Transport measurements of InSb nanowires with induced superconductivity

Hugh Churchill (Harvard, now MIT)

Valla Fatemi (MIT)

Kasper Grove-Rasmussen (NBI)

Vlad Manucharyan (Harvard)

Willy Chang (Harvard/NBI)

Charles Marcus (NBI)

wires: Mingtang Deng (Lund)

Hongqi Xu (Lund)

3 configurations:

1. Quantum point contact

2. Andreev bound states

3. Quantum dot (weakly coupled to both sides)

InSb nanowires from Lund

Nilsson et al. Nano Lett. (2009)

Wires deposited on bottom-gate substrates:

2 devices measured

Device #1: two-sided (N-wire-S-wire-N)

150 nm wide uncovered regions

300 nm wide superconducting contacts

Device #2: one-sided (N-wire-S)

100 nm wide uncovered region

400 nm wide superconducting contact

3 configurations:

1. Quantum point contact

2. Andreev bound states

3. Quantum dot (weakly coupled to both sides)

QPC, second device

Field-angle dependence

1.3

Field-angle dependence

Oscillations

PHYSICAL REVIEW B **86**, 180503(R) (2012)

\$

Transport spectroscopy of NS nanowire junctions with Majorana fermions

Elsa Prada, 1 Pablo San-Jose, 2 and Ramón Aguado 1

Zero-bias peaks in spin-orbit coupled superconducting wires with and without Majorana end-states

Jie Liu¹,* Andrew C. Potter²,* K.T. Law¹, and Patrick A. Lee²

¹Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China and

²Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge, MA 02139

Realistic transport modeling for a superconducting nanowire with Majorana fermions

Diego Rainis, Luka Trifunovic, Jelena Klinovaja, and Daniel Loss Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Dated: July 26, 2012)

A Majorana smoking gun for the superconductor-semiconductor hybrid topological system

S. Das Sarma¹, Jay D. Sau², and Tudor D. Stanescu³

¹Condensed Matter Theory Center, Department of Physics,
University of Maryland, College Park, Maryland 20742-4111, USA

²Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

³Department of Physics, West Virginia University, Morgantown, WV 26506, USA

Oscillations, cont.

Oscillations, cont.

These oscillations are too fast given expected kF * L, and the period does not change significantly with B

QPC, field dependence of plateaus

QPC, field dependence of plateaus

QPC field dependence at 4 K

Conductance increase near pinchoff is gone by 4 K, Andreev
enhancement at higher
conductance is still present

3 configurations:

1. Quantum point contact

2. Andreev bound states

3. Quantum dot (weakly coupled to both sides)

ABS, Zeeman splitting

ABS, Zeeman splitting

ABS, vary coupling to N and S

S N

stronger S, weaker N

stronger N, weaker S

3 configurations:

1. Quantum point contact

2. Andreev bound states

3. Quantum dot (weakly coupled to both sides)

N-dot-S

Deacon et al. PRL (2010)

0.06

0.04

0.02

0.00

Conductance (e²/h)

0.06

0.04

0.02

0.00

Summary

- QPC ZBPs are ubiquitous. Oscillations as function of gate and field, but quantitative disagreement with Majorana models
- B-dependence of QPC zero-bias conductance qualitatively similar to Wimmer et al.
- Zeeman-split ABS show SO splitting
- ABS zero-bias peaks appear at finite B and B = 0, depending on couplings to N and S
- Quantum dot at finite bias allows spectroscopy of dot and superconducting-wire DOS

QPC

ABS, Zeeman splitting

QPC, vary conductance

QPC, vary conductance

same as above with conductance at 300 µV (red line) subtracted from each column

QPC, vary gates under S

By = 500 mT

N-dot-S: at 1 T, is lineshape thermal?

