QEC & ML

Advantages of versatile neural network decoding for topological codes

Aleksander Kubica

work w/ N. Maskara and T. Jochym-O'Connor

arXiv: 1802.08680

TOWARD QUANTUM COMPUTATION

- Promises of quantum computation:
 - simulations of many-body systems,
 - quantum algorithms, ...
- So let's build a quantum computer!
- To operate quantum computer we need to reliably store & process quantum information.

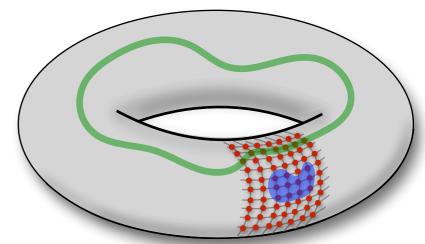
- Interactions with environment causes errors. Use error-correcting codes!
- **Threshold theorem**: scalable quantum computation possible given sufficiently weak and uncorrelated noise [KLZ98,ABO98,AGP06,...]!

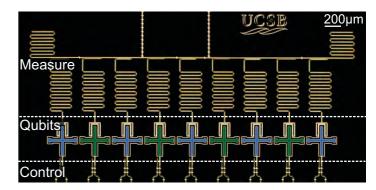
QUANTUM ERROR CORRECTING CODES

Protect information by encoding into a quantum code [\$95]:

$$|\psi\rangle\in\mathbb{C}^2\xrightarrow{\mathrm{encode}}|\overline{\psi}\rangle\in(\mathbb{C}^2)^{\otimes n}$$

- Topological stabilizer codes [DKLP03]: local stabilizers, logical information encoded non-locally.
- Desired properties: fault-tolerant logical gates,
 efficient decoders, high error-correction thresholds.
- Locality comes with a price [BPT09, JKY18, ...] no-go theorems for storage and computation!
- Side remark: topological codes as toy models of (exotic) quantum phases of matter, e.g. 3D fractions [HII].

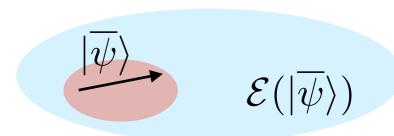




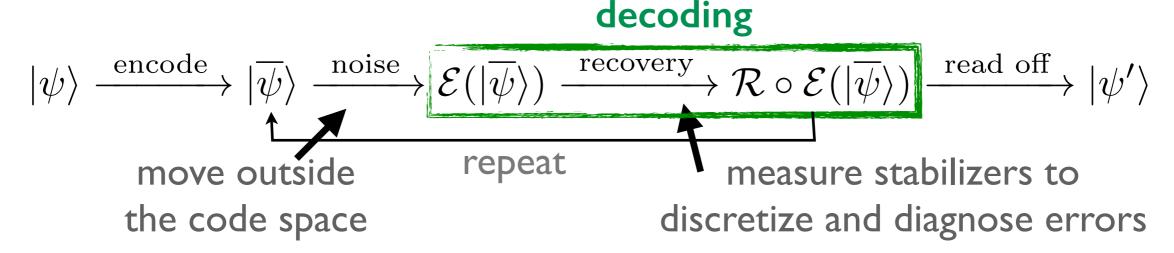
Kelly et al., Nature 519, (2015)

DECODING PROBLEM FOR STABILIZER CODES

stabilizer codes [G96]: commuting Pauli operators code space = (+1)-eigenspace of stabilizers



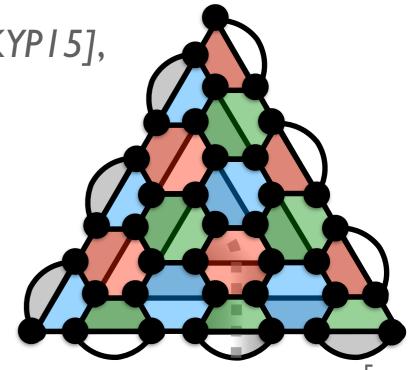
quantum error-correction game



- decoder: algorithm to find a Pauli recovery from stabilizer measurements
- successful decoding iff recovery returns the state to code space <u>AND</u>
 error + recovery do not implement a non-trivial logical operator

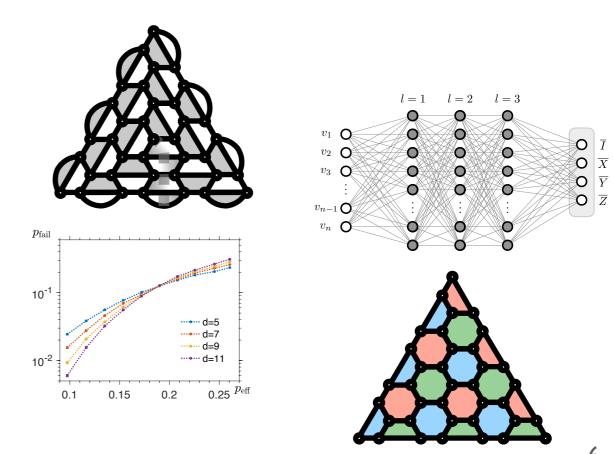
CHALLENGES IN DESIGNING DECODERS

- Decoding of generic stabilizer codes is computationally hard [HL11,IP13].
- Dominant <u>sources of errors</u> not known/depend heavily on the device.
- Many results on decoders, usually designed and analyzed for <u>simplistic</u> noise models, e.g. the bit-flip. Correlations: X/Z or spatial [BN 17]?
- Codes may be related, e.g. color and toric codes [KYP15], but decoders <u>difficult to adapt!</u>
- Desirable decoding methods should:
 - minimize human input,
 - be easily adaptable to different noise/code,
 - be efficient and have good performance.



OUTLINE

- Goal: explore adaptability of (vanilla) neural-network decoding for various codes and (correlated) noise models
- Previously [TM16,...]: surface code, small distance (d=3-7), simple noise
 - 1. 2D toric code with a twist
 - 2. neural-network decoding
 - 3. benchmarking performance
 - 4. 2D triangular color code

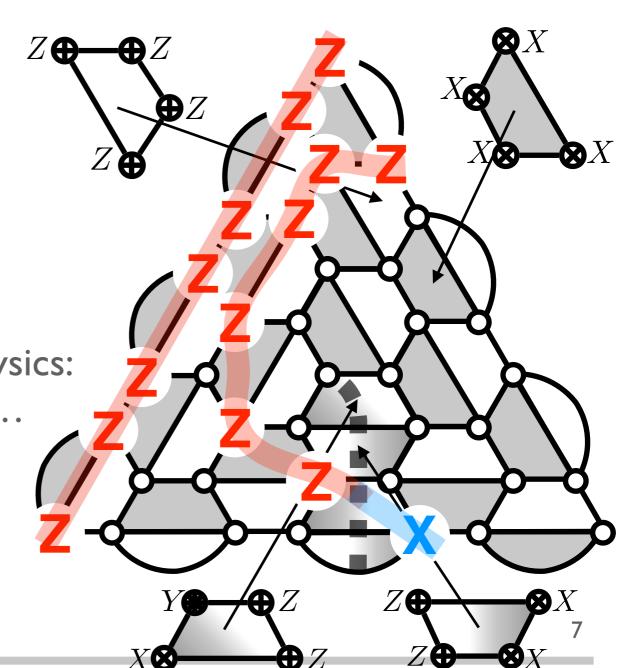


Torlai&Melko'16; Baireuther et al.'17; Varsamopoulos et al.'18;... arXiv: 18

arXiv: 1802.08680

2D TORIC CODE WITH A TWIST

- many versions [K97,...]:lattices, boundaries, twists, ...
- 2D toric code with a twist [YK16]:
 - 2-colorable faces
 - 4-valent vertices
- stabilizers = X-/Z-faces, mixed faces
- simple model capturing interesting physics: anyons, condensation on boundaries, ...
- high error-correction threshold,
 local stabilizers of weight ≤ 4
- logical Pauli operators = ID strings

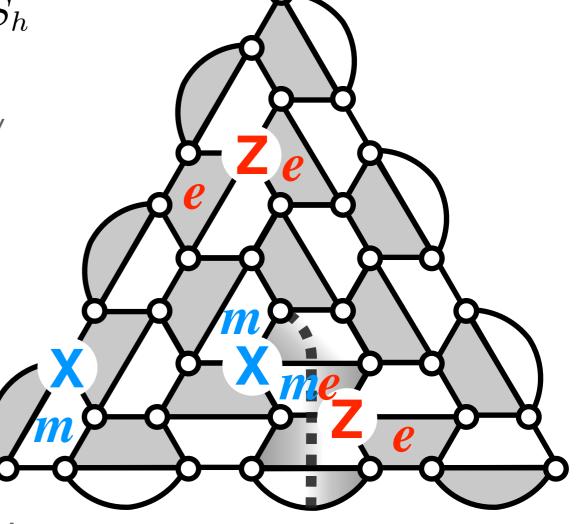


STABILIZER HAMILTONIAN AND EXCITATIONS

find Hamiltonian whose ground space = code space

$$H_{TC} = -\sum_{f \in F_D} X_f - \sum_{g \in F_W} Z_g - \sum_{h \in F_M} S_h$$

- violated stabilizers = excitations e_D & m_W
- bulk: excitations created in pairs $e_D \times e_D = m_W \times m_W = 1$
- boundary: can create a single e_D or m_W
- logical operator = create an excitation and move to the other boundary
- **defect line** [BIO]: e_D and m_W are swapped



HOW TO REMOVE EXCITATIONS

decoding = returning to code/ground space

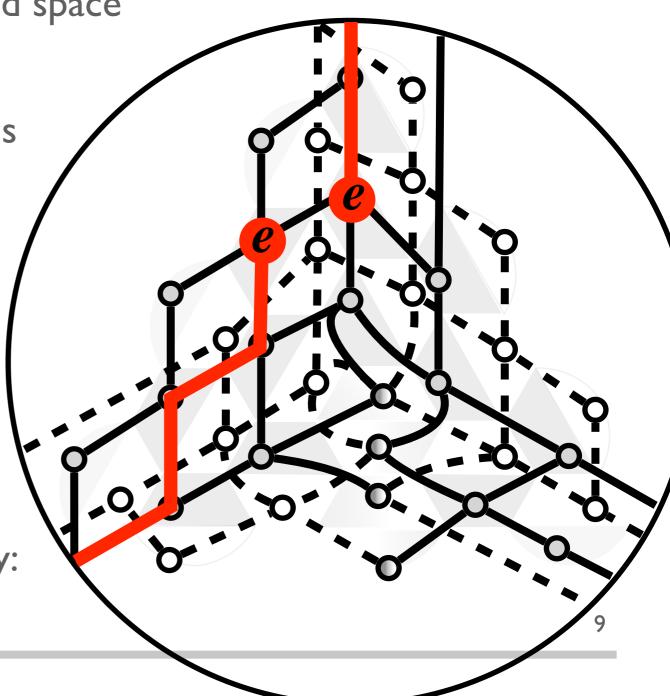
= removing excitations

always possible to remove excitations by pushing them to the boundary!

excitation graph:vertices = excitationsedges = local Pauli operators

easy to construct (fusion rules)
 and use to find a removal operator

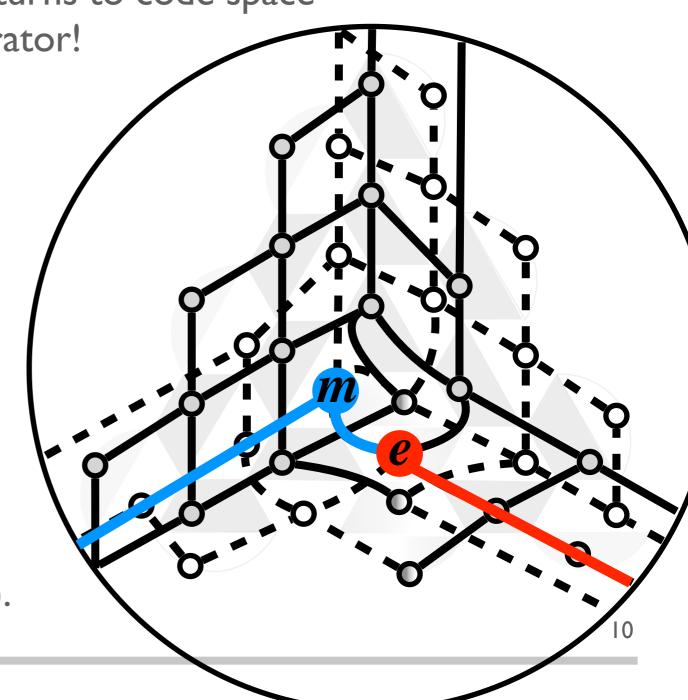
do not need to find the error exactly: success iff up to a stabilizer!



DECODING AS CLASSIFICATION PROBLEM

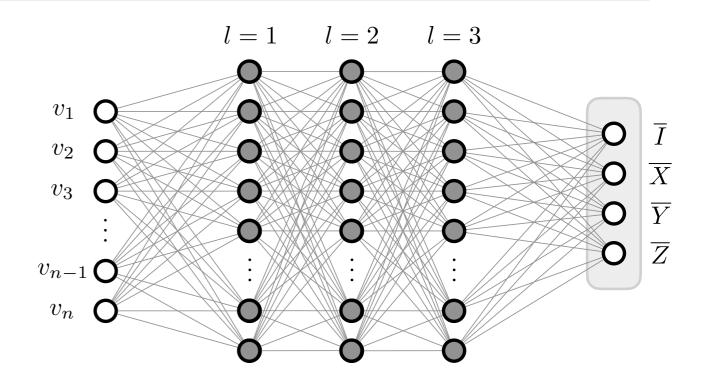
Pushing excitations to boundary returns to code space but likely to introduce logical* operator!

- Pauli errors = Q (not known!) excitations/syndrome = Uremoval operator = R_U
- $R_U Q \sim L$ if only we knew L...
- This is a classification problem!
 (excitations U, logical L)
- Many errors Q w/ the same U! Find the most likely equivalence class of errors (labeled by $L \sim R_U Q$).



NEURAL-NETWORK DECODING

- Feedforward neural networks: layers, nodes, activation function.
- Neural decoder:
 - (I) excitation removal: $U \longrightarrow R_U$
 - (2) neural net to classify: $U \longrightarrow L$ output = recovery $R_U L$



- Details of (I) excitation removal not important; usually easy to figure out.
- Training neural net = minimization problem (cross entropy) for specified code, noise model, removal algorithm, but can use different error rates!
- Standard neural net optimizations: Adam, mini-batch, He (for ReLU),...

(CORRELATED) NOISE MODELS

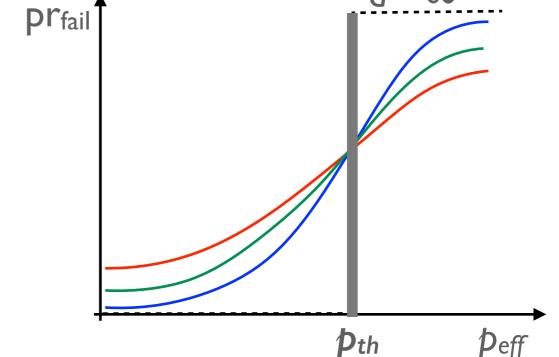
- Three simple Pauli error models with the error rate *p*:

 - NN-depolarizing every pair of nearest-neighbor qubits affected by $p_{\text{eff}}^{(n)} = \frac{4}{5}np + o(p^2)$ non-trivial Pauli P₁P₂ \neq II w/ pr(P₁P₂) = p/15
- easy to specify/simulate; capture realistic noise features (correlations)
- effective error rate = probability of any non-trivial error on the qubit

ERROR-CORRECTION THRESHOLDS

Consider a family of codes with growing distance d.





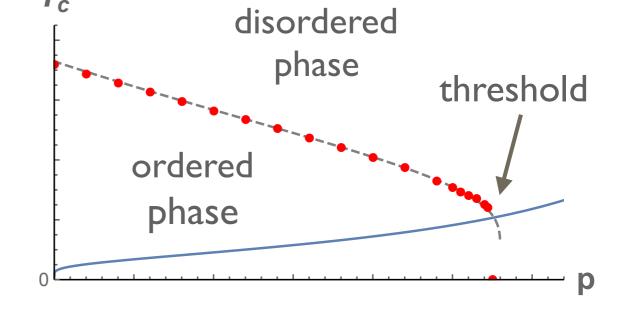
 $d = \infty$

- What is the probability $pr_{fail}(p_{eff}, d)$ of unsuccessful decoding?
- Threshold p_{th} = "max error rate", i.e., if error rate $p_{eff} \le p_{th}$, then $pr_{fail}(p_{eff}, d) \longrightarrow 0$ as the distance $d \longrightarrow \infty$.
- Non-zero threshold is a non-trivial property: guaranteed # errors $\sim d$, but w.h.p. correct # errors $\sim d^2$!

INTERLUDE — OPTIMAL THRESHOLDS FROM STAT-MECH

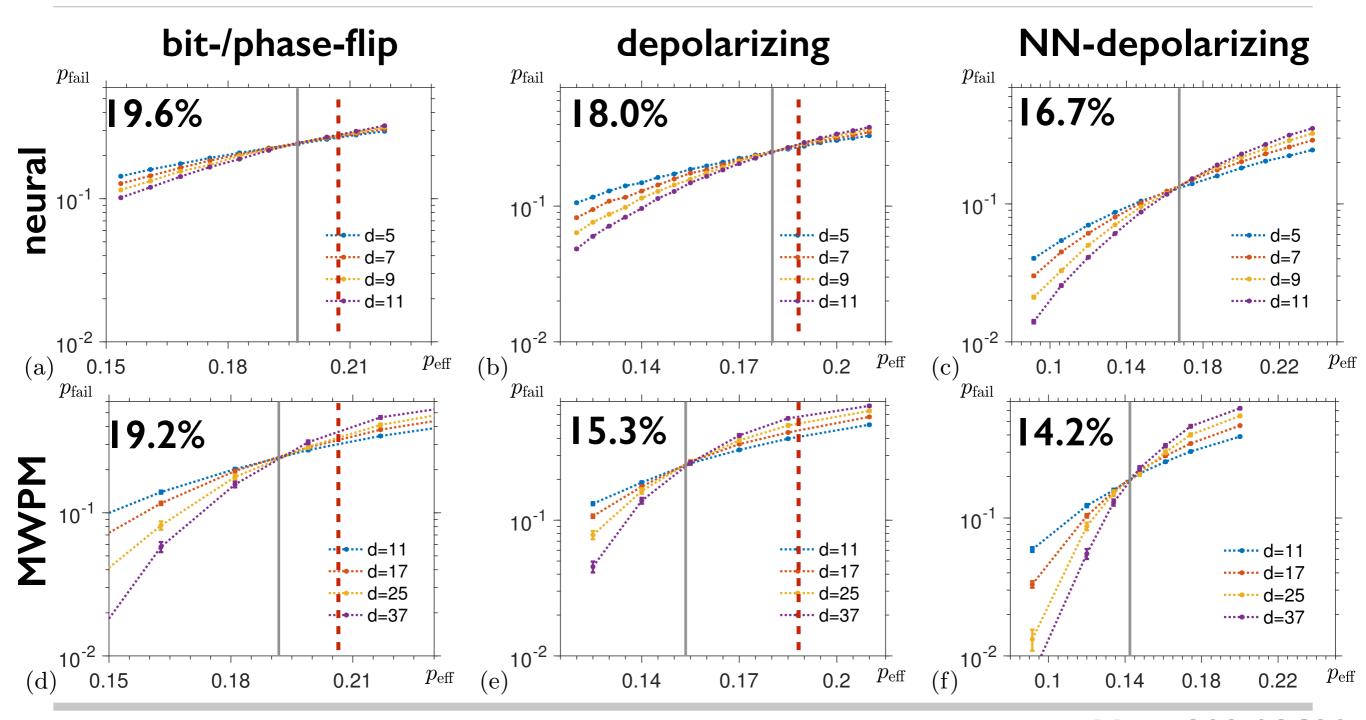
• Values of thresholds relevant for: comparing codes and decoders, overhead estimates, experiment, ... τ

- [DKLP03]: connection between toric code decoding and a classical spin model (random-bond Ising)
- ordered phase = successful correctioncritical point = optimal threshold



Other models [KBMD09,KBBSP17,LMNWB18]: 2D color code (3-body Ising), 3D toric and codes (Ising gauge theory), 2D Bacon-Shor-type,...

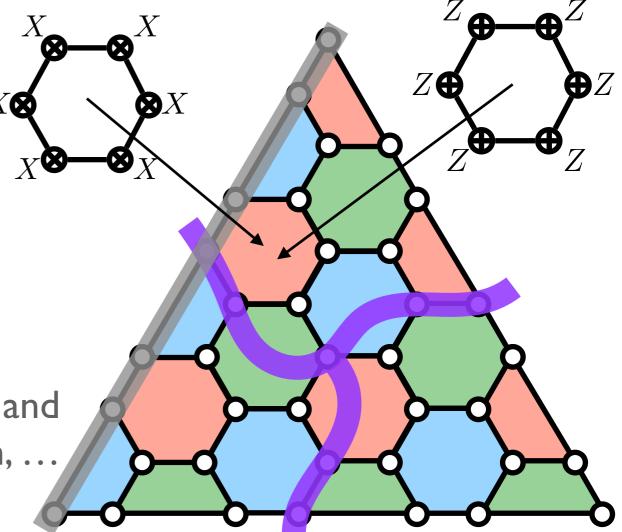
THRESHOLDS FOR TORIC CODE



arXiv: 1802.08680

2D COLOR CODE

- 2D color code [BMD06] lattice:
 - 3-colorable faces
 - 3-valent vertices
- qubits = vertices (same positions!) stabilizers = X-face and Z-face
- logical Clifford gates are transversal!
- other ideas [B15,B16]: code switching and dim-jump, single-shot error correction, ...
- decoding seems to be challenging, thus worse performance?!



COLOR CODE EXCITATIONS

ground space of stabilizer Hamiltonian = code space

$$H_{CC} = -\sum_{f \in F} X_f - \sum_{f \in F} Z_f$$

• violated stabilizers = excitations e_K , m_K (K=R,G,B)

bulk: excitations can be created in triples!

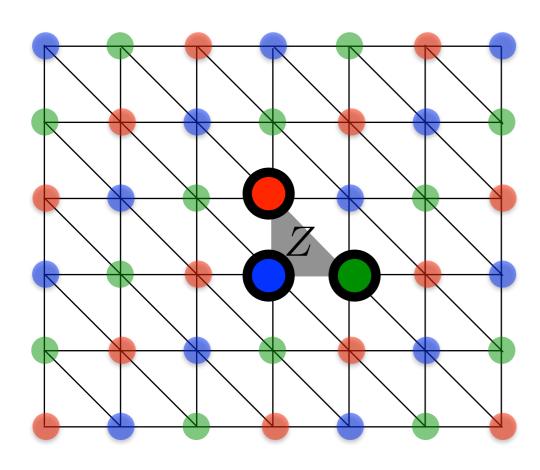
$$e_K \times e_K = m_K \times m_K = 1$$

$$e_R \times e_G \times e_B = m_R \times m_G \times m_B = 1$$

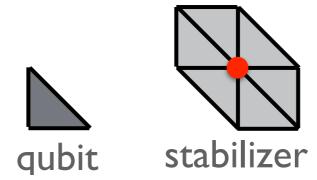
- **boundary:** can create a single excitation
- more boundaries and defect lines than in toric code [Y15, KBPE18]!

 $d e_R Z \cdot Z e_R$

2D COLOR CODE REDEFINED



- (Dual) lattice: made of triangles and vertices are 3-colorable.
- 2D color code redefined:
 - qubits = triangles,
 - stabilizers = X- & Z-vertices.

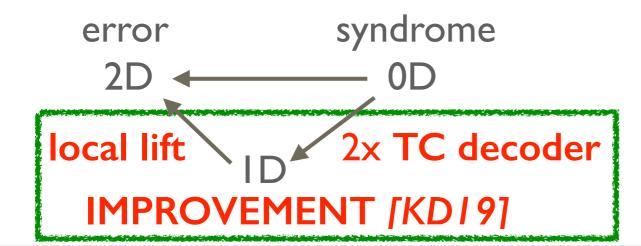


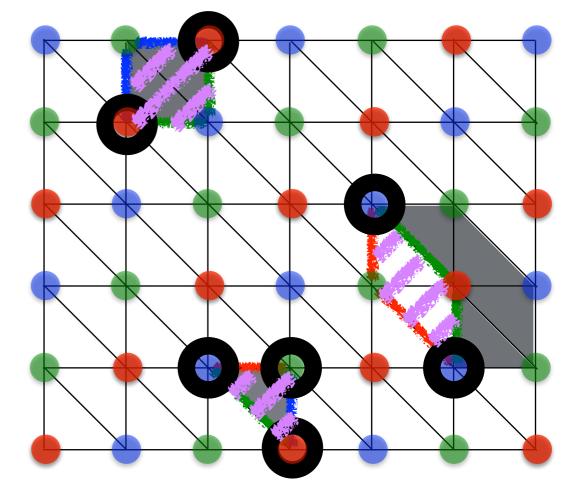
Decoding seems to be more challenging: excitations created in triples, thus not only pairing!

18

HOWTO DECODE COLOR CODES?

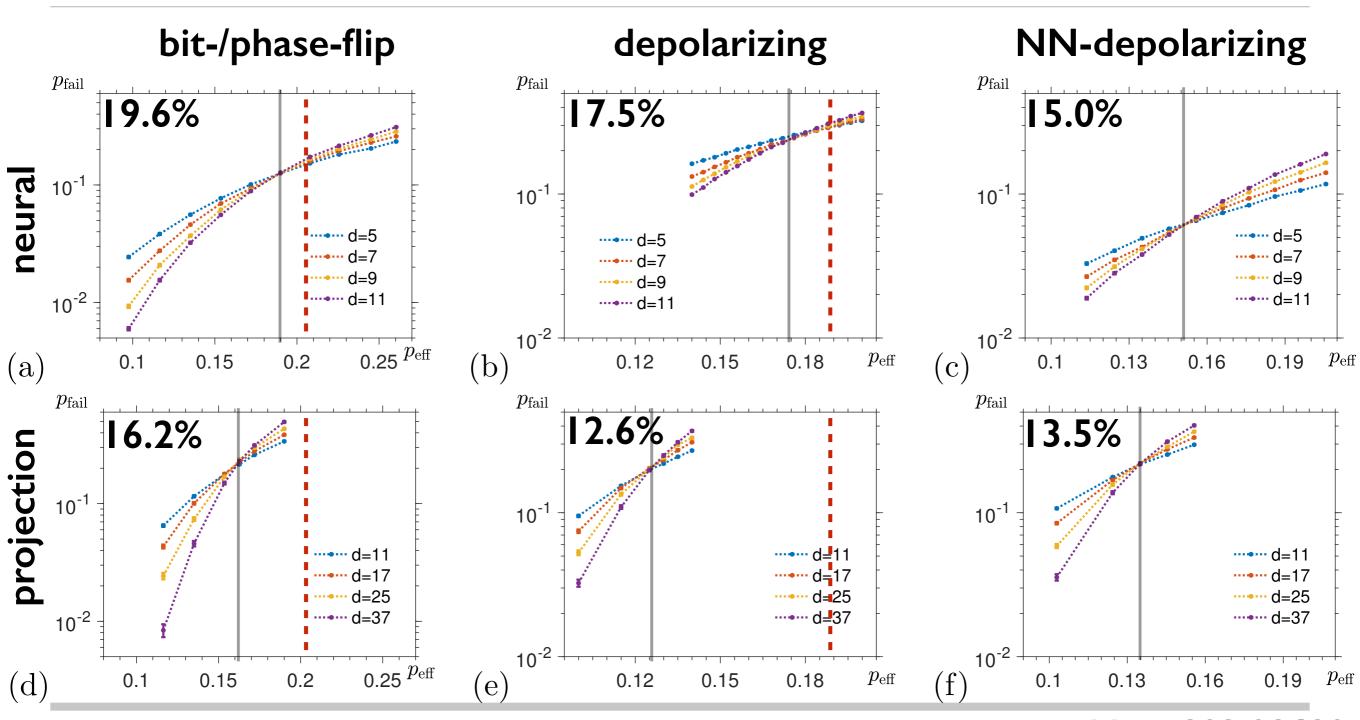
- Idea: color and toric codes are related [KYP15] can we use existing toric code decoders?
- Noise changes correlated errors!
- 2D projection decoder [D14]:
 - TC decoder on three sublattices,
 - global filling.





19

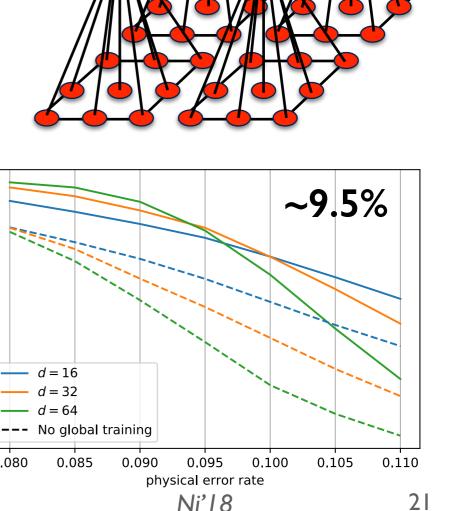
THRESHOLDS FOR COLOR CODE



arXiv: 1802.08680

SCALING UP CODE DISTANCE

- So far we haven't used any knowledge about the system. Geometric locality of stabilizers!
- [H04, KP18, DCP10, BH13,...]: decoders based on cellular automata, renormalization group, ... Provable thresholds!
- Translational invariance and RG ideas: convolutional neural networks?
- [N18]: large-distance toric code $(d \le 64)$

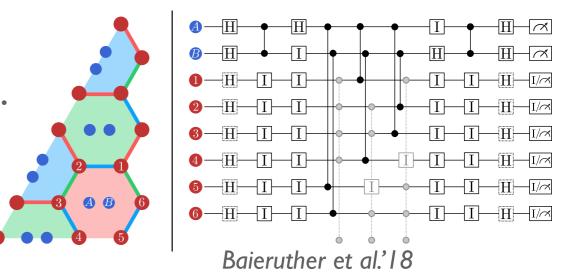


0.9

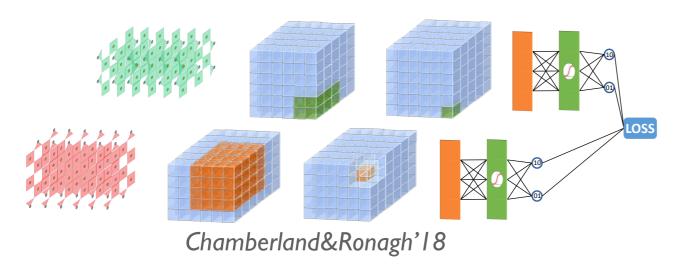
logical accuracy 2.0 8.0

REALISTIC SCENARIO: CIRCUIT-LEVEL NOISE

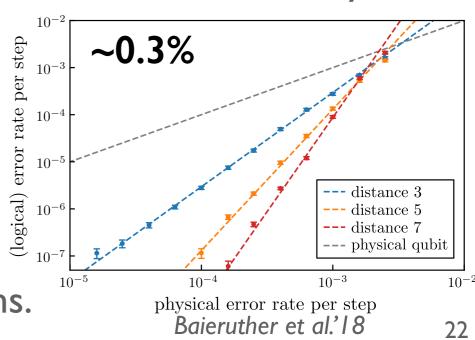
- Syndrome extraction is far from perfect!
 Need: ancillas and repeated measurements.
- [CR18, BCCBO18]: small-distance toric/surface and color codes $(d \le 7)$.



Convolutional and recurrent neural networks with internal memory.

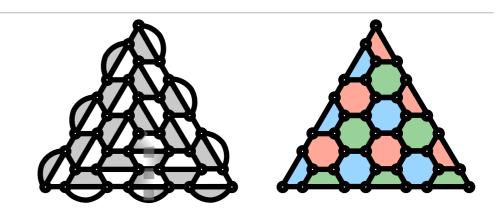


Decoding runtime of a trained network ~10 ns.



DISCUSSION

 We studied decoding of toric/color codes for (correlated) noise: bit-/phase-flip, depolarizing, NN-depolarizing.



Our results:

- neural-network decoding is <u>versatile</u>
 and <u>outperforms</u> efficient decoders
- l = 1 l = 2 l = 3 v_1 v_2 v_3 v_4 v_5 v_7 v_8 v_8 v_8 v_8 v_8 v_8 v_9 v_9
- 2D color code threshold <u>significantly improved</u>
- Future: transferability, real-experiment data and training in low error-rate regime, certifying performance, interpretability, ...

THANK YOU!