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When do interesting things happen?
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Some of the most intriguing phenomena in condensed matter 
physics arise from the splitting of ‘accidental’ degeneracies.
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When do interesting things happen?

But they are also notoriously difficult to handle, due to
•  multiple energy scales
•  complex energy landscapes / slow equilibration
•  macroscopic entanglement
•  strong coupling

interacting  
many-body system

E

‘accidental’  
degeneracy

residual effects
select ground state

Some of the most intriguing phenomena in condensed matter 
physics arise from the splitting of ‘accidental’ degeneracies.
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statistical physics

The quantum many-body problem:  
What is the ground state of a macroscopic number of interacting 
bosons, spins or fermions?

• quantum Monte Carlo (non-local updates)  
• density matrix renormalization group 
• entanglement perspective 
• tensor network states

A continuous stream of computational and conceptual advances 
has been directed towards attacking this problem:
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statistical physics + machine learning

Machine learning approaches: 

The quantum many-body problem:  
What is the ground state of a macroscopic number of interacting 
bosons, spins or fermions?

• dimensional reduction  
• feature extraction

A perfect match for the goal of identifying essential characteristics 
of a quantum many- body system, but often hidden in 

• exponential complexity of its many-body wavefunction  
• abundance of potentially revealing correlation functions

http://www.thp.uni-koeln.de/trebst/
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machine learning

But there is also an abundance of machine learning approaches

• supervised learning 
• unsupervised learning 
• reinforcement learning

that are oftentimes built around artificial neural networks

• restricted Boltzmann machines (RBMs) 
• generative adversarial network (GANs) 
• convolutional neural networks (CNNs)

http://www.thp.uni-koeln.de/trebst/
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tem, which can be generically written in terms of a classi-
cal statistical mechanics problem defined on a phase space
with configurations C in d + 1 dimensions. The partition
function of the quantum system can thereby be expressed
as a sum of statistical weights over classical configurations,
i.e. Z =

P
C

WC . Unlike classical systems, for quantum
Hamiltonians the weights WC can be both positive and neg-
ative (or even complex), which invalidates the usual Monte
Carlo interpretation of WC/Z as a probability distribution. In
principle, a stochastic interpretation can be salvaged by con-
sidering a modified statistical ensemble with probability dis-
tribution PC / |WC | and concomitantly moving the sign of
WC to the observable

hOi =

P
C

OC · WCP
C

WC

=

P
C

OC · sign(WC) · |WC |P
C

sign(WC) · |WC |

=
hsign · Oi|W |

hsigni|W |
. (1)

This procedure, although formally exact, introduces the QMC
sign problem as a manifestation of the “small numbers prob-
lem”, where the numerator and denominator in the last expres-
sion both approach zero exponentially in system size N and
inverse temperature � [1, 2], i.e. we have

hsigni|W | = exp(��N�f) , (2)

where �f is the difference in the free energy densities of the
original fermionic system and the one with absolute weights.
Thus resolving the ratio in Eq. (1) within the statistical noise
inherent to all Monte Carlo simulations becomes exponen-
tially hard. The advantage of importance sampling, which
often translates into polynomial scaling, is lost.

In this work, instead of attempting to obtain exact expec-
tation values of physical observables, or attempting to find a
basis where the weights WC are always non-negative or that
ameliorates the calculation of hsigni|W |, we introduce a basis-
dependent “state function” FC whose goal is to associate con-
figurations C with the most likely phase of matter they belong
to for a given Hamiltonian. More precisely, we assume that
there exists a function FC such that its expectation value in
the modified ensemble of absolute weights

hF i|W | =

P
C

FC · |WC |P
C
|WC |

(3)

is 1 when the system is deep in phase A and 0 when the
system is deep in the neighboring phase B. Around the
critical point separating phase A from B, hF i|W | crosses
over from one to zero. The value hF i|W | = 1/2 indicates
that the function can not make a distinction between phases A
and B, and therefore assigns equal probability to both phases.
We therefore interpret this value as locating the position of
the transition separating the two phases in parameter space
[16]. In practice, we use a deep CNN to approximate the
state function F , which is trained on “image” representations
of configurations C sampled from the modified ensemble

conv pool conv pool full dropout full

Figure 1. (Color online) Schematic illustration of the neural network
used in this work. A combination of convolutional (conv) and max
pooling layers (pool) is first used to study the image, before the data
is further analyzed by two fully connected neural networks separated
by a dropout layer. The convolutional and the first fully connected
layer are activated using rectified linear functions, while the final
layer is activated by a softmax function.

|WC |/
P

C
|WC | in the two different phases A and B. We

explore several choices for this image representation includ-
ing color-conversions of the auxiliary field encountered in
determinental Monte Carlo approaches, the Green’s function
as well as the Green’s function multiplied by the sign. If the
above procedure indeed allows the crafting of such a state
function F , then one has found a path to a sign-problem
avoiding discrimination of the two phases and their phase
transitions through the evaluation of hF i|W |.

Convolutional Neural Networks
Artificial neural networks have for some time been identi-
fied as the key ingredient of powerful pattern recognition and
machine learning algorithms [17, 18]. Very recently, neural
networks and other machine learning algorithms have been
brought to the realm of statistical physics. On a concep-
tual level, parallels between deep learning and renormaliza-
tion group techniques have been explored [19, 20], while on
a more practical level machine learning algorithms have been
applied to model potential energy surfaces [21], relaxation in
glassy liquids [22] or the identification of phase transitions in
classical many-body systems [14, 15]. Boltzmann machines,
as well as their quantum extensions [23], have been applied to
statistical mechanics models [24] and quantum systems [25].
In addition, new supervised learning algorithms inspired by
tensor-network representations of quantum states have been
recently proposed [26].

In machine learning, the goal of artificial neural networks
is to learn to recognize patterns in a (typically high dimen-
sional) data set. CNNs, in particular, are nonlinear functions
which are optimized (in an initial “training” step) such that
the resulting function F allows for the extraction of patterns
(or “features”) present in the data. Here we take this approach
to construct a function F , represented as a deep CNN, that al-
lows the classification of many-fermion phases as outlined in
the previous section. Our choice of employing a deep CNN
is rooted in the above observation that the configurations gen-
erated from a quantum Monte Carlo algorithm can be often
interpreted as “images”. As we explain below in more detail,
our analysis can be regarded as an image classification prob-
lem – an extremely successful application of CNNs.

convolution convolution
pooling pooling

conventional fully connected

dropout

32 3x3 filters 64 3x3 filters 512 neurons

• Convolutional neural networks 

• How can we identify quantum phases of matter using ML tools?
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.

Slide filters across image and create new image based on how well they fit.
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convolutional neural networks
Convolutional neural networks look for recurring patterns using small filters.
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discriminating phases of matter

Supervised learning approach  
1) train convolutional neural network on representative “images” deep within the two phases 
2) apply trained network to “images” sampled elsewhere to predict phases + transition

What are the right images to feed into the neural network?

phase A phase B
phase 

transition

train
here

train
here

predict phases by applying neural network here

step 1

step 2
�

General setup 
Consider some Hamiltonian, which as a function of some parameter λ exhibits  
a phase transition between two phases.

http://www.thp.uni-koeln.de/trebst/
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classical phases of matter

Finite-temperature transition in the Ising model H = �J
X

hi,ji

Sz
i S

z
j

©  Simon Trebst

classical phases of matter

Finite-temperature transition in the Ising model H = �J
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Figure 1 | Machine learning the ferromagnetic Ising model. a, The output layer averaged over a test set as a function of T/J for the square-lattice
ferromagnetic Ising model. The inset in a displays a schematic of the fully connected neural network used in our simulations. b, Plot showing data collapse
of the average output layer as a function of tL1/⌫ , where t=(T �Tc)/J is the reduced temperature. Linear system sizes L= 10,20,30,40 and 60 are
represented by crosses, up triangles, circles, diamonds and squares, respectively. c, Plot of the finite-size scaling of the crossing temperature T⇤/J (down
triangles). d–f, Analogous data to a–b, but for the triangular Ising ferromagnet using the neural network trained for the square-lattice model. The vertical
orange lines signal the critical temperatures of the models in the thermodynamic limit, Tc/J=2/ ln(1+

p
2) for the square lattice17 and Tc/J=4/ ln3 for the

triangular lattice19. The dashed vertical lines represent our estimates of Tc/J from finite-size scaling. The error bars represent one standard deviation
statistical uncertainty (see Supplementary Information).

and the high-temperature states are distinguished by their spin–spin
correlation functions: power-law decay at T = 0, and exponential
decay at T =1. Instead we feed raw Monte Carlo configurations
to train a neural network (Fig. 1a) to distinguish ground states
from high-temperature states (Fig. 2a,b). For a square-ice system
with N = 2⇥ 16⇥ 16 spins, we find that a neural network with
100 hidden units successfully distinguishes the states with a 99%
accuracy. The network does so solely based on spin configurations,
with no information about the underlying lattice—a feat di�cult for
the human eye, even if supplemented with a layout of the underlying
Hamiltonian locality.

We now examine an Ising lattice gauge theory, the prototypical
example of a topological phase of matter, without an order param-
eter at T = 0 (refs 8,20). The Hamiltonian is H =�J

P
p

Q
i2p � z

i ,
where the Ising spins live on the bonds of a two-dimensional square
lattice with plaquettes p (see Fig. 2c). The ground state is again a
degenerate manifold8,21 with exponentially decaying spin–spin cor-
relations. As in the square-ice model, we attempt to use the neural
network in Fig. 1a to classify the high- and low-temperature states,
but find that the training fails to classify the test sets to an accuracy
of over 50%—equivalent to simply guessing. Instead, we employ a
convolutional neural network (CNN)3,22 which readily takes advan-
tage of the two-dimensional structure as well as the translational
invariance of the model. We optimize the CNN in Fig. 2d using
Monte Carlo configurations from the Ising gauge theory at T = 0
andT =1. The CNNdiscriminates high-temperature from ground
states with an accuracy of 100% in spite of the lack of an order
parameter or qualitative di�erences in the spin–spin correlations.

We find that the discriminative power of the CNN relies on the det-
ection of satisfied local energetic constraints of the theory, namely
whether

Q
i2p � z

i is either +1 (satisfied) or �1 (unsatisfied) on
each plaquette of the system (see the Supplementary Fig. 5). We
construct an analytical model to explicitly exploit the presence of
local constraints in the classification task, which discriminates our
test sets with an accuracy of 100% (see Supplementary Fig. 6).

Notice that, because there is no finite-temperature phase
transition in the Ising gauge theory, we have restricted our analysis
to temperatures T =0 and T =1, only. However, in finite systems,
violations of the local constraints are strongly suppressed, and the
system is expected to slowly cross over to the high-temperature
phase. The crossover temperature T ⇤ happens as the number of
thermally excited defects ⇠N exp(�2J�) is of the order of one,
implying T ⇤/J ⇠1/ ln

p
N (ref. 23). As the presence of local defects

is the mechanism through which the CNN decides whether a
system is in its ground state or not, we expect that it will be
able to detect the crossover temperature in a test set at small but
finite temperatures. In Fig. 3 we present the results of the output
neurons of our analytical model for di�erent system sizes averaged
over test sets at di�erent temperatures. We estimate the inverse
crossover temperature �⇤J based on the crossing point of the low-
and high-temperature output neurons. As expected theoretically,
this depends on the system size, and as shown in the inset in Fig. 3,
a clear logarithmic crossover is apparent. This result showcases the
ability of the CNN to detect not only phase transitions, but also
non-trivial crossovers between topological phases and their high-
temperature counterparts.
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Figure 1 | Machine learning the ferromagnetic Ising model. a, The output layer averaged over a test set as a function of T/J for the square-lattice
ferromagnetic Ising model. The inset in a displays a schematic of the fully connected neural network used in our simulations. b, Plot showing data collapse
of the average output layer as a function of tL1/⌫ , where t=(T �Tc)/J is the reduced temperature. Linear system sizes L= 10,20,30,40 and 60 are
represented by crosses, up triangles, circles, diamonds and squares, respectively. c, Plot of the finite-size scaling of the crossing temperature T⇤/J (down
triangles). d–f, Analogous data to a–b, but for the triangular Ising ferromagnet using the neural network trained for the square-lattice model. The vertical
orange lines signal the critical temperatures of the models in the thermodynamic limit, Tc/J=2/ ln(1+

p
2) for the square lattice17 and Tc/J=4/ ln3 for the

triangular lattice19. The dashed vertical lines represent our estimates of Tc/J from finite-size scaling. The error bars represent one standard deviation
statistical uncertainty (see Supplementary Information).

and the high-temperature states are distinguished by their spin–spin
correlation functions: power-law decay at T = 0, and exponential
decay at T =1. Instead we feed raw Monte Carlo configurations
to train a neural network (Fig. 1a) to distinguish ground states
from high-temperature states (Fig. 2a,b). For a square-ice system
with N = 2⇥ 16⇥ 16 spins, we find that a neural network with
100 hidden units successfully distinguishes the states with a 99%
accuracy. The network does so solely based on spin configurations,
with no information about the underlying lattice—a feat di�cult for
the human eye, even if supplemented with a layout of the underlying
Hamiltonian locality.

We now examine an Ising lattice gauge theory, the prototypical
example of a topological phase of matter, without an order param-
eter at T = 0 (refs 8,20). The Hamiltonian is H =�J

P
p

Q
i2p � z

i ,
where the Ising spins live on the bonds of a two-dimensional square
lattice with plaquettes p (see Fig. 2c). The ground state is again a
degenerate manifold8,21 with exponentially decaying spin–spin cor-
relations. As in the square-ice model, we attempt to use the neural
network in Fig. 1a to classify the high- and low-temperature states,
but find that the training fails to classify the test sets to an accuracy
of over 50%—equivalent to simply guessing. Instead, we employ a
convolutional neural network (CNN)3,22 which readily takes advan-
tage of the two-dimensional structure as well as the translational
invariance of the model. We optimize the CNN in Fig. 2d using
Monte Carlo configurations from the Ising gauge theory at T = 0
andT =1. The CNNdiscriminates high-temperature from ground
states with an accuracy of 100% in spite of the lack of an order
parameter or qualitative di�erences in the spin–spin correlations.

We find that the discriminative power of the CNN relies on the det-
ection of satisfied local energetic constraints of the theory, namely
whether

Q
i2p � z

i is either +1 (satisfied) or �1 (unsatisfied) on
each plaquette of the system (see the Supplementary Fig. 5). We
construct an analytical model to explicitly exploit the presence of
local constraints in the classification task, which discriminates our
test sets with an accuracy of 100% (see Supplementary Fig. 6).

Notice that, because there is no finite-temperature phase
transition in the Ising gauge theory, we have restricted our analysis
to temperatures T =0 and T =1, only. However, in finite systems,
violations of the local constraints are strongly suppressed, and the
system is expected to slowly cross over to the high-temperature
phase. The crossover temperature T ⇤ happens as the number of
thermally excited defects ⇠N exp(�2J�) is of the order of one,
implying T ⇤/J ⇠1/ ln

p
N (ref. 23). As the presence of local defects

is the mechanism through which the CNN decides whether a
system is in its ground state or not, we expect that it will be
able to detect the crossover temperature in a test set at small but
finite temperatures. In Fig. 3 we present the results of the output
neurons of our analytical model for di�erent system sizes averaged
over test sets at di�erent temperatures. We estimate the inverse
crossover temperature �⇤J based on the crossing point of the low-
and high-temperature output neurons. As expected theoretically,
this depends on the system size, and as shown in the inset in Fig. 3,
a clear logarithmic crossover is apparent. This result showcases the
ability of the CNN to detect not only phase transitions, but also
non-trivial crossovers between topological phases and their high-
temperature counterparts.
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quantum phases of matter
Hubbard models on the honeycomb lattice

Spinful fermions

H = �t

X
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semi-metal spin density wave
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fermionic quantum phase transition
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But what are the right images to represent a quantum state?
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predict phases by neural network in-between
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Path integral representation of partition sum

Decouple quartic interaction via Hubbard-Stratonovich 
transformation → free fermions in classical background field.

quantum phases of matter

But what are the right images to represent a quantum state?

Alternative – Green’s functions

G(i, j) = hci c
†
ji

Hue

Saturation

Value (opacity)
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quantum phases of matter

But what are the right images to represent a quantum state?

semi-metal

SDW

L = 2x9x9
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tem, which can be generically written in terms of a classi-
cal statistical mechanics problem defined on a phase space
with configurations C in d + 1 dimensions. The partition
function of the quantum system can thereby be expressed
as a sum of statistical weights over classical configurations,
i.e. Z =

P
C

WC . Unlike classical systems, for quantum
Hamiltonians the weights WC can be both positive and neg-
ative (or even complex), which invalidates the usual Monte
Carlo interpretation of WC/Z as a probability distribution. In
principle, a stochastic interpretation can be salvaged by con-
sidering a modified statistical ensemble with probability dis-
tribution PC / |WC | and concomitantly moving the sign of
WC to the observable

hOi =

P
C

OC · WCP
C

WC

=

P
C

OC · sign(WC) · |WC |P
C

sign(WC) · |WC |

=
hsign · Oi|W |

hsigni|W |
. (1)

This procedure, although formally exact, introduces the QMC
sign problem as a manifestation of the “small numbers prob-
lem”, where the numerator and denominator in the last expres-
sion both approach zero exponentially in system size N and
inverse temperature � [1, 2], i.e. we have

hsigni|W | = exp(��N�f) , (2)

where �f is the difference in the free energy densities of the
original fermionic system and the one with absolute weights.
Thus resolving the ratio in Eq. (1) within the statistical noise
inherent to all Monte Carlo simulations becomes exponen-
tially hard. The advantage of importance sampling, which
often translates into polynomial scaling, is lost.

In this work, instead of attempting to obtain exact expec-
tation values of physical observables, or attempting to find a
basis where the weights WC are always non-negative or that
ameliorates the calculation of hsigni|W |, we introduce a basis-
dependent “state function” FC whose goal is to associate con-
figurations C with the most likely phase of matter they belong
to for a given Hamiltonian. More precisely, we assume that
there exists a function FC such that its expectation value in
the modified ensemble of absolute weights

hF i|W | =

P
C

FC · |WC |P
C
|WC |

(3)

is 1 when the system is deep in phase A and 0 when the
system is deep in the neighboring phase B. Around the
critical point separating phase A from B, hF i|W | crosses
over from one to zero. The value hF i|W | = 1/2 indicates
that the function can not make a distinction between phases A
and B, and therefore assigns equal probability to both phases.
We therefore interpret this value as locating the position of
the transition separating the two phases in parameter space
[16]. In practice, we use a deep CNN to approximate the
state function F , which is trained on “image” representations
of configurations C sampled from the modified ensemble

conv pool conv pool full dropout full

Figure 1. (Color online) Schematic illustration of the neural network
used in this work. A combination of convolutional (conv) and max
pooling layers (pool) is first used to study the image, before the data
is further analyzed by two fully connected neural networks separated
by a dropout layer. The convolutional and the first fully connected
layer are activated using rectified linear functions, while the final
layer is activated by a softmax function.

|WC |/
P

C
|WC | in the two different phases A and B. We

explore several choices for this image representation includ-
ing color-conversions of the auxiliary field encountered in
determinental Monte Carlo approaches, the Green’s function
as well as the Green’s function multiplied by the sign. If the
above procedure indeed allows the crafting of such a state
function F , then one has found a path to a sign-problem
avoiding discrimination of the two phases and their phase
transitions through the evaluation of hF i|W |.

Convolutional Neural Networks
Artificial neural networks have for some time been identi-
fied as the key ingredient of powerful pattern recognition and
machine learning algorithms [17, 18]. Very recently, neural
networks and other machine learning algorithms have been
brought to the realm of statistical physics. On a concep-
tual level, parallels between deep learning and renormaliza-
tion group techniques have been explored [19, 20], while on
a more practical level machine learning algorithms have been
applied to model potential energy surfaces [21], relaxation in
glassy liquids [22] or the identification of phase transitions in
classical many-body systems [14, 15]. Boltzmann machines,
as well as their quantum extensions [23], have been applied to
statistical mechanics models [24] and quantum systems [25].
In addition, new supervised learning algorithms inspired by
tensor-network representations of quantum states have been
recently proposed [26].

In machine learning, the goal of artificial neural networks
is to learn to recognize patterns in a (typically high dimen-
sional) data set. CNNs, in particular, are nonlinear functions
which are optimized (in an initial “training” step) such that
the resulting function F allows for the extraction of patterns
(or “features”) present in the data. Here we take this approach
to construct a function F , represented as a deep CNN, that al-
lows the classification of many-fermion phases as outlined in
the previous section. Our choice of employing a deep CNN
is rooted in the above observation that the configurations gen-
erated from a quantum Monte Carlo algorithm can be often
interpreted as “images”. As we explain below in more detail,
our analysis can be regarded as an image classification prob-
lem – an extremely successful application of CNNs.

convolution convolution
pooling pooling

conventional fully connected

dropout

32 3x3 filters 64 3x3 filters 512 neurons

convolutional neural networks
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quantum phases of matter
Green’s functions are indeed objects/images for machine learning 
based discrimination of quantum phases.
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unsupervised learning

•  goal: training with unlabeled data

•  successful training with pseudo-labels  
    itself reveals distinct phases!

Quantum phase recognition via unsupervised machine learning

Peter Broecker,1 Fakher F. Assaad,2 and Simon Trebst1
1
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

2
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany

(Dated: July 4, 2017)

The application of state-of-the-art machine learning techniques to statistical physic problems has seen a surge
of interest for their ability to discriminate phases of matter by extracting essential features in the many-body
wavefunction or the ensemble of correlators sampled in Monte Carlo simulations. Here we introduce a gener-
alization of supervised machine learning approaches that allows to accurately map out phase diagrams of inter-
acting many-body systems without any prior knowledge, e.g. of their general topology or the number of distinct
phases. To substantiate the versatility of this approach, which combines convolutional neural networks with
quantum Monte Carlo sampling, we map out the phase diagrams of interacting boson and fermion models both
at zero and finite temperatures and show that first-order, second-order, and Kosterlitz-Thouless phase transitions
can all be identified. We explicitly demonstrate that our approach is capable of identifying the phase transition
to non-trivial many-body phases such as superfluids or topologically ordered phases without supervision.

In statistical physics, a continuous stream of computational
and conceptual advances has been directed towards attacking
the quantum many-body problem – the identification of the
ground state of a macroscopic number of interacting bosons,
spins or fermions. Pivotal steps forward have included the de-
velopment of numerical many-body techniques such as quan-
tum Monte Carlo simulations [1] and the density matrix renor-
malization group [2, 3] along with conceptual advances such
as the formulation of an entanglement perspective [4, 5] on
the quantum many-body problem arising from the interplay of
quantum information theory and quantum statistical physics.
Currently, machine learning (ML) approaches are entering
this field as new players. Their core functions, dimensional re-
duction and feature extraction, are a perfect match to the goal
of identifying essential characteristics of a quantum many-
body system, which are often hidden in the exponential com-
plexity of its many-body wavefunction or the abundance of
potentially revealing correlation functions. Initial steps in this
direction have demonstrated that machine learning of wave
functions is indeed possible [6, 7], which can lead to a varia-
tional representation of quantum states based on artificial neu-
ral networks that, for some cases, outperforms entanglement-
based variational representations [6]. This ability of machine
learning algorithms to learn complex distributions has also
been utilized to improve Monte Carlo sampling techniques
[8, 9] and might point to novel ways to bypass the sign prob-
lem of the many-fermion problem [10]. In parallel, it has
been demonstrated that convolutional neural networks can be
trained to learn sufficiently many features from the correlation
functions of a classical many-body system such that distinct
phases of matter can be discriminated and the parametric loca-
tion of the phase transition between them identified [11]. This
supervised learning approach has been generalized to quan-
tum many-body systems [10, 12], for which the application of
additional preprocessing filters even allows for the identifica-
tion of topological order [13, 14].

In this manuscript, we introduce an unsupervised machine
learning approach to the quantum many-body problem that
is capable of parametrically mapping out phase diagrams.
The algorithm, which generalizes previous supervised learn-
ing schemes to distinguish phases of matter, works without

any prior knowledge, e.g. regarding the overall topology or
number of distinct phases present in a phase diagram. The
essential ingredient of our approach are convolutional neural
networks (CNN) [15] that combine a preprocessing step using
convolutional filters with a conventional neural network (typ-
ically involving multiple layers itself). In previous work [10–
14] such CNNs have been used in a supervised learning set-
ting where a (quantum) many-body Hamiltonian is considered
that, as a function of some parameter �, exhibits a phase tran-
sition between two phases – such as the thermal phase transi-
tion in the classical Ising model [11] or the zero-temperature
quantum phase transition as a function of some coupling pa-
rameter [10]. In such a setting where one has prior knowledge
about the existence of two distinct phases in some parameter
range, one can train the CNN with labeled configurations or
Green’s functions acquired deep inside the two phases (e.g. by
Monte Carlo sampling). After successful training the CNN to
distinguish these two phases (which typically requires a few
thousand training instances), one can then feed unlabeled in-
stances, sampled for arbitrary intermediate parameter values
of �, to the CNN in order to locate the phase transition be-
tween the two phases, see also the schematic illustration of
Fig. 1. This approach has been demonstrated to produce rela-
tively good quantitative estimates for the location of the phase
transition [10–14] and might even be finessed to be amenable

�
�c

supervised learning

unsupervised learning

sliding window

phase I phase II

FIG. 1. Schematic illustration of the unsupervised machine learn-

ing approach. For a small parameter window, which is slided across
parameter space, a discrimination of phases at its endpoints A and B
is attempted via a supervised learning approach. A positive discrim-
ination via the underlying convolutional neural network is expected
only if the parameter window indeed encompasses a phase transition,
while it should fail when points A and B reside in the same phase.
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Employ ability to “blindly” distinguish phases to map out an entire 
phase diagram with no hitherto knowledge about the phases. 
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We determine the finite-temperature phase diagram of the square lattice hard-core boson Hubbard
model with nearest neighbor repulsion using quantum Monte Carlo simulations. This model is equivalent
to an anisotropic spin-1!2 XXZ model in a magnetic field. We present the rich phase diagram with a
first order transition between a solid and superfluid phase, instead of a previously conjectured supersolid
and a tricritical end point to phase separation. Unusual reentrant behavior with ordering upon increasing
the temperature is found, similar to the Pomeranchuk effect in 3He.

DOI: 10.1103/PhysRevLett.88.167208 PACS numbers: 75.10.Jm, 05.30.Jp, 67.40.Kh, 74.25.Dw

A nearly universal feature of strongly correlated systems
is a phase transition between a correlation-induced insulat-
ing phase, with localized charge carriers, and an itinerant
phase. High-temperature superconductors [1], manganites
[2], and the controversial two-dimensional (2D) “metal-
insulator transition” [3] are just a few examples of this
phenomenon. The 2D hard-core boson Hubbard model
provides the simplest example of such a transition from
a correlation-induced charge density wave insulator near
half filling to a superfluid (SF). It is a prototypical model
for preformed Cooper pairs [4], spin flops in anisotropic
quantum magnets [5,6], SF helium films [7], and super-
solids [8,9].

In simulations of this model, which does not suffer from
the negative sign problem of fermionic simulations, we
can investigate some of the pertinent questions about such
phase transitions: what is the order of the quantum phase
transitions in the ground state and the finite-temperature
phase transitions? Are there special points with dynami-
cally enhanced symmetry [10]? Can there be coexistence
of two types of order (such as a supersolid–coexisting
solid and superfluid order)? Answers to these questions
also provide insight into the other problems alluded to
above.

The Hamiltonian of the hard-core boson Hubbard model
we study is

H ! 2t
X

"i,j#
$ay

i aj 1 ay
j ai% 1 V

X

"i,j#
ninj 2 m

X

i
ni ,

(1)

where ay
i $ai% is the creation (annihilation) operator for

hard-core bosons, ni ! ay
i ai is the number operator,

V is the nearest neighbor Coulomb repulsion, and m is
the chemical potential. This model is equivalent to an
anisotropic spin-1!2 XXZ model with Jz ! V and jJxyj !
2t in a magnetic field h ! 2V 2 m. The zero field (and
zero magnetization m z ! 0) case of the spin model
corresponds to the half filled bosonic model (density
r ! "m z# ! 1!2) at m ! 2V . Throughout this Letter
we will use the bosonic language, and refer to the corre-

sponding quantities in the spin model where appropriate.
Because of the absence of efficient Monte Carlo algo-
rithms for classical magnets in a magnetic field there are
still many open questions even in the classical version of
this model, which was only studied by a local updated
method [11].

In Fig. 1 we show the ground-state phase diagram
[6,9,12]. For dominating chemical potential m the system
is in a band insulating state (r ! 0 and r ! 1, respec-
tively), while it shows staggered checkerboard charge
order (r ! 1!2) for dominating repulsion V . These solid
phases are separated from each other by a SF. Earlier
indications for a region of supersolid phase between the
checkerboard solid and SF phase turned out to be due to
phase separation at this transition which is of first order
at T ! 0 [6,9,12].

All of these phases extend to finite temperatures. On
the strong repulsion side the hard-core boson Hubbard
model is equivalent to an antiferromagnetic Ising model at
t ! 0, and the insulating behavior extends up to a finite-
temperature phase transition of the Ising universality class
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FIG. 1. Ground-state phase diagram of the hard-core boson
Hubbard model. The dashed line indicates the cut along which
we calculated the finite-temperature phase diagram shown in
Fig. 2.
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0.2) vertically across the parameter space. In the spirit of de-
vising a rather general algorithm that uses no prior knowledge
about the phase diagram and the specific nature of its phases,
we feed the CNN with equal-time Green’s functions sampled
in the Monte Carlo simulation, i.e. we rely on the CNN to
extract sufficient information from this essential, but rather
generic observable to discriminate different phases [10]. In
the context of Hamiltonian (3), we alternatively consider both
the diagonal correlation function hSz

i Sz
j i and off-diagonal

correlation function hS+
i S�

j i + hS+
j S�

i i as input. Fig. 2 il-
lustrates results for an example cut at � = 3 where we show
the discrimination of superfluid versus checkerboard solid in
both a supervised and unsupervised learning approach. In
Fig. 2a) we show that supervised learning deep in the two
phases (h1,2 = 3.0, 5.0) allows to identify the location of the
phase transition via the change of the prediction function for
intermediate values of h. In Fig. 2b) we show results from the
unsupervised scheme put forward in this manuscript where
we move training windows of varying length across the cut.
A singular peak in the average prediction success clearly in-
dicates the location of the phase transition, with the peak nar-
rowing for shorter window width as expected. Results from
our ML approach for the entire phase diagram are given in
Figs. 3b) and c) where we plot the average prediction success
that reveals several sharp transitions and in fact traces out the
phase diagram in superb quantitative agreement with the orig-
inal Monte Carlo analysis [19]. The minor broadening of the
transition from one of the trivial states into the superfluid in
the diagonal correlation function reflects its slower decay in
comparison with the rapid change of the off-diagonal correla-

tion function at the same transition (for a finite system size).
Turning to the finite-temperature phase diagram of model

(3) we find that tracing out the thermal phase transitions
with our ML approach is somewhat harder. Fig. 4b) shows
the phase diagram extracted via our unsupervised approach
when feeding the diagonal correlation function hSz

i Sz
j i into

the CNN. The second-order transition between checkerboard
solid and normal fluid results in a relatively broad signature,
which is mostly due to the moderate system size (L = 8)
underlying this comprehensive sweep of the phase diagram.
While the Kosterlitz-Thouless (KT) transition out of the su-
perfluid leaves no visible trace in our ML analysis of the diag-
onal correlation function, see Fig. 4b), it leaves a broad signal
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transition between superfluid and normal fluid for h = 5.0 when
feeding the CNN with winding numbers of Monte Carlo configura-
tions. The peak in the prediction accuracy is located slightly above
the actual location of the transition (dashed line).
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We determine the finite-temperature phase diagram of the square lattice hard-core boson Hubbard
model with nearest neighbor repulsion using quantum Monte Carlo simulations. This model is equivalent
to an anisotropic spin-1!2 XXZ model in a magnetic field. We present the rich phase diagram with a
first order transition between a solid and superfluid phase, instead of a previously conjectured supersolid
and a tricritical end point to phase separation. Unusual reentrant behavior with ordering upon increasing
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A nearly universal feature of strongly correlated systems
is a phase transition between a correlation-induced insulat-
ing phase, with localized charge carriers, and an itinerant
phase. High-temperature superconductors [1], manganites
[2], and the controversial two-dimensional (2D) “metal-
insulator transition” [3] are just a few examples of this
phenomenon. The 2D hard-core boson Hubbard model
provides the simplest example of such a transition from
a correlation-induced charge density wave insulator near
half filling to a superfluid (SF). It is a prototypical model
for preformed Cooper pairs [4], spin flops in anisotropic
quantum magnets [5,6], SF helium films [7], and super-
solids [8,9].

In simulations of this model, which does not suffer from
the negative sign problem of fermionic simulations, we
can investigate some of the pertinent questions about such
phase transitions: what is the order of the quantum phase
transitions in the ground state and the finite-temperature
phase transitions? Are there special points with dynami-
cally enhanced symmetry [10]? Can there be coexistence
of two types of order (such as a supersolid–coexisting
solid and superfluid order)? Answers to these questions
also provide insight into the other problems alluded to
above.

The Hamiltonian of the hard-core boson Hubbard model
we study is

H ! 2t
X

"i,j#
$ay

i aj 1 ay
j ai% 1 V

X

"i,j#
ninj 2 m

X

i
ni ,

(1)

where ay
i $ai% is the creation (annihilation) operator for

hard-core bosons, ni ! ay
i ai is the number operator,

V is the nearest neighbor Coulomb repulsion, and m is
the chemical potential. This model is equivalent to an
anisotropic spin-1!2 XXZ model with Jz ! V and jJxyj !
2t in a magnetic field h ! 2V 2 m. The zero field (and
zero magnetization m z ! 0) case of the spin model
corresponds to the half filled bosonic model (density
r ! "m z# ! 1!2) at m ! 2V . Throughout this Letter
we will use the bosonic language, and refer to the corre-

sponding quantities in the spin model where appropriate.
Because of the absence of efficient Monte Carlo algo-
rithms for classical magnets in a magnetic field there are
still many open questions even in the classical version of
this model, which was only studied by a local updated
method [11].

In Fig. 1 we show the ground-state phase diagram
[6,9,12]. For dominating chemical potential m the system
is in a band insulating state (r ! 0 and r ! 1, respec-
tively), while it shows staggered checkerboard charge
order (r ! 1!2) for dominating repulsion V . These solid
phases are separated from each other by a SF. Earlier
indications for a region of supersolid phase between the
checkerboard solid and SF phase turned out to be due to
phase separation at this transition which is of first order
at T ! 0 [6,9,12].

All of these phases extend to finite temperatures. On
the strong repulsion side the hard-core boson Hubbard
model is equivalent to an antiferromagnetic Ising model at
t ! 0, and the insulating behavior extends up to a finite-
temperature phase transition of the Ising universality class
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FIG. 1. Ground-state phase diagram of the hard-core boson
Hubbard model. The dashed line indicates the cut along which
we calculated the finite-temperature phase diagram shown in
Fig. 2.
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0.2) vertically across the parameter space. In the spirit of de-
vising a rather general algorithm that uses no prior knowledge
about the phase diagram and the specific nature of its phases,
we feed the CNN with equal-time Green’s functions sampled
in the Monte Carlo simulation, i.e. we rely on the CNN to
extract sufficient information from this essential, but rather
generic observable to discriminate different phases [10]. In
the context of Hamiltonian (3), we alternatively consider both
the diagonal correlation function hSz

i Sz
j i and off-diagonal

correlation function hS+
i S�

j i + hS+
j S�

i i as input. Fig. 2 il-
lustrates results for an example cut at � = 3 where we show
the discrimination of superfluid versus checkerboard solid in
both a supervised and unsupervised learning approach. In
Fig. 2a) we show that supervised learning deep in the two
phases (h1,2 = 3.0, 5.0) allows to identify the location of the
phase transition via the change of the prediction function for
intermediate values of h. In Fig. 2b) we show results from the
unsupervised scheme put forward in this manuscript where
we move training windows of varying length across the cut.
A singular peak in the average prediction success clearly in-
dicates the location of the phase transition, with the peak nar-
rowing for shorter window width as expected. Results from
our ML approach for the entire phase diagram are given in
Figs. 3b) and c) where we plot the average prediction success
that reveals several sharp transitions and in fact traces out the
phase diagram in superb quantitative agreement with the orig-
inal Monte Carlo analysis [19]. The minor broadening of the
transition from one of the trivial states into the superfluid in
the diagonal correlation function reflects its slower decay in
comparison with the rapid change of the off-diagonal correla-

tion function at the same transition (for a finite system size).
Turning to the finite-temperature phase diagram of model

(3) we find that tracing out the thermal phase transitions
with our ML approach is somewhat harder. Fig. 4b) shows
the phase diagram extracted via our unsupervised approach
when feeding the diagonal correlation function hSz

i Sz
j i into

the CNN. The second-order transition between checkerboard
solid and normal fluid results in a relatively broad signature,
which is mostly due to the moderate system size (L = 8)
underlying this comprehensive sweep of the phase diagram.
While the Kosterlitz-Thouless (KT) transition out of the su-
perfluid leaves no visible trace in our ML analysis of the diag-
onal correlation function, see Fig. 4b), it leaves a broad signal
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FIG. 4. Finite-temperature phase diagram of interacting hardcore bosons. Panel (a) shows the phase diagram found in quantum Monte
Carlo simulations [19], panels (b) and (c) show results form our unsupervised ML approach (for L = 8). For Panel (b) the diagonal correlation
function hSz

i S
z
j i is fed into the CNN, for panel (c) the winding number per site. The white lines indicate the phase boundaries of panel (a).

0.2) vertically across the parameter space. In the spirit of de-
vising a rather general algorithm that uses no prior knowledge
about the phase diagram and the specific nature of its phases,
we feed the CNN with equal-time Green’s functions sampled
in the Monte Carlo simulation, i.e. we rely on the CNN to
extract sufficient information from this essential, but rather
generic observable to discriminate different phases [10]. In
the context of Hamiltonian (3), we alternatively consider both
the diagonal correlation function hSz

i Sz
j i and off-diagonal

correlation function hS+
i S�

j i + hS+
j S�

i i as input. Fig. 2 il-
lustrates results for an example cut at � = 3 where we show
the discrimination of superfluid versus checkerboard solid in
both a supervised and unsupervised learning approach. In
Fig. 2a) we show that supervised learning deep in the two
phases (h1,2 = 3.0, 5.0) allows to identify the location of the
phase transition via the change of the prediction function for
intermediate values of h. In Fig. 2b) we show results from the
unsupervised scheme put forward in this manuscript where
we move training windows of varying length across the cut.
A singular peak in the average prediction success clearly in-
dicates the location of the phase transition, with the peak nar-
rowing for shorter window width as expected. Results from
our ML approach for the entire phase diagram are given in
Figs. 3b) and c) where we plot the average prediction success
that reveals several sharp transitions and in fact traces out the
phase diagram in superb quantitative agreement with the orig-
inal Monte Carlo analysis [19]. The minor broadening of the
transition from one of the trivial states into the superfluid in
the diagonal correlation function reflects its slower decay in
comparison with the rapid change of the off-diagonal correla-

tion function at the same transition (for a finite system size).
Turning to the finite-temperature phase diagram of model

(3) we find that tracing out the thermal phase transitions
with our ML approach is somewhat harder. Fig. 4b) shows
the phase diagram extracted via our unsupervised approach
when feeding the diagonal correlation function hSz

i Sz
j i into

the CNN. The second-order transition between checkerboard
solid and normal fluid results in a relatively broad signature,
which is mostly due to the moderate system size (L = 8)
underlying this comprehensive sweep of the phase diagram.
While the Kosterlitz-Thouless (KT) transition out of the su-
perfluid leaves no visible trace in our ML analysis of the diag-
onal correlation function, see Fig. 4b), it leaves a broad signal
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in the off-diagonal correlation function (not shown). This re-
flects the intrinsic inefficiency of local observables to capture
the non-local nature of the vortex-antivortex unbinding at a
KT transition. Alternatively, we can feed the CNN with ex-
plicit information about winding numbers for configurations
sampled in the Monte Carlo simulation, e.g. the winding num-
ber per site in one of the spatial directions [27]. This results
in a clear signal located slightly above the actual KT transi-
tion, see Fig. 4c). The finite-size trend of this peak is shown
in Fig. 5. While the feature broadens with increasing system
size, the peak systematically enhances for larger systems and
slowly shifts down towards the Monte Carlo estimate.
Fermions and topological order.– Our second principal exam-
ple is a model of Dirac fermions coupled to a fluctuating Z2

gauge field that exhibits a phase transition from a deconfined,
topologically ordered phase to a conventional antiferromag-
netically ordered phase [28, 29]. Its Hamiltonian is defined
on a square lattice and reads

H =
X

hi,ji

Zhi,ji

 
NX

↵=1

c†i,↵cj,↵ + h.c

!
� Nh

X

hi,ji

Xhi,ji

+NF
X

⇤

Y

hi,ji2@⇤
Zhi,ji , (4)

where we consider N = 2 species of fermions with cre-
ation/annihilation operators c†i,↵/ci,↵ and bond spin operators
Zhi,ji and Xhi,ji that correspond to the usual Pauli spin-1/2
matrices. Since

Qi = (�1)
P

↵ c†i,↵ci,↵
Y

�=±ax,±ay

Xhi,i+�i (5)

commutes with the Hamiltonian, the Gauss law, Qi = �1, is
imposed dynamically in the zero temperature limit and on any
finite sized lattice. Here we have supplemented the original
model of Ref. [28] with a flux term of magnitude F = 1/2.
For this value of the flux, the transition between the two afore-
mentioned phases is driven by the strength of the magnetic
field h with the critical value estimated to be hc ⇡ 0.40 [30].

We explore this model by combining our unsupervised
ML approach with finite temperature auxiliary-field quantum
Monte Carlo [1] as implemented in the ALF-package [31, 32]
with the latter providing samples of the equal-time single-
particle Green’s function hc†i cji to the CNN [10] (for an in-
verse temperature � = 40). As Fig. 6a) clearly demonstrates,
the highly non-trivial phase transition in model (4) can be
readily located using our unsupervised approach – there is a
sharp peak located right at the expected value of the transition
for varying system sizes. This might be surprising at first sight
as one might expect that the non-local nature of the topologi-
cally ordered phase might pose similar problems as the iden-
tification of the vortex-antivortex unbinding at a topological
phase transition (as discussed above). Indeed, a recent ML-
based identification of topological order [13] succeeded only
because of the addition of explicit non-local filters (akin to
the convolutional filter of a CNN). In the context of model (4)
such steps are not necessary as the topological nature of the
deconfined Dirac phase can reveal itself already on relatively
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FIG. 6. Detection of phase transition to topological order in model
(4) of fermions coupled to a fluctuating Z2 gauge field employing (a)
the unsupervised and (b) a supervised ML approach.

modest length scales – the proliferation of vison excitations
at the transition are bound to plaquettes of the square lattice
and as such easily detectable. Although visons are very lo-
cal, the CNN is fed with snapshots of the Green’s function
hc†i,�cj,�i – a quantity that, taken at face value, contains very
little information. Since the simulations are SU(2)-spin invari-
ant, each snapshot also has no spin dependence. Furthermore,
since {Qi, ci,�} = 0, we have hc†i,�cj,�i = �i,j/2, reflecting
the fact that the Green’s function is a gauge-dependent quan-
tity. Note that the latter equation holds only after averaging
over snapshots. Given this background, it is certainly remark-
able to see that the CNN can detect in such a precise manner
the aforementioned phase transition between a topologically
ordered state and an antiferromagnet.

As a consistency check we also show results from a super-
vised learning approach in Fig. 6b) where we have trained a
CNN deep inside the two phases (indicated by the arrows) and
observe that the prediction changes from 0 to 1 right at the ex-
pected location of the transition. Note that both approaches
as well as standard analysis of the phase transition using RG-
invariant quantities [28, 30] are relatively sensitive to finite-
size effects. This certainly makes it hard to infer the order of
the phase transition from the current data. Compared to the
hard first-order transition in the boson model, the fermionic
transition at hand certainly does not show a similarly sharp
transition. On the other hand, the finite-size trends of Fig. 6
do not readily allow for a data collapse similar to what has
been demonstrated for the Ising model [11].
Discussion.– In the recent surge of applying machine learning
techniques to statistical physics problems, alternative unsu-
pervised learning schemes [33–36] have been tested on (clas-
sical) many-body problems. One prominent unsupervised ap-
proach is the principal component analysis (PCA), which has
been demonstrated [33, 34] to locate the phase transition of
classical spin models via a clustering analysis that correctly
discriminates the formation of spatial ordering patterns and
symmetry breaking from disordered phases. In such relatively
simple scenarios, the dominant principle component in fact re-
flects the order parameter of the phase. However, it remains
to be seen whether the PCA is similarly suitable to quantum
many-body systems that allow for considerably more subtle
forms of order – such as the formation of superfluids or topo-
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Quantum phase transitions

Quantum fluctuations can drive  
phase transitions at zero temperature.

By now such continuous  
quantum phase transitions 

are fairly well understood in insulators.

But what about metals? 
What happens when a system with a 

Fermi surface goes critical?
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away from hot spots.
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Deformed Fermi surface  
away from hot spots.

Faithful representation of low energy theory

Effective “time reversal symmetry”  
of the action matrix:  no sign problem

Competing orders in a metal

S = SF + S' =

Z �

0
d⌧(LF + L')

2

fluid density is found to vary smoothly through the SC dome,
similar to the behavior seen in the Co doped [28] and unlike
the P doped [23] BaFe2As2.

Model.– Our lattice model consists of two flavors of spin–
1
2 fermions,  x and  y , coupled to an SDW order parameter
~'. We set the magnetic ordering wavevector to Q = (⇡,⇡).
We assume that the SDW order parameter has an easy-plane
character, and restrict the order parameter ~' to lie in the XY
plane. Using an O(2) rather than O(3) order parameter (as in
Ref. [26]) gives rise to a finite-temperature SDW phase transi-
tion of Berezinskii-Kosterlitz-Thouless (BKT) character and,
on a more technical level, allows for higher numerical effi-
ciency.

The action is S = SF + S' =
R �
0 d⌧(LF + L') with

LF =

X

i,j,s
↵=x,y

 †
↵is [(@⌧ � µ)�ij � t↵ij ] ↵js

+ �
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i,s,s0
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(~'i � ~'j)
2

+

X

i

hr

2
~'2
i +

u

4
(~'2

i )
2
i
. (1)

Here i, j label the sites of a square lattice, ↵ = x, y are flavor
indices, s, s0 =", # are spin indices, and ~s are Pauli matri-
ces. ⌧ denotes imaginary time and � = 1/T the inverse tem-
perature. The hopping amplitudes for the  x-fermions along
the horizontal and vertical lattice directions are tx,h = 1 and
tx,v = 0.5, respectively, while for the  y-fermions ty,h = 0.5
and ty,v = 1. Note that for this choice of parameters the dis-
persion of the  x and  y fermions is quasi one-dimensional
with the two bands related by a ⇡/2 rotation. r is a tuning
parameter used to tune the system to the vicinity of an SDW
instability. In an experimental context, r can be thought of as
doping or pressure. We set the chemical potential to µ = 0.5,
the quartic coupling to u = 1, the Yukawa coupling to � = 3,
and the bare bosonic velocity to c = 2.

Numerical simulations.– We study model (1) by exten-
sive DQMC [29–32] simulations, which due to the two-flavor
structure of the model do not suffer from the sign problem
[26]. The simulations were performed with a single flux
quantum threaded through the system, which dramatically im-
proves the approach to the thermodynamic limit for metallic
systems [33]. Specifically, we choose a magnetic flux whose
direction for fermionic spin-flavor pairs (x ", y #) is oppo-
site to the one for (x #, y ") pairs – a setup which avoids the
reappearance of a sign problem [34, 35]. For details of this
procedure and other technical aspects of the DQMC simula-
tions and data analysis we refer to the extensive Supplemental
Material. We report results up to linear extent L = 14 and
temperatures down to T = 0.025.

Phase diagram.– Our main finding is the phase diagram of
model (1) as shown in Fig. 1. The system displays a quasi-
long-range ordered SDW phase, whose transition tempera-
ture, TSDW, decreases upon increasing r. In the vicinity of the
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FIG. 2. (Color online) d-wave superconducting susceptibility P� as
a function of r for different system sizes and temperatures.

magnetic QPT where TSDW collapses to zero, we find a region
with quasi-long range d-wave superconducting order. The su-
perconducting Tc traces an asymmetric dome-like shape as a
function of r and reaches a maximum of Tmax

c ⇡ 0.08 at
ropt ⇡ 10.4.

At sufficiently high temperatures, the antiferromagnetic
transition is consistent with BKT character. In this regime
the SDW susceptibility � =

R
d⌧

P
ih~'i(⌧) · ~'0(0)i for dif-

ferent system sizes nicely follows the expected scaling behav-
ior � / L2�⌘ , with ⌘ changing continuously as a function
of r and T , as illustrated in the Supplemental Material. We
identify TSDW as the point where we observe the BKT value
⌘ = 1/4. At low temperatures, T . 0.05 (i.e. within the
SC region), the situation is less clear with the numerical data
starting to systematically deviate from this scaling behavior.
In fact, there are indications that the transition may become
weakly first order at sufficiently low T , see the discussion in
the Supplemental Material.

The SC transition is identified as the point where the super-
fluid density obtains the universal, BKT value 2T/⇡ [36, 37],
and is always consistent with BKT behavior. The nature
of the SC phase clearly reveals itself in the d-wave pair-
ing susceptibility P� =

R
d⌧

P
ih�

†
�(ri, ⌧)��(0, 0)i with

��(ri) =  †
xi" 

†
xi# �  †

yi" 
†
yi#, shown in Fig. 2. At low

temperatures P� is found to increase rapidly with system size,
indicating that the SC phase has d-wave symmetry in the ther-
modynamic limit. The s-wave pairing susceptibility, in con-
trast, is found to be much smaller and system size independent
[35].

A striking feature seen in the phase diagram is the “bend-
ing” of the magnetic phase boundary (indicated by TSDW)
near the point where it crosses the superconducting dome. An
even more pronounced back bending is apparent in the mag-
netic susceptibility over a wide range of the tuning parameter
r as shown in Fig. 3(a). Tracking the SDW susceptibility for
fixed r, as shown in Fig. 3(b), one finds non-monotonic behav-
ior with a maximum seen near Tc. Such a behavior has been
predicted to arise from the competition between the two order
parameters [38], and has been observed in certain unconven-
tional superconductors, such as Ba1�xCoxFe2As2 [39].

In a finite range of temperatures above Tc, the orbital
magnetic susceptibility is diamagnetic in sign (unlike the

2

fluid density is found to vary smoothly through the SC dome,
similar to the behavior seen in the Co doped [28] and unlike
the P doped [23] BaFe2As2.

Model.– Our lattice model consists of two flavors of spin–
1
2 fermions,  x and  y , coupled to an SDW order parameter
~'. We set the magnetic ordering wavevector to Q = (⇡,⇡).
We assume that the SDW order parameter has an easy-plane
character, and restrict the order parameter ~' to lie in the XY
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perature. The hopping amplitudes for the  x-fermions along
the horizontal and vertical lattice directions are tx,h = 1 and
tx,v = 0.5, respectively, while for the  y-fermions ty,h = 0.5
and ty,v = 1. Note that for this choice of parameters the dis-
persion of the  x and  y fermions is quasi one-dimensional
with the two bands related by a ⇡/2 rotation. r is a tuning
parameter used to tune the system to the vicinity of an SDW
instability. In an experimental context, r can be thought of as
doping or pressure. We set the chemical potential to µ = 0.5,
the quartic coupling to u = 1, the Yukawa coupling to � = 3,
and the bare bosonic velocity to c = 2.

Numerical simulations.– We study model (1) by exten-
sive DQMC [29–32] simulations, which due to the two-flavor
structure of the model do not suffer from the sign problem
[26]. The simulations were performed with a single flux
quantum threaded through the system, which dramatically im-
proves the approach to the thermodynamic limit for metallic
systems [33]. Specifically, we choose a magnetic flux whose
direction for fermionic spin-flavor pairs (x ", y #) is oppo-
site to the one for (x #, y ") pairs – a setup which avoids the
reappearance of a sign problem [34, 35]. For details of this
procedure and other technical aspects of the DQMC simula-
tions and data analysis we refer to the extensive Supplemental
Material. We report results up to linear extent L = 14 and
temperatures down to T = 0.025.

Phase diagram.– Our main finding is the phase diagram of
model (1) as shown in Fig. 1. The system displays a quasi-
long-range ordered SDW phase, whose transition tempera-
ture, TSDW, decreases upon increasing r. In the vicinity of the
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magnetic QPT where TSDW collapses to zero, we find a region
with quasi-long range d-wave superconducting order. The su-
perconducting Tc traces an asymmetric dome-like shape as a
function of r and reaches a maximum of Tmax

c ⇡ 0.08 at
ropt ⇡ 10.4.

At sufficiently high temperatures, the antiferromagnetic
transition is consistent with BKT character. In this regime
the SDW susceptibility � =

R
d⌧

P
ih~'i(⌧) · ~'0(0)i for dif-

ferent system sizes nicely follows the expected scaling behav-
ior � / L2�⌘ , with ⌘ changing continuously as a function
of r and T , as illustrated in the Supplemental Material. We
identify TSDW as the point where we observe the BKT value
⌘ = 1/4. At low temperatures, T . 0.05 (i.e. within the
SC region), the situation is less clear with the numerical data
starting to systematically deviate from this scaling behavior.
In fact, there are indications that the transition may become
weakly first order at sufficiently low T , see the discussion in
the Supplemental Material.

The SC transition is identified as the point where the super-
fluid density obtains the universal, BKT value 2T/⇡ [36, 37],
and is always consistent with BKT behavior. The nature
of the SC phase clearly reveals itself in the d-wave pair-
ing susceptibility P� =

R
d⌧

P
ih�

†
�(ri, ⌧)��(0, 0)i with

��(ri) =  †
xi" 

†
xi# �  †

yi" 
†
yi#, shown in Fig. 2. At low

temperatures P� is found to increase rapidly with system size,
indicating that the SC phase has d-wave symmetry in the ther-
modynamic limit. The s-wave pairing susceptibility, in con-
trast, is found to be much smaller and system size independent
[35].

A striking feature seen in the phase diagram is the “bend-
ing” of the magnetic phase boundary (indicated by TSDW)
near the point where it crosses the superconducting dome. An
even more pronounced back bending is apparent in the mag-
netic susceptibility over a wide range of the tuning parameter
r as shown in Fig. 3(a). Tracking the SDW susceptibility for
fixed r, as shown in Fig. 3(b), one finds non-monotonic behav-
ior with a maximum seen near Tc. Such a behavior has been
predicted to arise from the competition between the two order
parameters [38], and has been observed in certain unconven-
tional superconductors, such as Ba1�xCoxFe2As2 [39].

In a finite range of temperatures above Tc, the orbital
magnetic susceptibility is diamagnetic in sign (unlike the
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machine learning superconductivity

Quantum loop topography is a physics preprocessor allowing to identify 
features associated with topological order in quantum many-body systems.

Yi (Frank) Zhang and Eun-Ah Kim,  PRL (2017)

Quantum loop = sample of two-point operators that form loops.

wave vector will be incommensurate and evolve with doping) and a local interaction driven strong-coupling 
mechanism (the wave vector will lock to a commensurate value) [155-158]. Standard analysis technique 
was challenged by the short correlation length of the modulation, which resulted in a broad and spiky 
distribution of wave vectors. Here we used the phase of the modulation by gauging local phase-fitness to 
determine the intrinsic wave vector. Although the wave vector determined by fitting the distribution of 
Fourier amplitude previously evolved continuously [54], our phase-sensitive technique revealed a virtually 
doping-independent locking of the local wavevector at 2π/4a0 throughout the underdoped phase diagram of 
the canonical cuprate Bi2Sr2CaCu2O8. These observations require a paradigm shift in theoretical 
understanding of the modulations, we propose to revisit this issue with ANN (see section 3.2.a). 

4) A foray into ANN-based machine learning: The
PI introduced the process that interfaces traditional 
theoretical understanding with a neural network, 
dubbed quantum loop topography [14,15], to the 
field of machine learning. Quantum loop topography 
is a procedure of constructing a multidimensional 
image from the quantum state of the system by 
evaluating two-point operators that form loops at 
independent Monte Carlo steps (see Fig. 4). The use 
of the quantum loop topography is critical for 
detecting phases without order parameters. When 
available, order parameters allow for classical 
descriptions of phases; order parameter 
configurations can be readily fed into ANNs with the 
usual image recognition abilities [7]. However, 
when the order parameter is absent or numerically 
inaccessible, detecting the relevant quantum phase had been challenging [7,159,160], even with state-of-
the-art networks using TensorFlow [161]. With quantum loop topography, we were able to obtain quantum 
phase diagrams with a fractional Chern insulator [14] and Z2 quantum spin liquid [15] using a simple, locally 
built ANN with a single hidden layer.  We obtained quantum phase diagrams at orders of magnitude faster 
pace, benefitting from the ANNs recognition abilities and by-passing Monte Carlo updates, once quantum 
loop topography was fed into our ANNs. Quantum loop topography is a versatile strategy for designing and 
selecting input data guided by the key physical property of the target phase (such as the topological response 
[14] or quasi-particle statistics [15]), and our successes enabled future research described in section 3.1.a. 

Emboldened by the success described above, we initiated efforts to gain new insight through use of ANNs, 
going beyond reproducing known results [16]. Here we turned to the out-of-equilibrium phases [162,163] 
in the context of  many-body localization [164-170], which also do not permit equilibrium order parameters. 
Specifically, we showed that a simple ANN could decode the defining structures of two distinct many-body 
localized phases and a thermalizing phase, using entanglement spectra obtained from individual eigenstates. 
We introduced a simplicial-geometry-based method for extracting multi-partite phase boundaries. Our 
method outperformed conventional metrics, like the entanglement entropy, for identifying many-body 
localization phase transitions, revealing a sharper phase boundary and yielding new insights into the 
topology of the phase diagram [16]. Further, the phase diagram we acquired from a single-disorder 
configuration confirmed that the ANN-based approach could enable speedy exploration of large phase 
spaces that can assist with the discovery of new many-body localized phases. To our knowledge, the 
research in Ref. [16] is the first example of an ANN-based approach revealing new information beyond 
conventional knowledge for quantum many-body problems. Targeting such progress in understanding is 
the theme of the work proposed here.  

Fig. 4 Adapted from [14] by APS/Alan Stonebraker. 
Quantum loop topography (QLT) is a preprocessing 
layer that selects and organizes input guided by 
physical properties of the target phase, such as 
characteristic response.  

�
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FIG. 1. Neural network architectures. (a) QLT used
as an input to a feed-forward fully-connected shallow neural
network with one hidden layer consisting of n = 40 sigmoid
neurons. Only triangular loops L4

jkl are illustrated. (b) Deep
convolutional neural network that convolves and pools the
unprocessed Green’s functions P (r, r0) before threading them
through a fully-connected layer of n = 256 hidden neurons.

wavefunctions using restricted Boltzmann machines al-
lowing for a new class of variational algorithms to ef-
ficiently find ground states of quantum many-body sys-
tems [11–16], and (ii) the use of artificial neural networks
(ANNs), typically combined with preprocessing steps, to
allow for quantum state recognition [8, 17–30]. In the
latter category, the QLT [8] stands out as a preprocess-
ing step that, by using loop topography as a filter, selects
and organizes the simulation data with the physical re-
sponse characteristic of the target phase in mind (and
thereby distinguishes itself from e.g. the application of
convolutional neural networks (CNNs) whose motivation
is primarily rooted in image recognition techniques). The
QLT-preprocessed data is then fed into a shallow ANN,
which can be trained to discriminate di↵erent quantum
phases of matter. This general setup is schematically il-
lustrated in Fig. 1. The QLT approach has so far been
employed to the detection of topological order in integer
and fractional Chern insulators [8] by targeting the Hall
transport and to positively identify a Z2 spin liquid [31]
by targeting Wilson loops.

Targeting the longitudinal transport for the purpose of
the current study, we build a vector at each site j consist-
ing of all small loops with three vertices, L4

jkl
and with

four vertices, L⇤
jklm

including the site j. The loops rep-
resent chained products of Green’s functions, i.e. bilin-
ear fermionic operators c†

i
c
j
, evaluated for a given Monte

Carlo sample ↵, ePjk|↵:

L4
jkl

⌘ ePjk|↵ ePkl|� ePlj |� , (1)

and

L⇤
jklm

⌘ ePjk|↵0 ePkl|�0 ePlm|�0 ePmj |�0 , (2)

limiting the neighboring sites to be within a short-
distance cuto↵ dc. The loop operators associated with

a site are illustrated in Fig. 2 for the shortest lengths,
i.e. length 3 and 4.
To see how the loop operators L⇤

jklm
and L4

jkl
capture

the longitudinal transport, consider the zero-frequency
current-current correlation function

⇤xx(r1, r2;!n = 0) ⌘
Z

d⌧
D
ĵx (r1, ⌧) ĵx (r2, 0)

E
, (3)

where ĵx(r1, ⌧) = eH⌧ ĵx(r1)e�H⌧ with the current den-
sity operator ĵx(r1) = �i[H(r1), x̂]. Its Fourier trans-
form is well known to be related [9, 10] to the super-
fluid density ⇢s through ⇢s / ⇤xx(qx ! 0, qy = 0,!n =
0)� ⇤xx(qx=0, qy!0,!n=0).
To gain further analytical insight, consider a gapped

mean-field Hamiltonian with a single flat band which can
be approximated as H 0 = �⇧, where ⇧ ⌘ |GihG| is the
projection operator for the ground state |Gi. At zero
temperature we can evaluate the current-current correla-
tion function for the system with the Hamiltonian H 0:

⇤xx(r1, r2;!n=0) = hG|ĵx(r1)(1�⇧)ĵx(r2)|Gi

= Tr
h
⇧ĵx(r1)(1�⇧)ĵx(r2)

i
,

=
X

r3r4

Pr2r4Pr4r1Pr1r3Pr3r2 (x1 � x4) (x2 � x3)

�
X

r4

Pr2r4Pr4r1Pr1r2 (x1 � x4) (x2 � x1) ,

(4)
where Pr0r ⌘ hG|c†r0cr|Gi is the two-point function and xi

is the x coordinate of position ri. Here, we used the defi-
nition of the current density operator for the third equal-
ity [32]. (See Appendix for further details.) Hence for the
approximate Hamiltonian H 0, the current-current corre-
lation function at zero temperature consists of an appro-
priately weighted combination of quadrilateral loops and
triangular loops of two-point functions.

Note that L4
jkl

and L⇤
ijkl

defined in Eqs. (1) and

(2) involve samples of the Green’s functions ePjk|↵ typi-
cally coming from a determinant quantum Monte Carlo
(DQMC) calculation. By processing the loop opera-
tors during the sampling process and avoiding an a pos-
teriori Monte Carlo averaging, we quickly pass these
fluctuation-laden data, which encodes (partial) informa-
tion of the current-current correlation function, to the

(i) (ii)
1

2 3

1

2 3

4

L123 L1234 L1423 L1342

FIG. 2. Illustration of the (i) triangular and (ii) quadrilat-
eral loop operators employed to calculate the longitudinal
transport.

proxy for longitudinal transport
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FIG. 1. Neural network architectures. (a) QLT used
as an input to a feed-forward fully-connected shallow neural
network with one hidden layer consisting of n = 40 sigmoid
neurons. Only triangular loops L4

jkl are illustrated. (b) Deep
convolutional neural network that convolves and pools the
unprocessed Green’s functions P (r, r0) before threading them
through a fully-connected layer of n = 256 hidden neurons.

wavefunctions using restricted Boltzmann machines al-
lowing for a new class of variational algorithms to ef-
ficiently find ground states of quantum many-body sys-
tems [11–16], and (ii) the use of artificial neural networks
(ANNs), typically combined with preprocessing steps, to
allow for quantum state recognition [8, 17–30]. In the
latter category, the QLT [8] stands out as a preprocess-
ing step that, by using loop topography as a filter, selects
and organizes the simulation data with the physical re-
sponse characteristic of the target phase in mind (and
thereby distinguishes itself from e.g. the application of
convolutional neural networks (CNNs) whose motivation
is primarily rooted in image recognition techniques). The
QLT-preprocessed data is then fed into a shallow ANN,
which can be trained to discriminate di↵erent quantum
phases of matter. This general setup is schematically il-
lustrated in Fig. 1. The QLT approach has so far been
employed to the detection of topological order in integer
and fractional Chern insulators [8] by targeting the Hall
transport and to positively identify a Z2 spin liquid [31]
by targeting Wilson loops.

Targeting the longitudinal transport for the purpose of
the current study, we build a vector at each site j consist-
ing of all small loops with three vertices, L4

jkl
and with

four vertices, L⇤
jklm

including the site j. The loops rep-
resent chained products of Green’s functions, i.e. bilin-
ear fermionic operators c†

i
c
j
, evaluated for a given Monte

Carlo sample ↵, ePjk|↵:

L4
jkl

⌘ ePjk|↵ ePkl|� ePlj |� , (1)

and

L⇤
jklm

⌘ ePjk|↵0 ePkl|�0 ePlm|�0 ePmj |�0 , (2)

limiting the neighboring sites to be within a short-
distance cuto↵ dc. The loop operators associated with

a site are illustrated in Fig. 2 for the shortest lengths,
i.e. length 3 and 4.
To see how the loop operators L⇤

jklm
and L4

jkl
capture

the longitudinal transport, consider the zero-frequency
current-current correlation function

⇤xx(r1, r2;!n = 0) ⌘
Z

d⌧
D
ĵx (r1, ⌧) ĵx (r2, 0)

E
, (3)

where ĵx(r1, ⌧) = eH⌧ ĵx(r1)e�H⌧ with the current den-
sity operator ĵx(r1) = �i[H(r1), x̂]. Its Fourier trans-
form is well known to be related [9, 10] to the super-
fluid density ⇢s through ⇢s / ⇤xx(qx ! 0, qy = 0,!n =
0)� ⇤xx(qx=0, qy!0,!n=0).
To gain further analytical insight, consider a gapped

mean-field Hamiltonian with a single flat band which can
be approximated as H 0 = �⇧, where ⇧ ⌘ |GihG| is the
projection operator for the ground state |Gi. At zero
temperature we can evaluate the current-current correla-
tion function for the system with the Hamiltonian H 0:

⇤xx(r1, r2;!n=0) = hG|ĵx(r1)(1�⇧)ĵx(r2)|Gi

= Tr
h
⇧ĵx(r1)(1�⇧)ĵx(r2)

i
,

=
X

r3r4

Pr2r4Pr4r1Pr1r3Pr3r2 (x1 � x4) (x2 � x3)

�
X

r4

Pr2r4Pr4r1Pr1r2 (x1 � x4) (x2 � x1) ,

(4)
where Pr0r ⌘ hG|c†r0cr|Gi is the two-point function and xi

is the x coordinate of position ri. Here, we used the defi-
nition of the current density operator for the third equal-
ity [32]. (See Appendix for further details.) Hence for the
approximate Hamiltonian H 0, the current-current corre-
lation function at zero temperature consists of an appro-
priately weighted combination of quadrilateral loops and
triangular loops of two-point functions.

Note that L4
jkl

and L⇤
ijkl

defined in Eqs. (1) and

(2) involve samples of the Green’s functions ePjk|↵ typi-
cally coming from a determinant quantum Monte Carlo
(DQMC) calculation. By processing the loop opera-
tors during the sampling process and avoiding an a pos-
teriori Monte Carlo averaging, we quickly pass these
fluctuation-laden data, which encodes (partial) informa-
tion of the current-current correlation function, to the
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FIG. 2. Illustration of the (i) triangular and (ii) quadrilat-
eral loop operators employed to calculate the longitudinal
transport.
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FIG. 1. Neural network architectures. (a) QLT used
as an input to a feed-forward fully-connected shallow neural
network with one hidden layer consisting of n = 40 sigmoid
neurons. Only triangular loops L4

jkl are illustrated. (b) Deep
convolutional neural network that convolves and pools the
unprocessed Green’s functions P (r, r0) before threading them
through a fully-connected layer of n = 256 hidden neurons.

wavefunctions using restricted Boltzmann machines al-
lowing for a new class of variational algorithms to ef-
ficiently find ground states of quantum many-body sys-
tems [11–16], and (ii) the use of artificial neural networks
(ANNs), typically combined with preprocessing steps, to
allow for quantum state recognition [8, 17–30]. In the
latter category, the QLT [8] stands out as a preprocess-
ing step that, by using loop topography as a filter, selects
and organizes the simulation data with the physical re-
sponse characteristic of the target phase in mind (and
thereby distinguishes itself from e.g. the application of
convolutional neural networks (CNNs) whose motivation
is primarily rooted in image recognition techniques). The
QLT-preprocessed data is then fed into a shallow ANN,
which can be trained to discriminate di↵erent quantum
phases of matter. This general setup is schematically il-
lustrated in Fig. 1. The QLT approach has so far been
employed to the detection of topological order in integer
and fractional Chern insulators [8] by targeting the Hall
transport and to positively identify a Z2 spin liquid [31]
by targeting Wilson loops.

Targeting the longitudinal transport for the purpose of
the current study, we build a vector at each site j consist-
ing of all small loops with three vertices, L4

jkl
and with

four vertices, L⇤
jklm

including the site j. The loops rep-
resent chained products of Green’s functions, i.e. bilin-
ear fermionic operators c†

i
c
j
, evaluated for a given Monte

Carlo sample ↵, ePjk|↵:

L4
jkl

⌘ ePjk|↵ ePkl|� ePlj |� , (1)

and

L⇤
jklm

⌘ ePjk|↵0 ePkl|�0 ePlm|�0 ePmj |�0 , (2)

limiting the neighboring sites to be within a short-
distance cuto↵ dc. The loop operators associated with

a site are illustrated in Fig. 2 for the shortest lengths,
i.e. length 3 and 4.
To see how the loop operators L⇤

jklm
and L4

jkl
capture

the longitudinal transport, consider the zero-frequency
current-current correlation function

⇤xx(r1, r2;!n = 0) ⌘
Z

d⌧
D
ĵx (r1, ⌧) ĵx (r2, 0)

E
, (3)

where ĵx(r1, ⌧) = eH⌧ ĵx(r1)e�H⌧ with the current den-
sity operator ĵx(r1) = �i[H(r1), x̂]. Its Fourier trans-
form is well known to be related [9, 10] to the super-
fluid density ⇢s through ⇢s / ⇤xx(qx ! 0, qy = 0,!n =
0)� ⇤xx(qx=0, qy!0,!n=0).
To gain further analytical insight, consider a gapped

mean-field Hamiltonian with a single flat band which can
be approximated as H 0 = �⇧, where ⇧ ⌘ |GihG| is the
projection operator for the ground state |Gi. At zero
temperature we can evaluate the current-current correla-
tion function for the system with the Hamiltonian H 0:

⇤xx(r1, r2;!n=0) = hG|ĵx(r1)(1�⇧)ĵx(r2)|Gi

= Tr
h
⇧ĵx(r1)(1�⇧)ĵx(r2)
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(4)
where Pr0r ⌘ hG|c†r0cr|Gi is the two-point function and xi

is the x coordinate of position ri. Here, we used the defi-
nition of the current density operator for the third equal-
ity [32]. (See Appendix for further details.) Hence for the
approximate Hamiltonian H 0, the current-current corre-
lation function at zero temperature consists of an appro-
priately weighted combination of quadrilateral loops and
triangular loops of two-point functions.

Note that L4
jkl

and L⇤
ijkl

defined in Eqs. (1) and

(2) involve samples of the Green’s functions ePjk|↵ typi-
cally coming from a determinant quantum Monte Carlo
(DQMC) calculation. By processing the loop opera-
tors during the sampling process and avoiding an a pos-
teriori Monte Carlo averaging, we quickly pass these
fluctuation-laden data, which encodes (partial) informa-
tion of the current-current correlation function, to the
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FIG. 2. Illustration of the (i) triangular and (ii) quadrilat-
eral loop operators employed to calculate the longitudinal
transport.

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

superconductivity

Quantum loop topography is a physics preprocessor allowing to identify 
features associated with topological order in quantum many-body systems.

Yi Zhang, C. Bauer, P. Broecker, ST & Eun-Ah Kim, arXiv:1812.05631

negative-U Hubbard model mean-field transition

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

spin-fermion model

8 9 10 11 12 13 14 15
tuning parameter   r

0 0

0.05 0.05

0.1 0.1

0.15 0.15

0.2 0.2

te
m

p
er

at
u
re

  
 T

 

T
SDW

T
c

T
dia

SDW

d-wave superconductor

superconducting
    fluctuations

Y Schattner, M. Gerlach, ST, E. Berg,  PRL (2016) 
  Ann. Rev. Cond. Matt. Physics (2019) 

strange
metal?

http://www.thp.uni-koeln.de/trebst/


© Simon Trebst

sign problem 
+ machine learning

Peter Broecker, Juan Carrasquilla, Roger G. Melko, ST 
Scientific Reports (2017)

http://www.kitp.ucsb.edu/~trebst/


©  Simon Trebst

H = �t

X

hi,ji

⇣
c
†
i cj + c

†
jci

⌘
+ V

X

hi,ji

ninj

Spinless fermions

semi-metal charge density wave
V/t

severe sign 
problem

spinless Dirac matter
Hubbard models on the honeycomb lattice

One way out — basis transformation to Majorana fermions. 
But let’s go the hard way … 

train
here

train
here

predict phases by neural network in-between

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

Can we bypass the sign problem?
QMC sampling + statistical analysis

hOi =

P
O(C)p(C)P

p(C)
=

P
O(C)�(C)|p(C)|P

�(C)|p(C)|
=

hO · �iabs
h�iabs

QMC sampling + machine learning

hFiabs =
P

F(C)|p(C)|P
|p(C)

Assume there exists a “state function”

that is 0 deep in phase A and 1 deep in phase B.
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Spinless fermions
QMC + machine learning approach gives useful results even 
for systems with a severe sign problem.
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(estimated from averaging over 12 epochs, see the Methods section)49. Considering the data for different system 
sizes in Fig. 4 one can determine a quantitative estimate of the location of the fermionic phase transition, which 
is in very good agreement with the Monte Carlo results5, 44. This convincingly demonstrates that the CNN is 
capable of providing a high-quality state function F discriminating the two fermionic phases, even when the sign 
content of the configurations is ignored. Importantly, we note that the approach with bare Green’s matrices can 
provide a significant gain in computational efficiency over that which includes information about the relative sign 
of individual configurations, by sampling multiple parallel Markov chains. Thus, in light of the results of Fig. 4 
(inset), which show no systematic improvement of the state function F given additional information on the sign 
structure, we choose to show results for the bare Green’s functions in the examples below. The fact that such an 
approach produces a highly accurate state function F is a striking demonstration of the power of QMC + machine 
learning, even in models afflicted with a serious sign problem.

Next, we consider the spinless fermion system of Eq. (10) at one-third filling. Going below half-filling turns 
the itinerant phase for small coupling V into a conventional metal with a nodal Fermi line, while for large V we 
still expect some sort of CDW-ordered Mott insulating state. In contrast to half-filling, the one-third-filled system 
has no known sign-free (Majorana) basis. Applying our QMC + machine learning approach to this problem, we 
again find that a state discriminating function F can be identified by a properly optimized CNN. This procedure 
indicates the existence of a phase transition around Vc ≈ 0.7 ± 0.1 as illustrated in Fig. 5, which matches a recent 
estimate from entanglement calculations48. The precise nature of the Mott insulating phase at large V has so far 

Figure 4. (a) Prediction of a CNN for the phase transition from a Dirac semi-metal to a charge density wave 
(CDW) ordered state in the half-filled spinless fermion Hubbard model (10) on the honeycomb lattice of size 
2 · L × L. The CNN has been trained on 8192 representative samples of the bare Green’s function deep inside the 
two phases (indicated by the red dots). The images in the left and right columns are color-converted instances 
of the Green’s function used in the training. The inset shows a comparison of the prediction for the L = 9 
system when feeding the CNN with the bare Green’s function or the Green’s function multiplied by the relative 
sign/complex phase associated with each configuration (of a given Markov chain). (b) The averaged real and 
imaginary part of the weight’s phase φ, Re(φ) and Im(φ), respectively, is shown in the main part of the figure 
for L = 6. The three insets show the distribution of the phase for a sequence of 128 measurements, with their 
average depicted by the pink dot.
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Summary

QMC + machine learning approach can be used to distinguish  
phases of interacting classical and quantum many-body systems. 

• new opportunities to circumvent the fermion sign problem.

• unsupervised learning of phase diagrams

• improve data handling with new physics filters
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