Deconstructing 3D TI Josephson Junctions

James Williams
KITP-Majorana Workshop
Dec. 11, 2012

Outline

Motivation and background

Interesting deviations from normal Josephson junction behavior noted in devices made from Bi₂Se₃

Phys. Rev. Lett. **109** 056803 (2012)

Scanning SQUID measurements of JJ Rings

Devices

Curious features in the data

Must closely examine the S-TI interface

Devices created from thin MBE TI can be routinely tuned through the "Dirac" point

New Measurements

Work by Wieder et al. caused us to look at transport along junction
Unexpected temperature and bias-dependence seen

Device fabrication

Mechanical exfoliation, e-beam lithography.

Geometry dependence of V_C

• $I_{\rm C}R_{\rm N} \sim 1/W$ over a wide range of devices.

Red curve: $R_N = 51.5 \Omega$ Blue curve: $R_N = 56.1 \Omega$

Circle: Zhang et al., PRB, 2011

Bi₂Se₃ nanowires

Diamond: Sacépé et al., Nat Comm, 2012

Exfoliated Bi₂Se₃

Triangle: Wang et al., PRB, 2012

MBE Bi₂Se₃

Measured magnetic diffraction pattern

• At first glance appears conventional, but...

Proposed explanation with Majorana fermions

· Economic, comprehensive, and probably wrong.

1) Take Fu/Kane picture

When phase difference across junction is π , transverse mode is a Majorana state with zero-energy crossing and linear dispersion. Otherwise, gapped and massive.

2) Add spatial confinement

Separates topologically-protected neutral state from charged states by confinement energy (~1/W).

3) Assume neutral state facilitates supercurrent Current-phase relation becomes strongly peaked around particular values of phase, rather than sinusoidal.

4) Magnetic diffraction pattern gains sub-Φ₀ **features** Depending on choice of CPR, can calculate aperiodic dips below a flux quantum.

Scanning SQUID Measurements

Scanning SQUID measurements

Local flux detection can directly measure CPR.

Superconductor-TI structures

Huber et al., Rev. Sci. Ins., 2008 Koshnik et al., APL, 2008

Current-phase relation

 $\Phi_m \sim I_s(\phi)$ $\phi \sim 2\pi \Phi_a/\Phi_0$

Peaked CPR in SQUID measurements

Measuring current phase relations with SQUIDS

A peaked current phase relationship should produced a peaked respond of the SQUID response

Current-phase relation measurement

• All indications are of a conventional, sinusoidal CPR.

Magnetic penetration depth

Does proximity to TI dramatically increase penetration?

T_C of Aluminum dots on Bi₂Se₃

• Does proximity to TI decrease the transition temperature?

Comparison to metals

- The proximity effect can account for the reduction of TC, but only if the DOS in the TI is similar to that of a metal
- What effect does strong spinorbit have on the proximity effect

$$S_{sn} = \frac{d_s}{T_{c0}} \left| \frac{dT_c}{dd_n} \right| = \Gamma_{sn} \frac{N_n}{N_s}.$$

 Can this help explain the soft gap observed in nanowire experiments

Tunable Transport in MBE-grown BiSbTi₃

Growth of TI MBE (Bi_{1-x}Sb_x)2Te₃ Films – IOP, Chinese Academy of Science

 Our films: x=0.5 and thickness=10nm

Surface or Edge Conductance?

· Resistance appears to scale with aspect ratio, not length

Hall Bar Device

Conduction tunable with a gate, peaks in R regularly achieved

Hall Resistance

Ambipolar transport achieve at negative backgate voltages

Simulation vs. Hall Data

• Fits very good, until more negative gate voltages

Weak anti-localization

 Fits to HLN, extraction of spin-orbit strength and phasecoherence length

 $\Delta\sigma \approx \alpha \frac{e^2}{2\pi^2\hbar} \left(\ln\left(\frac{B_\phi}{B}\right) - \psi\left(\frac{1}{2} + \frac{B_\phi}{B}\right) \right)$

Transport in MBE-grown TI films

- Can tune through the ambipolar ("Dirac") point in this material and can do it routinely
- Can understand the shape of the Hall resistance and use it to get both electron and hole densities/mobilities
- Mobility current low (500 cm²/Vs). Growers have improved the surface morphology and have succeeded in capping the surface

New Measurements

Measuring Transport Along Junctions

Work from Wieder, Zhang and Kane – coming soon

Creating the device

 Set the phase with magnetic field, measure resistance between source and drain, and between ring and drain

Measuring Transport Along Junctions

At base, oscillations seen in the resistance across the junction

Ring inner radius of 0.8 microns and outer radius of 1.3 microns

Expected period for h/e is 2mT and for h/2e, 1mT (for inner radius)

Measured period is 0.6mT

Temperature Dependence of Oscillations

An unexpected, non-monotonic behavior observed

Bias Dependence of Resistance

• The minimum in resistance is not a zero applied bias

Summary

- Measured superconducting rings (with Bi₂Se₃ JJs) and dots. Rings showed the CPR is likely conventional. Dots shows we should look further into the effect of strong spin-orbit material on conventional superconductors
 - What does this say about the S-strong-spin-orbit interface?
- Made progress on transport in MBE TI films. Can now routinely tune through the Dirac point
 - What can tuning get you in 3D TI Josephson junctions?
- Measure conduction along phase controlled junctions and saw unexpected behavior in the temperature and bias-dependence of the measured resistance
 - What are the prospects for measuring this effect and why would we observe this temeprature dependence?

