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Promises of quantum computation: 
— simulations of many-body systems, 
— quantum algorithms, …

So let’s build a quantum computer!

To operate quantum computer we need to 
reliably store & process quantum information.

Interactions with environment causes errors. Use error-correcting codes!

Threshold theorem: scalable quantum computation possible given 
sufficiently weak and uncorrelated noise [KLZ98,ABO98,AGP06,…]!

TOWARD 
QUANTUM COMPUTATION

2

Knill&Laflamme&Żurek’98; Aharonov&Ben-Or’98; Aliferis&Gottesman&Preskill’06
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Protect information by encoding into a quantum code [S95]: 

Topological stabilizer codes [DKLP03]: local 
stabilizers, logical information encoded non-locally.

Desired properties: fault-tolerant logical gates, 
efficient decoders, high error-correction thresholds.

Locality comes with a price [BPT09, JKY18, …] — 
no-go theorems for storage and computation!

Side remark: topological codes as toy models of 
(exotic) quantum phases of matter, e.g. 3D fractons [H11].

QUANTUM ERROR 
CORRECTING CODES
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encode�����! | i 2 (C2)⌦n

Shor’95; Dennis et al.’03; Bravyi&Poulin&Terhal’09; Jochym&K.&Yoder’18; Haah’11

Kelly et al., Nature 519, (2015)



DECODING PROBLEM
FOR STABILIZER CODES
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stabilizer codes [G96]: commuting Pauli operators 
code space = (+1)-eigenspace of stabilizers

quantum error-correction game  
 
 
 
 

decoder: algorithm to find a Pauli recovery from stabilizer measurements

successful decoding iff recovery returns the state to code space AND  
error + recovery do not implement a non-trivial logical operator

E(| i)
| i

move outside  
the code space

measure stabilizers to  
discretize and diagnose errors

| i encode�����! | i noise����! E(| i) recovery������! R � E(| i) read o↵������! | 0i
decoding

repeat

Gottesman’96



CHALLENGES IN
DESIGNING DECODERS
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Decoding of generic stabilizer codes is computationally hard [HL11,IP13].

Dominant sources of errors not known/depend heavily on the device.

Many results on decoders, usually designed and analyzed for simplistic 
noise models, e.g. the bit-flip. Correlations: X/Z or spatial [BN17]?

Codes may be related, e.g. color and toric codes [KYP15], 
but decoders difficult to adapt!

Desirable decoding methods should: 
— minimize human input, 
— be easily adaptable to different noise/code, 
— be efficient and have good performance.

Hsieh&LeGall’11; Iyer&Poulin’13; Brown&Nickerson’17; K.&Yoshida&Pastawski’15



OUTLINE
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Goal: explore adaptability of (vanilla) neural-network decoding for 
various codes and (correlated) noise models  

Previously [TM16,…]: surface code, small distance (d=3–7), simple noise 

1. 2D toric code with a twist

2. neural-network decoding

3. benchmarking performance

4. 2D triangular color code

arXiv: 1802.08680
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2D TORIC CODE WITH A TWIST
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many versions [K97,…]: 
lattices, boundaries, twists, …

2D toric code with a twist [YK16]: 
— 2-colorable faces 
— 4-valent vertices

stabilizers = X-/Z-faces, mixed faces

simple model capturing interesting physics: 
anyons, condensation on boundaries, …

high error-correction threshold, 
local stabilizers of weight ≤ 4

logical Pauli operators = 1D strings
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STABILIZER HAMILTONIAN
AND EXCITATIONS 
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find Hamiltonian whose ground space = code space 
 

violated stabilizers = excitations eD & mW

bulk: excitations created in pairs 

boundary: can create a single eD or mW

logical operator = create an excitation 
and move to the other boundary

defect line [B10]: eD and mW are swapped

HTC = �
X

f2FD

Xf �
X

g2FW

Zg �
X

h2FM

Sh

eD ⇥ eD = mW ⇥mW = 1

X
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Ze e

e
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Z
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Bombin’10



HOW TO REMOVE EXCITATIONS
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decoding = returning to code/ground space 
               = removing excitations

always possible to remove excitations 
by pushing them to the boundary!

excitation graph: 
vertices = excitations 
edges = local Pauli operators

easy to construct (fusion rules) 
and use to find a removal operator

do not need to find the error exactly: 
success iff up to a stabilizer!

e
e



DECODING AS  
CLASSIFICATION PROBLEM
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Pushing excitations to boundary returns to code space 
but likely to introduce logical* operator!

Pauli errors = Q (not known!) 
excitations/syndrome = U 
removal operator = RU

RU Q ~ L — if only we knew L…

This is a classification problem! 
(excitations U, logical L)

Many errors Q w/ the same U! 
Find the most likely equivalence  
class of errors (labeled by L ~ RU Q).  

m
e



NEURAL-NETWORK DECODING
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Feedforward neural networks: 
layers, nodes, activation function.

Neural decoder: 
(1) excitation removal: U —› RU 
(2) neural net to classify: U —› L 
output = recovery RU L

Details of (1) excitation removal not important; usually easy to figure out.

Training neural net = minimization problem (cross entropy) for specified 
code, noise model, removal algorithm, but can use different error rates!

Standard neural net optimizations:  Adam, mini-batch, He (for ReLU),…
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(CORRELATED) NOISE MODELS
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Three simple Pauli error models with the error rate p:

bit-/phase-flip — every qubit independently affected by X and Z 
                           pr(X) = pr(Z) = p

depolarizing — every qubit independently affected by X, Y, or Z 
                         pr(X) = pr(Y) = pr(Z) = p/3

NN-depolarizing — every pair of nearest-neighbor qubits affected by  
                                non-trivial Pauli P1P2≠II w/ pr(P1P2) = p/15

easy to specify/simulate; capture realistic noise features (correlations)

effective error rate = probability of any non-trivial error on the qubit

pe↵ = 2p� p2

p

(n)
e↵ =

4

5
np+ o(p2)

pe↵ = p



ERROR-CORRECTION
THRESHOLDS
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Consider a family of codes with growing distance d. 
 
 
 

What is the probability prfail(peff, d)  
of unsuccessful decoding? 

Threshold pth = “max error rate”, i.e.,  
if error rate peff ≤ pth, then prfail(peff, d)—›0 as the distance d—›∞.

Non-zero threshold is a non-trivial property: guaranteed # errors ~ d, but 
w.h.p. correct # errors ~ d2!

peff

prfail
d =∞

pth



Values of thresholds relevant for: comparing codes and decoders, 
overhead estimates, experiment, …

[DKLP03]: connection between 
toric code decoding and a classical 
spin model (random-bond Ising)

ordered phase = successful correction 
critical point = optimal threshold

Other models [KBMD09,KBBSP17,LMNWB18]: 2D color code (3-body 
Ising), 3D toric and codes (Ising gauge theory), 2D Bacon-Shor-type,…

INTERLUDE — OPTIMAL
THRESHOLDS FROM STAT-MECH

14
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FIG. 5. The failure probability pfail(pe↵ , d) of (a)-(c) the neural decoder and (d)-(f) the projection decoder for the 2D triangular
color code of distance d as a function of the e↵ective error rate pe↵ . We consider three noise models: (a),(d) bit-/phase-flip,
(b),(e) depolarizing and (c),(f) NN-depolarizing. We report that the neural decoder outperforms the projection decoder for all
types of noise, exhibiting threshold near the optimal one.
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FIG. 6. The failure probability pfail(pe↵ , d) of the (a)-(c) the neural decoder and (d)-(f) the Minimum-Weight Perfect Matching
decoder for the 2D triangular toric code with a twist of distance d as a function of the e↵ective error rate pe↵ . We consider
three noise models: (a),(d) bit-/phase-flip, (b),(e) depolarizing and (c),(f) NN-depolarizing. We report that the neural decoder
significantly outperforms the Minimum-Weight Perfect Matching decoder for noise models with correlated errors and exhibits
threshold near the optimal one.

level noise should be considered. We stress that neural-
network decoding already provides an enormous data-
compression advantage over methods based on (partial)
look-up tables, even for small-distance quantum codes.

However, an important question of scalability has to be
addressed if neural decoders are ever going to be used
for practical purposes on future fault-tolerant universal
quantum devices. One possible approach to scalable neu-
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level noise should be considered. We stress that neural-
network decoding already provides an enormous data-
compression advantage over methods based on (partial)
look-up tables, even for small-distance quantum codes.

However, an important question of scalability has to be
addressed if neural decoders are ever going to be used
for practical purposes on future fault-tolerant universal
quantum devices. One possible approach to scalable neu-
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2D COLOR CODE

16

2D color code [BMD06] lattice: 
— 3-colorable faces 
— 3-valent vertices

qubits = vertices (same positions!) 
stabilizers = X-face and Z-face

logical Clifford gates are transversal!

other ideas [B15,B16]: code switching and 
dim-jump, single-shot error correction, …

decoding seems to be challenging, 
thus worse performance?!

X X

X

X

X

X

Z Z

Z

Z Z

Z

Bombin&Martin-Delgado’06; Bombin’15,’16



COLOR CODE EXCITATIONS
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ground space of stabilizer Hamiltonian = code space 
 

violated stabilizers = excitations eK, mK (K=R,G,B)

bulk: excitations can be created in triples! 
 

boundary: can create a single excitation

more boundaries and defect lines than in toric code [Y15, KBPE18]!

HCC = �
X

f2F

Xf �
X

f2F

Zf

eK ⇥ eK = mK ⇥mK = 1

eR ⇥ eG ⇥ eB = mR ⇥mG ⇥mB = 1

X

Z Z Z
Z

eR eR
eB

mR
mG

mB

Yoshida’15; Kesselring et al.’18
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2D COLOR CODE REDEFINED
(Dual) lattice: made of triangles and 
vertices are 3-colorable.

2D color code redefined: 
- qubits = triangles, 
- stabilizers = X- & Z-vertices. 
 
 
 

Decoding seems to be more challenging: 
excitations created in triples, thus not 
only pairing!

qubit stabilizer

Z



local lift              2x TC decoder 
          IMPROVEMENT [KD19]

Idea: color and toric codes are related [KYP15] — can we use existing 
toric code decoders?

Noise changes — correlated errors!

2D projection decoder [D14]: 
- TC decoder on three sublattices, 
- global filling.

HOW TO DECODE  
COLOR CODES?

19

1D

error               syndrome 
  2D                     0D

K.&Yoshida&Pastawski’15; Delfosse’14; K.’18; K.&Delfosse’19 (in preparation)



3

appropriate Pauli correction; (ii) Step (i) returns the corrupted state to the codespace, however
with high probability a non-trivial logical Pauli operator will be implemented in the process [32].
We use the neural network to classify which logical Pauli operator is the most likely to have been
applied [30]. The overall correction is a combination of the correction of step (i) and the logical
operator determined by the neural network in step (ii). We remark that step (i) can be thought
of as moving each excitation to its nearest boundary of the corresponding type, see Section III C
of the attached manuscript for details. The neural network is composed of an input layer which is
stores the information about the initial error syndrome, followed by multiple maximally connected
hidden layers and a final output layer composed of four nodes, each characterizing the probability
of a given logical Pauli error. The network is trained using simulated data produced according to
the desired noise model (a priori not known to the neural network) and error rate. Similarly, an
independent validation data set is prepared to characterize the performance of the neural decoder.

Performance — We numerically find the decoder failure probability pfail(pe↵ , d) of the neural
decoder as a function of the e↵ective error rate pe↵ . By plotting the decoder failure probability
pfail(pe↵ , d) for di↵erent code distances d and finding their intersection we numerically establish
the existence of non-zero threshold for the neural decoder and estimate its value. As Fig. 2 shows,
neural-network decoding can be successfully used for quantum error-correction protocols, especially
in the systems a↵ected by a priori unknown noise with correlated errors. Moreover, the neural
decoder yields a higher threshold than an previously known method for decoding the triangular
color code. In particular, it shows similar threshold behavior for the 2D color and toric codes,
suggesting that the color code may be more competitive than previously thought as a long-term
quantum computing architecture. However, in order to solidify such a claim, neural decoders
addressing circuit-level noise should be considered.
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FIG. 2. The failure probability pfail(pe↵ , d) of (a)-(c) the neural decoder and (d)-(f) the projection decoder
for the 2D triangular color code of distance d as a function of the e↵ective error rate pe↵ . We consider
three noise models: (a),(d) bit-/phase-flip, (b),(e) depolarizing and (c),(f) NN-depolarizing. We report that
the neural decoder outperforms the projection decoder for all types of noise, exhibiting threshold near the
optimal one. See the appended manuscript for the similar results pertaining to the 2D toric code with a
twist.
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SCALING UP
CODE DISTANCE 

21

So far we haven’t used any knowledge about 
the system. Geometric locality of stabilizers!

[H04, KP18, DCP10, BH13,…]: decoders based 
on cellular automata, renormalization group, … 
Provable thresholds!

Translational invariance and RG ideas:  
convolutional neural networks?

[N18]: large-distance toric code (d≤64)

Harrington’04; K.&Preskill’18; Duclos-Cianci&Poulin’10; Bravyi-Haah’13; Ni’18
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to a size of 2 ⇥ 2, we apply 4 dense layers (a.k.a fully-
connected layers). Note that the dense layers conve-
niently break the translational symmetry imposed by the
convolution layers. In the end, we have a neural network
with input shape (L,L, 3) and output shape (2)2. The
input shape is (L,L, 3) because this is the input shape of
BP networks. For L = 64, the total number of trainable
layers in the network is around 60, which is very large
compared to early deep neural networks [13]. However,
most of the computation cost and the trainable param-
eters are concentrated in the 16 convolution layers with
kernel size 3⇥3. Combining this and the careful training
strategy we describe below, we find that the training can
be done very e�ciently.

B. Training

In general, training neural networks becomes harder
when the number of layers increases. This is often at-
tributed to the instability of gradient backpropagation.
Considering we have a very deep neural network, we
should find a way to train parts of the network first. The
training is divided into two stages. First, we train the
belief propagation network to indeed do belief propaga-
tion (BP). This corresponding the blue circle with 0 in
Figure 3. To do this, we implement a BP algorithm and
use it to generate training data for the network. More
concretely, we first assign a random error rate e�k to
each edge, where k 2 [0.7, 7] from a uniform distribution.
The choice of the distribution is quite arbitrary. Then
we sample error on each edge according to its error rate
and compute the syndrome. After that, we feed both
the error rates and syndrome into our handcrafted BP
algorithm, which will output an estimation of the error
rates p

e

corresponding to the coarse-grained edges. We
can subsequently train the BP network with the same
input-output relation. An important detail is that we
transform the error rates p

e

(1) in both input and out-
put to r

e

= log (p
e

(1)/p
e

(0)). The reason behind this is
described in Appendix C.

Next, we load the pre-trained belief propagation net-
work into the decoder network described in the previous
subsection. To ensure r

e

stay bounded, we perform a
rescale r

e

! 7r
e

/max
e

|r
e

| before feed it into next RN
block (the choice of 7 here is arbitrary). We can then
train the dense layers and afterward the whole network
with input-output pairs (syndrome, logical correction).
These two trainings correspond to the blue circle 1 and 2
in Figure 3, respectively. The training data is measurable
in experiments in these two training.

We train the decoders for di↵erent lattice sizes L sep-
arately. Although this makes the concept of threshold

2
For e�cient training, an additional dimension called batch size

will be added.

Figure 4: Logical accuracy versus physical error rate.
The neural decoders are trained at physical error rate
9%. For the three solid lines, the decoder has been

trained globally, while the dashed lines it has not. The
colors of the dashed lines indicate the code distance
they are evaluated on. The vertical grid indicates the
physical error rates for which we evaluate the logical

accuracy.

pointless, it is still useful to estimate the “threshold”
so that we can have a rough comparison of the neural
decoder with the existing ones. For this, we train the de-
coder for di↵erent L with the same amount of stochastic
gradient steps, which also implies the optimizer sees the
same amount of training data for each L. In addition,
the training for each L is done under 1 hour (on the year
2016 personal computer with 1 GPU). We consider this
to be a fairly strict policy. The result is plotted in Fig-
ure 4. We can also forgo this strict policy and spend more
time in training the neural decoder for d = 64 toric code,
which gives rise to Figure 5. The training time is still
under 2 hours. More details about training can be found
in Appendix D, and more discussion about the numerical
results can be found in the following section.

IV. NUMERICAL RESULTS

For the strict training policy, we plot the logical accu-
racies versus the physical error rates in Figure 4. Logical
accuracy is simply (1� logical error rate) and is averaged
over the two logical qubits. For the solid lines, the de-
coders have been trained globally, i.e. have done both
step 1 and 2 in Figure 3. For the dashed lines, the de-
coders only did the step 1, i.e. only the dense layers
are trained. The colors of the dashed lines indicate the
code distance they are evaluated on. The vertical grid
indicates the physical error rates for which we evaluate
the logical accuracy, where for each point we sample 104

(syndrome, logical correction) pairs. We can see that the
solid lines cross around pphysical = 0.095, therefore we
might say our neural decoder has an e↵ective threshold

~9.5%

Ni’18



REALISTIC SCENARIO:
CIRCUIT-LEVEL NOISE

22

Syndrome extraction is far from perfect! 
Need: ancillas and repeated measurements.

[CR18, BCCBO18]: small-distance  
toric/surface and color codes (d≤7).

Convolutional and recurrent neural networks with internal memory. 

Decoding runtime of a trained network ~10 ns.

Chamberland&Ronagh’18; Baieruther et al.’18

6

FIG. 6: Top left: Schematic of a 6-6-6 color code with distance 3. Top right: Circuit for stabilizer measurements at a
boundary. Bottom left: Partial schematic of a 6-6-6 color code with distance larger than 3. Bottom right: Circuit for stabilizer
measurements.

~m(t), ~m
flag

(t) and ~s(t) to form a vector ~d(t). The update
may then be written as a matrix multiplication:

~m0

flag

(t) = Mf
~d(t� 1) mod 2, (A3)

Where Mf is a sparse, binary matrix. The syndromes
~s(t) may be updated in a similar fashion

~s(t) = ~s(t� 1) + �~s(t) +Ms
~d(t� 1) mod 2, (A4)

where Ms is likewise sparse. Both Mf and Ms may be
constructed by modeling the stabilizer measurement cir-
cuit in the absence of errors. The sparsity in both ma-
trices reflect the connectivity between data and ancilla
qubits; for a topological code, both Mf and Ms are lo-
cal. The calculation of the syndrome increments �~s(t)
via Eq. (A1) does not require prior calculation of ~s(t).

Appendix B: Details of the neural network decoder

1. Architecture

The decoder consists of a double headed network, see
Fig. 2, which we implement using the TensorFlow library
[47]. It maps a list of syndrome increments �~s(t) with
t/t

cycle

= 1, 2, ..., T to a pair of probabilities p0, p 2 [0, 1].
(In what follows we measure time in units of the cycle
duration t

cycle

= N
0

t
step

, with N
0

= 20.) The lower head
gets as additional input a single final syndrome increment
� ~f(T ). The cost function I that we seek to minimize by
varying the weights w and biases b of the network is the
cross-entropy

H(p
1

, p
2

) = �p
1

log p
2

� (1� p
1

) log(1� p
2

) (B1)

between these output probabilities and the true final par-
ity p

true

2 {0, 1} of bit flip errors:

I = H(p
true

, p) + 1

2

H(p
true

, p0) + c||w
EVAL

||2. (B2)

The term c||w
EVAL

||2 with c ⌧ 1 is a regularizer, where
w

EVAL

⇢ w are the weights of the evaluation layer.
The body of the double headed network is a recurrent

neural network, consisting of two LSTM layers [46, 48].
Each of the LSTM layers has two internal states, repre-

senting the long-term memory ~c
(i)
t 2 RN and the short-

term memory ~h
(i)
t 2 RN , where N = 32, 64, 128 for dis-

tances d = 3, 5, 7. The first LSTM layer gets the syn-
drome increments �~s(t) as input, and outputs its inter-

nal states ~h(1)

t . These states are in turn the input to the
second LSTM layer.
The heads of the network consist of a single layer of

rectified linear units, whose outputs are mapped onto
a single probability using a sigmoid activation function.
The input of the two heads is the last short-term memory
state of the second LSTM layer, subject to a rectified lin-

ear activation function ReL(~h(2)

T ). For the lower head we

concatenate ReL(~h(2)

T ) with the final syndrome increment

� ~f(T ).

2. Training and evaluation

We use three separate datasets for each code distance.
The training dataset is used by the optimizer to optimize
the trainable variables of the network. It consists of 2·106
sequences of lengths between T = 1 and T = 40 at a large
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FIG. 13: Schematics of a deep neural decoder for the distance-five rotated surface code. The network consists of two disjoint neural
networks contributing to the same loss function via softmax cross entropy. Each neural network consists of two layers of 3D CNNs. The

first layer consists of a number of filters, each filter performing a convolution of a 3 ⇥ 3 ⇥ 3 kernel by the input syndromes. The second 3D
CNN layer uses 4 ⇥ 4 ⇥ 4 kernels. The colored boxes demonstrate how each layer is padded in order for the size of the 3D layers to be
preserved. When the kernel dimension is even for instance, the padding from the top and left are of size 1, and the padding from the

bottom and right are of size 2.

FTEC Lookup DND Ratio

d = 3 Steane pth = 2.10⇥ 10 4 pth = 3.98⇥ 10 4 1.90

d = 5 Steane pth = 1.43⇥ 10 3 pth = 2.17⇥ 10 3 1.52

d = 3 Knill pth = 1.76⇥ 10 4 pth = 2.22⇥ 10 4 1.26

d = 5 Knill pth = 1.34⇥ 10 3 pth = 1.54⇥ 10 3 1.15

d = 3 Surface code pth = 2.57⇥ 10 4 pth = 3.18⇥ 10 4 1.24

d = 5 Surface code pth = 5.82⇥ 10 4 pth = 7.11⇥ 10 4 1.22

TABLE I: Pseudo-thresholds for the 6 fault-tolerant error
correction protocols considered in the experiments. The second
column corresponds to the highest pseudo-thresholds obtained
from a bare lookup table decoder whereas the third column
gives the highest pseudo-thresholds using neural network

decoders. The last column corresponds to the ratio between the
pseudo-thresholds obtained from the best neural network

decoders and the lookup table decoders.

parameter lower bound upper bound

decay rate 0.0 1.0� 10 6.0

momentum 0.0 1.0� 10 6.0

learning rate 10 5.0 10 1.0

initial std 10 3.0 10 1.0

num hiddens 100 1000

TABLE II: Bayesian optimization parameters for the
CNOT-exRec of the [[7, 1, 3]] code using Steane and Knill-EC
and the distance-three rotated surface code. Here the decay

rate, momentum and learning rate pertain to the parameters of
RMSProp. The row ‘initial std’ refers to the standard deviation
of the initial weights in the neural networks, the mean of the

weights was set to zero. The initial biases of the neural networks
were set to zero. The row ‘num hiddens’ refers to the number of
hidden nodes in the layers of neural network. This parameter is
optimized for each layer of the neural network independently
(e.g. for a feedforward network consisting of 3 hidden layers,

there are 3 numbers of hidden nodes to be tuned). For an RNN
this number indicates the number of hidden nodes in every one
of the 4 hidden layers of the LSTM unit (all of the same size).

Steane-EC CNOT-exRec for the [[7, 1, 3]] code. The
considered continuous and integer hyperparameters are

given in Table II.
We also tuned over the categorical parameters of Ta-

ble III. The categorical parameters are tuned via grid-

parameter values

activation functions relu, tanh, sigmoid, identity

numbers of hidden layers 0, 1, 2, . . .

TABLE III: Categorical hyperparameters. Optimizations over
activation functions was only performed for the distance-three
Steane code. Since rectified linear units showed better results,

we committed to this choice for all other error correction
schemes. However, for the second categorical hyperparameter

(the numbers of hidden layers), the search was performed for all
error correction schemes separately and was stopped at the

numbers of hidden layers where the improvements in the results
discontinued.

search. We observed that for all choices of neural net-
works (feedforward networks with various numbers of
hidden layers and recurrent neural networks with or with-
out peepholes), the rectified linear unit in the hidden lay-
ers and identity for the last layer resulted in the best per-
formance. We accepted this choice of activation functions
in all other experiments without repeating a grid-search.
Figs. 14 and 15 compare the performance of the feed-

forward and RNN decoders that respectively use the
lookup table and naive-decoder as their underlying de-
coders, respectively referred to as LU-based deep neural
decoders (LU-DND) and PE-based deep neural decoders
(PE-DND). We use PE since naive-decoders correct by
applying pure errors. We observe that softmax regression
(i.e. zero hidden layers) is enough to get results on par
with the lookup table method in the LU-based training
method, this was not the case in the PE-based method.
The RNNs perform well but they are outperformed by
two-hidden-layer feedforward networks. Additional hid-
den layers improve the results in deep learning. However,
since this is in expense for a cross-entropy optimization
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ment input. Here, we instead use a single network with
two heads, as illustrated in Fig. 2. The upper head sees
only the translationally invariant data, while the lower
head solves the full decoding problem.
The switch from two parallel networks to a single net-

work with two heads o↵ers several advantages: (1) The
number of LSTM layers and the computational cost is
cut in half; (2) The network can be trained on a single
large error rate, then used for smaller error rates without
retraining; (3) The bit flip probability from the upper
head provides a so-called Pauli frame decoder [2].
In the training stage the bit flip probabilities p0 and p

2 [0, 1] from the upper and lower head are compared with
the true bit flip parity p

true

2 {0, 1}. By adjusting the
weights of the network connections a cost function is min-
imized in order to bring p0, p close to p

true

. We carry out
this machine learning procedure using the TensorFlow li-
brary [47], see App. B for details of the implementation.
After the training of the neural network has been com-

pleted we test the decoder on a fresh data set. Only the
lower head is active during the testing stage. If the out-
put probability p < 0.5, the parity of bit flip errors is
predicted to be even and otherwise odd. We then com-
pare this to p

true

and average over the test data set to
obtain the logical fidelity F(t). Using a two-parameter
fit to [42]

F(t) = 1

2

+ 1

2

(1� 2✏
L

)(t�t0)/tstep , (4)

we determine the logical error rate ✏
L

per step of the
decoder.

IV. NEURAL NETWORK PERFORMANCE

A. Power law scaling of the logical error rate

Results for the distance-3 color code are shown in Fig.
3 (with similar plots for distance-5 and distance-7 codes
in App. C). These results demonstrate that the neural
network decoder is able to decode a large number of con-
secutive error correction cycles. The dashed lines are fits
to Eq. (4), which allow us to extract the logical error
rate ✏

L

per step, for di↵erent physical error rates ✏
phys

per step.
Figure 4 shows that the neural network decoder follows

a power law scaling (2) with d fixed to the code distance.
This shows that the decoder, once trained using a single
error rate, operates equally e�ciently when the error rate
is varied, and that our flag error correction scheme is in-
deed fault-tolerant. The corresponding pseudothresholds
(3) are listed in Table I.

B. Implementation in a physical model

To assess the performance of the decoder in a realis-
tic setting, we have applied it to a density matrix-based

FIG. 3: Decay of the logical fidelity for a distance-3 color
code. The curves correspond to di↵erent physical error rates
✏
phys

per step, from top to bottom: 1.6 · 10 5, 2.5 · 10 5,
4.0 ·10 5, 6.3 ·10 5, 1.0 ·10 4, 1.6 ·10 4, 2.5 ·10 4, 4.0 ·10 4,
6.3·10 4, 1.0·10 3, 1.6·10 3, 2.5·10 3. Each point is averaged
over 103 samples. Error bars are obtained by bootstrapping.
Dashed lines are two-parameter fits to Eq. (4).

FIG. 4: In color: Log-log plot of the logical versus physical
error rates per step, for distances d = 3, 5, 7 of the color code.
The dashed line through the data points has the slope given by
Eq. (2). In gray: Error rate of a single physical (unencoded)
qubit. The error rates at which this line intersects with the
lines for the encoded qubits are the pseudothresholds.

simulator of an array of superconducting transmon qubits
[42]. In Fig. 5 we compare the decay of the fidelity of the
logical qubit as it results from the neural network decoder
with the fidelity extracted from the simulation [42]. The
latter fidelity determines via Eq. (4) the logical error rate
✏
optimal

of an optimal decoder. For the distance-3 code
we find ✏

L

= 0.0148 and ✏
optimal

= 0.0132 per microsec-
ond, resulting in a decoder e�ciency ✏

optimal

/✏
L

[42] of
0.89. The dashed gray line is the average fidelity (fol-
lowing Eq. (4)) of a single physical qubit at rest, cor-
responding to an error rate of 0.0164 [42]. This demon-
strates that, even with realistic experimental parameters,
a logical qubit encoded with the color code has a longer
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We studied decoding of toric/color codes 
for (correlated) noise: bit-/phase-flip, 
depolarizing, NN-depolarizing.

Our results: 

neural-network decoding is versatile 
and outperforms efficient decoders

2D color code threshold significantly improved

Future: transferability, real-experiment data and training in low error-rate 
regime, certifying performance, interpretability, …

THANK YOU!
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