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These were the band structures of
known families of HTSC cuprates.

Can we engineer them to
get further ?
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Control by
lattice
constant of
the
substrate

l1-sheet FS:
5.7<U< 6.5 eV

Control by the chemistry (Al Ti., Sc) of
the insulating layers
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The Coulomb correlations enhance the crystal-field splitting and
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FIG. 3 (color online). Energy levels for the unstrained two-site
model with U = 6.4 eV as a function of the splitting A between
the energies of the 322 — 1 and x> — y?> Wannier orbitals. The
LDA value of A is indicated by the dashed line. Op (O4p)
denotes a configuration with the same (different) orbital(s) on
the two sites.
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FIG. 5. The phase diagram of transition temperatures vs band-
width W2 at room temperature. Ty and Ty are taken from
Refs. [23,25,29.30]. Lines inside the figure are guides to the
eyes. Inset: definition of the angle @ used to obtain W ~
cosw /(Ni-O)*>.

J.S. Zhou et al., Phys. Rev. Lett. 95, 127204 (2005)
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Electronic structure of possible nickelate analogs to the cuprates

V. 1. Anisimov
Institute of Metal Physics, Ekaterinburg, GSP-170, Russia
and Theoretische Physik, ETH-Honggerberg, CH-8093 Zurich, Switzerland
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The electronic structure of various nickel oxides with nickel valence varying from 1+ to 3+ was mvesti-
gated with the aim to find sumilarities and differences to the i1soelectronic cuprates. Only 1f the N1 1ons are
forced into a planar coordination with the O 1ons can a = 1/2 magnetic insulator be realized with the difficult
Ni™ oxidation state and possibly doped with low spin (S=0) Ni*™ holes directly analogous to the supercon-
ducting cuprates. The more common Ni’ ™ oxidation state cannot be used to make a parent magnetic insulator
as it forms rather as localized S=1 Ni*" embedded in a sea of itinerant O holes. Strong coupling of these
holes to the localized spins via 2p-3d hybridization leads to a heavy-fermion system with a large Kondo



Instead of epitaxially made heterostructures,
why not simply use the well-known nearly 2D
bct bulk structure (e.g. LaSrCuQ,) ?

—
o

02p

DOS (state/eV)
tn

Nie
g

U=8eV§ E‘E

7z 3
energy (eV)




Instead of epitaxially made heterostructures,
why not simply use the well-known nearly 2D
bct bulk structure (e.g. LaSrCuQ,) ?

This 1s currently done 1n Tokura's
aroup. From structures given to us

by M. Ushida, we and R. Arita have
made preliminary calculations:
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For LaSrN1O, and NdSrN1O,, our
DMFT calculations indicate that,
now, it is the band which is x?-)*-
like along [110] which gets emptied.
The resulting Fermi-surtace has
strong k_-dispersion and is not like
that of a HTSC cuprate, but seems
consistent with ARPES.
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