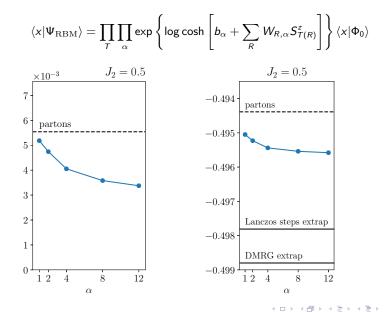
Maybe by further improving the accuracy we will discover the truth...

Antoine de Saint-Exupéry, Le Petit Prince (1943)

SQA

メロト メポト メヨト メヨ

The highly-frustrated case $J_2/J_1 = 0.5$

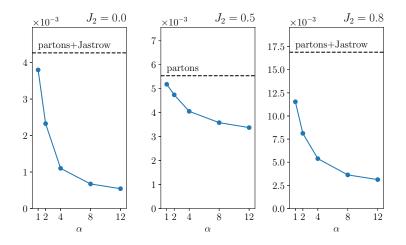


Federico Becca

Machine19 35 / 39

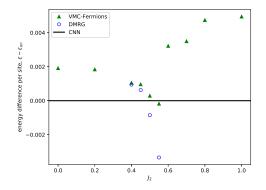
5900

A summary on the 6×6 cluster



<ロト < 部 > < 目 > < 目</p>

500



- CNN with about 4000 variational parameters
- Fermionic state with about 40 variational parameters

Federico Becca	Fee	lerico	Becca
----------------	-----	--------	-------

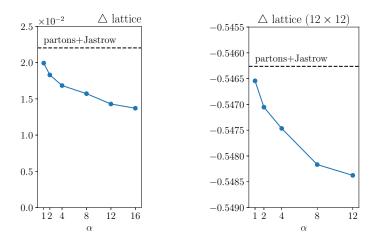
500

< □ > < 同 >

э

What about non-collinear order?

 Heisenberg model on the triangular lattice The exact sign structure is not known The ground state has coplanar magnetic order



Federico Becca

500

・ロト ・ 戸 ト ・ ヨ ト ・

These RBMs assume that

- Spin degrees of freedom S_R^z are the relevant objects
- A particular form of the spin-spin correlation is present $\log \cosh(z)$

The first assumption is correct for (collinear) magnetically ordered phase The second assumption limits the flexibility of the wave function

Many variational parameters

- Difficult optimizations
- No transparent description to understand the physical properties

Often there are many local minima, with completely different parameters Calculations are limited to O(100) sites

A more educated guess would be desirable

• Parametrization in terms of spinons and not spins

SQC

・ロト ・ 四ト ・ 日ト ・ 日