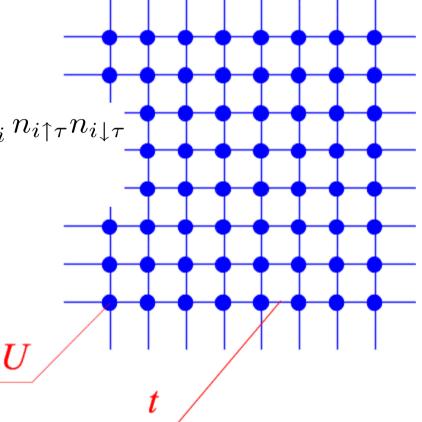
Mutli-Orbital Continuous-Time QMC for LDA+DMFT Studies of LiNiO₂

A.E. Antipov, A.I. Poteryaev, <u>A.N.Rubtsov</u>, and A.I. Lichtenstein

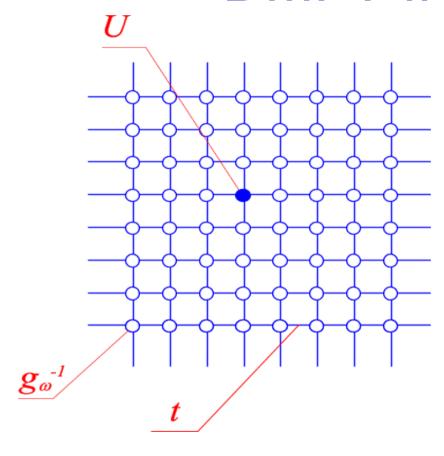
A problem of strong correlations


Example: Hubbard model

$$H = \sum_{k\sigma} (\epsilon_k - \mu) c_{k\sigma}^{\dagger} c_{k\sigma} + U \sum_{i} n_{i\uparrow\tau} n_{i\downarrow\tau}$$

$$\epsilon_k = -2t(\cos k_x + \cos k_y)$$

Real materials:


- Have multiorbital bands
- •Show spatial nonlocality (AF fluctuations, or van Hove points, etc.)

Electronic properties of LiNiO₂

- 6 t_{2g} and 1 e_g electron in Ni atom
- Mott insulator
- no spin or orbital ordering down to zero temperature (quantum liquid)

DMFT framework

DMFT condition:

$$g_{\omega} = \sum_{k} \frac{N^{-1}}{g_{\omega}^{-1} - \epsilon_k + \Delta_{\omega}}$$

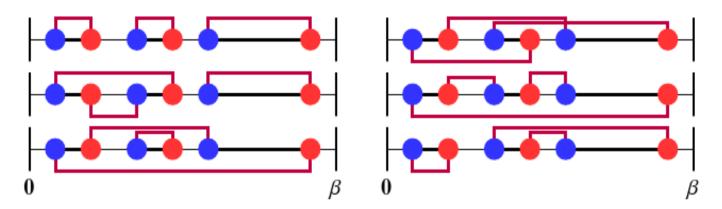
Main routes

- Improve solvers for realistic description of multiorbital SIAM, including multiplet structure
- Describe spatial nonlocality (in particular, quantum-liquid state)

Weak-coupling CT-QMC: the idea

$$S = -(i\omega + \mu) \sum_{\omega s} c_{\omega s}^{\dagger} c_{\omega s} + U \int_{0}^{\beta} n_{\tau\uparrow} n_{\tau\downarrow} d\tau$$

Consider the series with respect to W (in the interaction representation)

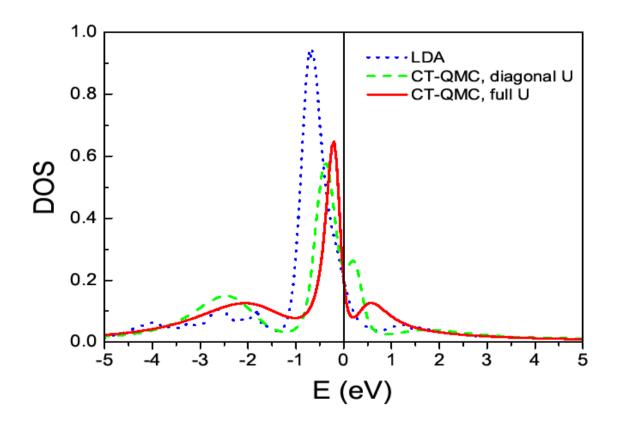

The series always converges for a finite fermionic system at finite temperature; it is possible to organize a random walk over the terms of whose series

A.N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B 72 035122 (2005).

Strong-coupling CT-QMC

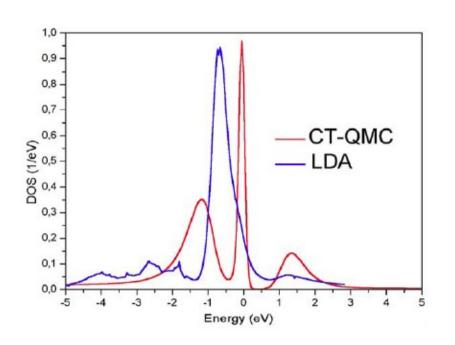
$$S = S_{at} + \Delta_{\tau - \tau' s s'} c_{s\tau}^{\dagger} c_{s'\tau'}$$

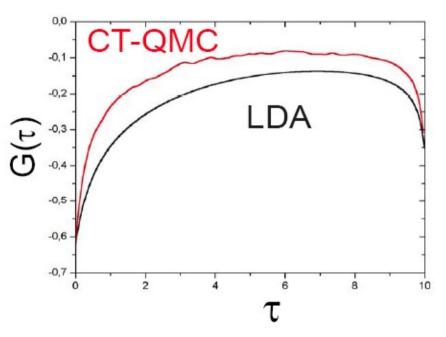
The idea is to expand in hybridization


It's possible to sum up all the diagrams for a given operator set. One obtains:

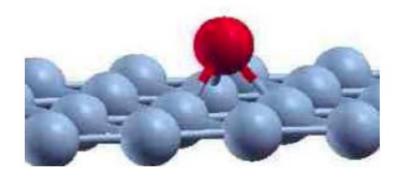
$$Z = Z_0 \sum_{k=0}^{\infty} \frac{1}{k!} Tr \left\langle c_{\sigma}^{+}(\tau) c_{\sigma}(\tau') ... c_{\sigma'}^{+}(\tau) c_{\sigma'}(\tau') \right\rangle_{at} \det[\Delta(\tau - \tau')]$$

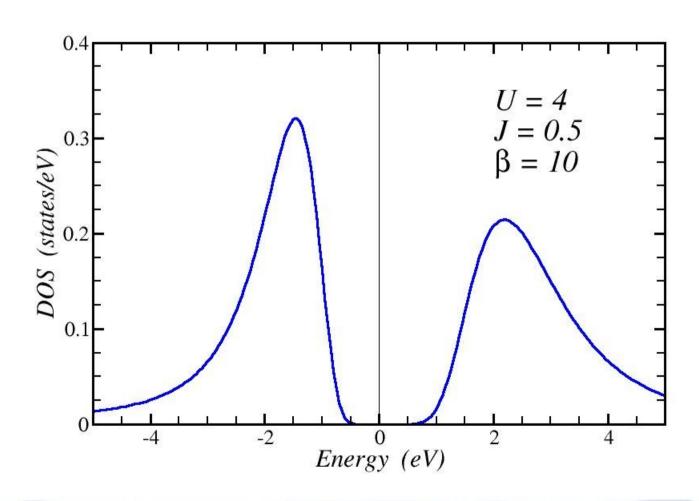
P. Werner et al, Phys.Rev.Lett.**97**, 076405(2006)


5-orbital model with off-diagonal interaction


Co atom in Cu substrate

E. Gorelov, T. O. Wehling, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein PRB 2009


5-orbital model with off-diagonal interaction



Co atom on Cu substrate

E. Gorelov et al, Phys. Rev. B **80**, 155132 (2009)

2-orbital DMFT with off-diagonal interaction for e_g states of LiNiO₂

Dual-fermion approach for nonlocality of strong correlations

Methodologically, dual-fermion technique is a perturbation expansion on top of the dynamical mean-field theory

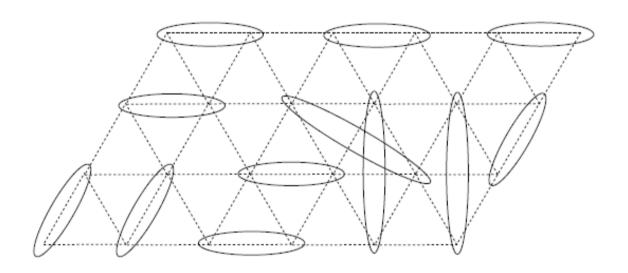
For a system with localized nonlinearity

$$S[c, c^*] = -\sum_{i\omega,\sigma} (\mu + i\omega) c_{i,\omega,\sigma}^* c_{i,\omega,\sigma} + U \int_0^\beta n_{i,\uparrow,\tau} n_{i,\downarrow,\tau} d\tau + \sum_{\omega k\sigma} \epsilon_k c_{\omega k\sigma}^* c_{\omega k\sigma}$$

there is an exact mapping to the dual system

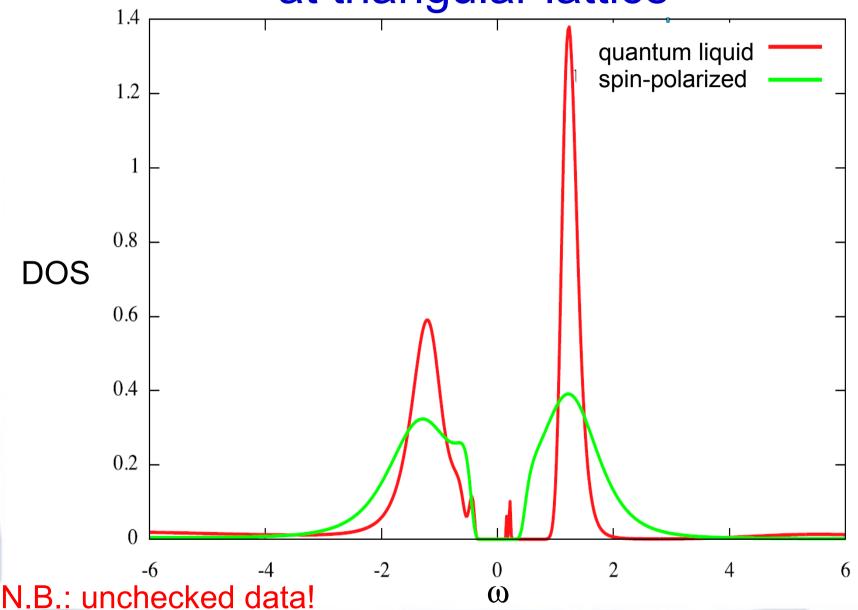
$$S[f, f^*] = \sum_{\omega k \sigma} g_{\omega}^{-2} \left((\Delta_{\omega} - \epsilon_k)^{-1} + g_{\omega} \right) f_{\omega k \sigma}^* f_{\omega k \sigma} + \sum_i V_i$$

where g is the Green's function of the DMFT-like impurity problem; Tailor coefficients for V are higher vertex parts of that impurity problem


$$V[f_i, f_i^*] = -\gamma_{1234}^{(4)} f_1^* f_2 f_3^* f_4 + \gamma_{123456}^{(6)} f_1^* f_2 f_3^* f_4 f_5^* f_6 + \dots$$

Low-order diagrams for the dual self energy

Once the problem is solved in new variables, its easy to return to the initial ones: there is an exact relation between lattice Green's functions


Technically,
dual-fermions is a good couple to CT-QMC,
because the diagram calculation requires vertex
parts of the impurity problem in Matsubara domain

Quantum liquid of singlets at triangular lattice

Picture from "Quantum spin liquids" by Gregoire Misguich

Single-electron DOS for Hubbard model at triangular lattice

