Designing nickelates that look like cuprates

Xiaoping Yang¹, P. Hansmann², A. Toschi², K. Held², G. Khaliullin¹, O. K. Andersen¹

¹ Max-Planck-Institut für Festkörperforschung, Stuttgart
 ² Institute for Solid State Physics, Vienna University of Technology

Cuprates $3d^{9-h} = 3d_{x^2-v^2}^{1-h}$

LDA conduction-band (x^2-y^2) shapes and exp Fermi surfaces for overdoped HTSCs

Which structural elements determine

 $r \sim t'/t$

The materials trend is best understood in terms of a tight-binding model with two orbitals:

The materials trend is best understood in terms of a tight-binding model with two orbitals:

La₂CuO₄

The materials trend is best understood in terms of a tight-binding model with two orbitals:

$$d = \operatorname{Cu} x^2 - y^2$$
dressed with
$$\operatorname{O} p$$

The materials trend is best understood in terms of a tight-binding model with two orbitals:

$$d = \operatorname{Cu} x^2 - y^2$$

dressed with

 $\mathbf{0} p$

and

The materials trend is best understood in terms of a tight-binding model with two orbitals:

$$d = Cu x^2 - y^2$$

$$dressed with$$

$$O p$$

and

The materials trend is best understood in terms of a tight-binding model with two orbitals:

$$d = \mathbf{C}\mathbf{u} \ x^2 - y^2$$

dressed with

 $\mathbf{O} p$

and

s = axial orbital = Cu 4s

dressed with

Cu $3z^2-1$,

 $O_a z$

La $3z^2-1$, a.s.o.

The material-dependent parameter is ε_s - ε_F (> 0). The smaller it is, the larger is $r \sim t'/t$.

The material-dependent parameter is ε_s - ε_F (> 0). The smaller it is, the larger is $r \sim t'/t$.

No hybridization

Maximal hybridization

These were the band structures of known families of HTSC cuprates.

Can we engineer them to get further?

J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008)

J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008)

Make Ni³⁺(d⁷)-based HTSCs by sandwiching hole doped LaO-NiO₂ layers between insulating layers through heterostructuring (orbital engineering)

• The confinement together with the electronic correlations should make it possible to localize or empty the $3z^2$ -1 band thus leaving the conduction electron in the x^2 - y^2 band

J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008)

- The confinement together with the electronic correlations should make it possible to localize or empty the $3z^2$ -1 band thus leaving the conduction electron in the x^2 - y^2 band
- If the $3z^2$ -1 orbital can be manipulated to lie *above* x^2 - y^2 , it might play the role of the axial orbital in the cuprate d^9 HTSCs

J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008)

- The confinement together with the electronic correlations should make it possible to localize or empty the $3z^2$ -1 band thus leaving the conduction electron in the x^2 - y^2 band
- If the $3z^2$ -1 orbital can be manipulated to lie *above* x^2 - y^2 , it might play the role of the axial orbital in the cuprate d^9 HTSCs
- Charge disproportionation $(2d^7 \rightarrow d^6 + d^8)$ must be avoided

J. Chaloupka and G. Khaliullin, PRL 100, 016404 (2008)

- The confinement together with the electronic correlations should make it possible to localize or empty the $3z^2$ -1 band thus leaving the conduction electron in the x^2 - y^2 band
- If the $3z^2$ -1 orbital can be manipulated to lie *above* x^2 - y^2 , it might play the role of the axial orbital in the cuprate d^9 HTSCs
- Charge disproportionation $(2d^7 \rightarrow d^6 + d^8)$ must be avoided
 - P. Hansmann, Xiaoping Yang, A. Toschi, G. Khaliullin, O.K. Andersen, K. Held, PRL 103, 016401 (2009); Xiaoping Yang et al to be published

Confinement

eg bands of cubic bulk LaNiO₃

The Coulomb correlations enhance the crystal-field splitting and simplifies the Fermi surface to one sheet when $\varepsilon_{3z^2-1}(\Gamma) > \varepsilon_F$, i.e. with a shape $(r \sim \frac{1}{2})$, like that in the cuprates with the highest T_{cmax}

Cuprates $3d^{9-x} = 3d_{x^2-y^2}^{1-x}$

Conduction band LDA

0.4

X

M

T. Saha-Dasgupta and OKA 2002

One-band Hubbard model LDA+DMFT

Х

X

 \mathbf{x}

Х

M

M

FIG. 3 (color online). Energy levels for the unstrained two-site model with U=6.4 eV as a function of the splitting Δ between the energies of the $3z^2-1$ and x^2-y^2 Wannier orbitals. The LDA value of Δ is indicated by the dashed line. O_F (O_{AF}) denotes a configuration with the same (different) orbital(s) on the two sites.

Phase diagram of 3D RNiO₃ perovskites

FIG. 5. The phase diagram of transition temperatures vs bandwidth W^2 at room temperature. $T_{\rm IM}$ and $T_{\rm N}$ are taken from Refs. [23,25,29,30]. Lines inside the figure are guides to the eyes. Inset: definition of the angle ω used to obtain $W \sim \cos \omega/({\rm Ni-O})^{3.5}$.

J.S. Zhou *et al.*, Phys. Rev. Lett. 95, 127204 (2005)

Phase diagram of 3D RNiO₃ perovskites

FIG. 5. The phase diagram of transition temperatures vs bandwidth W^2 at room temperature. $T_{\rm IM}$ and $T_{\rm N}$ are taken from Refs. [23,25,29,30]. Lines inside the figure are guides to the eyes. Inset: definition of the angle ω used to obtain $W \sim \cos \omega / ({\rm Ni-O})^{3.5}$.

J.S. Zhou *et al.*, Phys. Rev. Lett. 95, 127204 (2005)

Phase diagram of 3D RNiO₃ perovskites

FIG. 5. The phase diagram of transition temperatures vs bandwidth W^2 at room temperature. $T_{\rm IM}$ and $T_{\rm N}$ are taken from Refs. [23,25,29,30]. Lines inside the figure are guides to the eyes. Inset: definition of the angle ω used to obtain $W \sim \cos \omega / ({\rm Ni-O})^{3.5}$.

J.S. Zhou *et al.*, Phys. Rev. Lett. 95, 127204 (2005)

1/1 1/3 (eV) LaAl LaAl -2 SrTi SrTi 0 YSc YSc 0 R R

Adding 2 insulatin g neighbor layers

1/1 1/3 (eV) LaAl LaAl -2 SrTi SrTi 0 YSc YSc 0 promissing R

Adding 2 insulatin g neighbor layers

Adding also another NiO₂ layer (bilayer)

Adding also another NiO₂ layer (bilayer)

Electronic structure of possible nickelate analogs to the cuprates

V. I. Anisimov

Institute of Metal Physics, Ekaterinburg, GSP-170, Russia and Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

D. Bukhvalov Institute of Metal Physics, Ekaterinburg, GSP-170, Russia

T. M. Rice

Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland (Received 26 June 1998)

The electronic structure of various nickel oxides with nickel valence varying from 1+ to 3+ was investigated with the aim to find similarities and differences to the isoelectronic cuprates. Only if the Ni ions are forced into a planar coordination with the O ions can a S=1/2 magnetic insulator be realized with the difficult Ni⁺ oxidation state and possibly doped with low spin (S=0) Ni²⁺ holes directly analogous to the superconducting cuprates. The more common Ni³⁺ oxidation state cannot be used to make a parent magnetic insulator as it forms rather as localized S=1 Ni²⁺ embedded in a sea of itinerant O holes. Strong coupling of these holes to the localized spins via 2p-3d hybridization leads to a heavy-fermion system with a large Kondo

This is currently done in Tokura's group. From structures given to us by M. Ushida, we and R. Arita have made preliminary calculations:

For LaSrNiO₄ and NdSrNiO₄, our DMFT calculations indicate that, now, it is the band which is x^2-y^2 like along [110] which gets emptied. The resulting Fermi-surface has strong k_z -dispersion and is not like that of a HTSC cuprate, but seems consistent with ARPES.

We acknowledge discussions and communications with

B. Keimer, A. Boris, Y. Matiks, H.-U. Habermeier in Stuttgart

and with

Y. Tokura, N. Nagaosa, M. Ushida in Tokyo