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Quantum spin models on the lattice

H = J
X

hR;R0i

SR � SR0

� Classical limit (S ! 1 ): broken O(3) symmetry

(magnetization can be collinear, coplanar, or non-coplanar)

� Semi-classical corrections (linear spin waves):gapless excitations

Magnons carryingS = 1 quantum number (Goldstone modes)
Holstein and Primako�, Phys. Rev. 58, 1098 (1940)
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Renormalization of the classical state

The classical ground state is \dressed" by quantum uctuations

~NNN

� The lattice breaks up into sublattices
� Each sublattice keeps an

extensive magnetization

S(q) =
1
N

h	 0j

�
�
�
�
�

X

R

SReiqR

�
�
�
�
�

2

j	 0i =
1
N

X

R;R0

h	 0jSR � SR0j	 0i eiq(R� R0)

S(q) =
�

O(1) for all q's ! short-range correlations
S(q0) / N forq = q0 ! long-range order
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Mechanisms to destroy the long-range order

We have to stay away from the classical limit

� Small value of the spinS, e.g., S = 1 =2 or S = 1

� Frustration of the super-exchange interactions
(not all terms of the energy can be optimized simultaneously)

?

� Low spatial dimensionality:D = 2 is the \best" choice
In D = 1 there is no magnetic order, given the Mermin-Wagner theorem
(not possible to break a continuous symmetry in D=1, even atT = 0)
Pitaevskii and Stringari, J. Low Temp. Phys. 85, 377 (1991)

� [Large continuous rotation symmetry group, e.g., SU(2), SU(N) or Sp(2N)]

Arovas and Auerbach, Phys. Rev. B38, 316 (1988); Arovas and Auerbach, Phys. Rev. Lett. 61, 617 (1988)

Read and Sachdev, Phys. Rev. Lett.66, 1773 (1991); Read and Sachdev, Nucl. Phys.B316, 609 (1989)
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What's happening when destroying magnetic order: valence-bond solids

D>0

E

J1� J2 Heisenberg model on the hexagonal lattice
Fouet, Sindzingre, and Lhuillier, Eur. Phys. J. B 20, 241 (2001)

Properties:

� Short-range spin-spin correlations

� Spontaneous breakdown of some lattice symmetries! ground-state degeneracy

� Gapped S = 1 excitations (triplons)
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Valence-bond solids have conventional excitations
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What's happening when destroying magnetic order: spin liquids

� Anderson's idea: the short-range resonating-valence bond(RVB) state:
Anderson, Mater. Res. Bull. 8, 153 (1973)

Linear superposition of many (an exponential number) of valence-bond con�gurations

=+ + … Spatially uniform state

� Spin excitations? No dimer order! we may havedecon�ned spinons

� Spinon fractionalization and topological degeneracy

Distinct ground states that are not connected by any local operator

Wen, Phys. Rev. B 44, 2664 (1991); Oshikawa and Senthil, Phys. Rev. Lett. 96, 060601 (2006)
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Spin liquids are \highly-entangled" states

� A = TrB j	 ih	 j

S(A) = � TrA � A log � A

S(A) � c � L � 

(L is the length of the boundary)

 > 0 =) NO product state

[This highly-entangled state has been introduced by Chernyshev (HFM 2018, unpublished)]

Some general features of highly-entangled phases are:

The ground state cannot be smoothly deformed into a product state

The entanglement entropy shows deviations from the strict area law

Some elementary excitations arenon-local
(they cannot be created individually by any set of local operators)

These quasiparticles exhibit some form of long-range interactions
(anyonic mutual statistics)

Savary and Balents, Rep. Prog. Phys.80, 016502 (2017)
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The frustrated Heisenberg model in two dimensions

� The simplest model on the square lattice

H = J1

X

hR;R0i

SR � SR0 + J2

X

hhR;R0ii

SR � SR0

2

J  

J  

� In�nitely many papers with partially contradictory results
Gong et al., Phys. Rev. Lett. 113, 027201 (2014)

Wang et al., Phys. Rev. B 94, 075143 (2016)

Poilblanc and Mambrini, Phys. Rev. B 96, 014414 (2017)

Haghshenas and Sheng, Phys. Rev. B97, 174408 (2018)

Wang and Sandvik, Phys. Rev. Lett. 121, 107202 (2018)

� Possibly, a gapless spin liquid (SL) emerges between two AF phases

J /J 2 10.0 ~0.48 ~0.60

Néel AFM SL

Hu et al., Phys. Rev. B 88, 060402 (2013)
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Jastrow wave functions for magnetically ordered phases

� Start from a (classical) ordered state in the XY plane

j� cl i =
Y

R

�
j "i R + eiQR j #i R

�

The weight of every spin con�guration (alongz) is 1

Relative phases are determined byQ

� Include a two-body Jastrow factor to modify the weights

j	 i = exp

2

4 �
1
2

X

R;R0

vR;R0Sz
RSz

R0

3

5 j� cl i

vR;R0 is a pseudo-potential that can be optimized

The Jastrow factor creates entanglement (typically area law)

This wave function corresponds to the one of the spin-wave approximation

Manousakis, Rev. Mod. Phys. 63, 1 (1991)

Franjic and Sorella, Prog. Theor. Phys. 97, 399 (1997)
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Accuracy of Jastrow wave function

� Size consistent wave function

O(N) variational parameters (with translational invariance)

O(N2) scaling for sampling: easy calculations up toN � 500� 1000 (on a desktop)

� The accuracy depends upon the lattice

Rather good variational energy for unfrustrated lattices:� E=Eex � 1%

Accuracy on observables follows (� on E !
p

� on O): � M =Mex � 10%

� It breaks spin SU(2) symmetry

Bad for �nite lattices (the ground state is fully symmetric)

Good for the thermodynamic limit (if the ground state breaks thesymmetry)

� The Jastrow factor gives the correct physics

For small momenta:Sz(q) / q: Goldstone modes from the Feynman construction

j	 q i = Sz
q j	 i givesEq � E / q2

Sz
q
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Standard mean-�eld approach

Consider the spin-1=2 Heisenberg model on a generic lattice

H =
X

R;R0

JR;R0SR � SR0

In a standard mean-�eld approach, each spin couples to an e�ective �eld generated by
the surrounding spins:

H MF =
X

R;R0

JR;R0 fhSR i � SR0 + Si � hSR0i � h SR i � hSR0ig

However, by de�nition, spin liquids have a zero magnetization:

hSR i = 0

How can we construct a mean-�eld approach for such disorderedstates?

We need to construct a theory in which all classical order parameters are vanishing
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From spins to electrons...

� Consider the spin-1=2 Heisenberg model on a generic lattice

H =
X

R;R0

JR;R0SR � SR0

� A faithful representation of spin-1=2 is given by

Sa
R = 1

2 cy
R;� � a

�;� cR;�

SU(2) gauge redundancy
e.g., cR;� ! ei � R cR;�

� The spin model is transformed into a purely interacting electronic system

H =
X

R;R0

JR;R0

X

�;� 0

�
�� 0cy

R;� cR;� cy
R0;� 0cR0;� 0 +

1
2

� � 0; �� cy
R;� cR;� 0c

y
R0;� 0cR0;�

�

� One spin per site! we must impose the constraint

cy
i ; " ci ; " + cy

i ;#ci ;# = 1
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...and back to spins

� The SU(2) symmetric mean-�eld approximation gives aBCS-like form

H 0 =
X

R;R0;�

tR;R0cy
R;� cR0;� +

X

R;R0

� R;R0cy
R;" cy

R0;# + h:c:

f tR;R0g and f � R;R0g de�ne the mean-�eld Ansatz �! BCS spectrumf � � g

The constraint is no longer satis�ed locally (only on average)

� The constraint can be inserted by theGutzwiller projector ! RVB

j	 0i = PG j� 0i

PG =
Y

R

(nR;" � nR;# )2

� The exact projection can be treated within the variational Monte Carlo approach
F. Becca and S. Sorella,Quantum Monte Carlo Approaches for Correlated Systems
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The projected wave function

� The mean-�eld wave function has aBCS-like form

j� 0i = exp
nP

i ; j fi ; j c
y
i ; " cy

j ;#

o
j0i =

�
1 +

P
i ; j fi ; j c

y
i ; " cy

j ;# + 1
2

� P
i ; j fi ; j c

y
i ; " cy

j ;#

� 2
+ : : :

�
j0i

It is a linear superposition of all singlet con�gurations (that may overlap)

+ ...

� After projection, only non-overlapping singlets survive:
the resonating valence-bond (RVB)wave function Anderson, Science235, 1196 (1987)

+ ...
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The projected wave function

� The mean-�eld wave function has aBCS-like form

j� 0i = exp
nP

i ; j fi ; j c
y
i ; " cy

j ;#

o
j0i =

�
1 +

P
i ; j fi ; j c

y
i ; " cy

j ;# + 1
2

� P
i ; j fi ; j c

y
i ; " cy

j ;#

� 2
+ : : :

�
j0i

� Depending on the pairing functionfi ; j , di�erent RVB states may be obtained...

+ ...

� ...even with valence-bond order (valence-bond crystals)
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A variational wave function for all seasons

� For a non-magnetic (spin liquid or valence-bond solid) state

j	 0i = PG j� 0i

H 0 =
X

R;R0;�

tR;R0cy
R;� cR0;� +

X

R;R0

� R;R0cy
R;" cy

R0;# + h:c:

� For an antiferromagnetic state

j	 0i = PSz J P G j� 0i

H 0 =
X

R;R0;�

tR;R0cy
R;� cR0;� + � AF

X

R

eiQR
�

cy
R;" cR;# + cy

R;#cR;"

�

In analogy with the Jastrow wave function, the magnetic moment in the x � y plane

J = exp
�

1
2

P
R;R0 vR;R0Sz

RSz
R0

�
is the spin-spinJastrow factor
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Towards the exact ground state

How can we improve the variational state?
By the application of a few Lanczos steps!

j	 p� LS i =

 

1 +
X

m=1 ;:::; p

� mH m

!

j	 VMC i

For p ! 1 , j	 p� LS i converges to the exact ground state, providedh	 0j	 VMC i 6= 0

On large systems, only FEW Lanczos steps are a�ordable:We can do up top = 2
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The variance extrapolation

A zero-variance extrapolation can be done

Wheneverj	 VMC i is su�ciently close to the ground state:

E ' E0 + const � � 2 E = hHi =N
� 2 = ( hH2i � E2)=N

How does it work?
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A few energies onL � L clusters with PBC

J2 = 0 :40 DMRG (8192) VMC (p = 0) VMC (p = 2) VMC (p = 1 )
L = 6 � 0:529744 � 0:52715(1) � 0:52957(1) � 0:52972(1)
L = 8 � 0:525196 � 0:52302(1) � 0:52539(1) � 0:52556(1)
L = 10 � 0:522391 � 0:52188(1) � 0:5240(1) � 0:52429(2)

J2 = 0 :45 DMRG (8192) VMC (p = 0) VMC (p = 2) VMC (p = 1 )
L = 6 � 0:515655 � 0:51364(1) � 0:51558(1) � 0:51566(1)
L = 8 � 0:510740 � 0:50930(1) � 0:51125(1) � 0:51140(1)
L = 10 � 0:507976 � 0:50811(1) � 0:51001(1) � 0:51017(2)

J2 = 0 :50 DMRG (8192) VMC (p = 0) VMC (p = 2) VMC (p = 1 )
L = 6 � 0:503805 � 0:50117(1) � 0:50357(1) � 0:50382(1)
L = 8 � 0:498175 � 0:49656(1) � 0:49886(1) � 0:49906(1)
L = 10 � 0:495530 � 0:49521(1) � 0:49755(1) � 0:49781(2)

J2 = 0 :55 DMRG (8192) VMC (p = 0) VMC (p = 2) VMC (p = 1 )
L = 6 � 0:495167 � 0:48992(1) � 0:49399(1) � 0:49521(7)
L = 8 � 0:488160 � 0:48487(1) � 0:48841(2) � 0:48894(3)
L = 10 � 0:485434 � 0:48335(1) � 0:48693(3) � 0:48766(6)

Hu, Becca, Parola, and Sorella, Phys. Rev. B88, 060402 (2013)

Gong, Zhu, Sheng, Motrunich, and Fisher, Phys. Rev. Lett. 113, 027201 (2014)
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Extrapolations to the ground state energy
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W.-J. Hu et al., Phys. Rev. B 88, 060402 (2013) S.-S. Gonget al., Phys. Rev. Lett. 113, 027201 (2014)
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Our results for theJ1 � J2 model

m2 = lim
r !1

hSr � S0i

� Magnetization computed for �nite clusters from 10� 10 to 22� 22

0:00 0:10 0:20 0:30 0:40 0:48
J2=J1

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

exact

Magnetization
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1=L
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0:100
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m
2

Magnetization2

� A �nite staggered magnetization is related to a �nite � AF in the wave function
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The present understanding of the magnetically disordered phase

� Valence-bond solid

Read and Sachdev, Phys. Rev. Lett.62, 1694 (1989)

Sachdev and Bhatt, Phys. Rev. B41, 9323 (1990)

Singh, Weihong, Hamer, and Oitmaa, Phys. Rev. B60, 7278 (1999)

Capriotti and Sorella, Phys. Rev. Lett. 84, 3173 (2000)

Mambrini, Lauchli, Poilblanc, and Mila, Phys. Rev. B 74, 144422 (2006)

Gong et al., Phys. Rev. Lett. 113, 027201 (2014)

� Gapped or gapless spin liquid

Capriotti, Becca, Parola, and Sorella, Phys. Rev. Lett. 87, 097201 (2001)

Jiang, Yao, and Balents, Phys. Rev. B86, 024424 (2012)

Wang, Poilblanc, Gu, Wen, and Verstraete, Phys. Rev. Lett. 111, 037202 (2013)

Poilblanc and Mambrini, Phys. Rev. B 96, 014414 (2017)

Haghshenas and Sheng, Phys. Rev. B97, 174408 (2018)

Wang and Sandvik, Phys. Rev. Lett. 121, 107202 (2018)
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Restricted Boltzmann Machines (RBMs) entered into the game...

j	 RBM i =
X

ha= � 1

exp

2

4
X

R;a

WR;aSz
Rha +

X

a

baha

3

5 j� cl i

j	 RBM i /
Y

a

exp

(

log cosh

"

ba +
X

R

WR;aSz
R

#)

j� cl i

� Hidden spin variables (h1; : : : ; h� )

� Network parameters (b; W )

� Generalization of the Jastrow factor that includes many-body interactions
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The \sign problem"

� With a real parametrization (b and W ), the sign structure is �xed by the reference state
� A complexparametrization is often needed to \learn" the correct signs

J2=J1 hsi

0:00 1
0:05 1
0:10 1
0:15 1
0:20 1
0:25 1
0:30 1
0:35 0:9999937
0:40 0:9995104
0:45 0:9927903
0:50 0:9608835
0:55 0:8704279
0:60 0:6144326

The average Marshall sign on the 6� 6 cluster

hsi =
P

x jhxj	 ex ij 2signf M (x)hxj	 ex ig
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Weights of the exact ground state on the 4� 4 cluster
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Learning signs and amplitudes on the 4� 4 cluster

� Fixing the sign to the exact one and optimizing amplitudes

2 4 8 12
�

10� 5

10� 4

10� 3

10� 2

10� 1

J2=J1 = 0:0

2 4 8 12
�

10� 5

10� 4

10� 3

10� 2

10� 1

J2=J1 = 0:5

no symmetries translations all symmetries

� Optimizing only the sign

F(x) =
Y

a

exp

(

i log cosh

"

ba +
X

R

WR;aSz
R(x)

#)

C = 1 �

�
�
�
�
�

X

x

j	 ex (x)j2signf F(x)	 ex (x)g

�
�
�
�
�

� C for J2=J1 = 0 :0

1 0:30381655
4 0:00000004

� C for J2=J1 = 0 :5

1 0:02770868
4 0:00312562
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The unfrustrated Heisenberg model: fermions + RBM

� We combineGutzwiller-projected fermionic states and RBMs

hxj	 RBM i =
Y

T

Y

a

exp

(

log cosh

"

ba +
X

R

WR;aSz
T (R)

#)

hxj� 0i

where j� 0i is the ground state of a quadratic Hamiltonian

Di�erent from Choo, Carleo, and Neupert, talk at the conference

� We imposetranslational symmetry ( Q = 0 ) on the RBM

� We considerreal parameters for J2 = 0 to impose the Marshall-sign rule

� We considercomplex parameters for J2 > 0 to change the fermionic signs
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The unfrustrated Heisenberg model

1 2 4 8 12
�
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�
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The unfrustrated Heisenberg model
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Problems where a good accuracy is needed: the highly-frustrated region

With a poor accuracy we see a hat...

Antoine de Saint-Exup�ery, Le Petit Prince (1943)
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Problems where a good accuracy is needed: the highly-frustrated region

By increasing the accuracy we identify an elephant!

Antoine de Saint-Exup�ery, Le Petit Prince (1943)
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Problems where a good accuracy is needed: the highly-frustrated region

Maybe by further improving the accuracy we will discover the trut h...

Antoine de Saint-Exup�ery, Le Petit Prince (1943)
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The highly-frustrated caseJ2=J1 = 0 :5

hxj	 RBM i =
Y

T

Y

�

exp

(

log cosh

"

b� +
X

R

WR;� Sz
T (R)

#)

hxj� 0i

1 2 4 8 12
�
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1 2 4 8 12
�
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DMRG extrap

J2 = 0:5
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A summary on the 6� 6 cluster
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Comparison with Choo, Carleo, and Neupert

��� ��� ��� ��� ��	 ���
��

 �����

�����

�����

�����

���
���

���
���

���
���

���
���

���
�

�
 

� �
�

��
���������

���


��

� CNN with about 4000 variational parameters

� Fermionic state with about 40 variational parameters
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What about non-collinear order?

� Heisenberg model on the triangular lattice

The exact sign structure is not known

The ground state has coplanar magnetic order

12 4 8 12 16
�
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What is wrong withthese RBMs?

These RBMs assume that

Spin degrees of freedom Sz
R are the relevant objects

A particular form of the spin-spin correlation is present log cosh(z)

The �rst assumption is correct for (collinear) magnetically ordered phase

The second assumption limits the exibility of the wave function

Many variational parameters

Di�cult optimizations

No transparent description to understand the physical properties

Often there are many local minima, with completely di�erent parameters

Calculations are limited toO(100) sites

A more educated guess would be desirable

Parametrization in terms of spinons and not spins
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