Bridging the gap between weak
and strong correlation: A new

way forward?

Kieron Burke and Peter Elliott
UC Irvine Physics and Chemistry

Adam Wasserman

Chemistry, Purdue University

Morrel H Cohen

Physics, Rutgers and Princeton

http://dft.uci.edu

3/14/2010 KITP: Materials by design 1



Summary

I’ll discuss a new formalism which makes
explicit connections between band theory and
atomistic limit.

Only model calculations done so far, but |
expect that to change.

Many opportunities for making connections
between two camps.

Apologies: Written in DFT language



Outline

* Brief review of modern DFT
e Partition theory
 Fragment calculations
 Implications
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Kohn-Sham equations (1965)
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He atom in Kohn-Sham DFT
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Everything
has (at
most) one
KS potential

Dashed-line:
EXACT KS potential




Problems with standard DFT

 Band gaps are bad

e Symmetry dilemma for stretched
H2

e Self-interaction error (now called
delocalization error)

* Too many functionals (butsee 4~ =
our semiclassical work: Explains *.| /7 °\
why DFT works at all).
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Too many functionals
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Things users despise about DFT

No simple rule for reliability
No systematic route to improvement

If your property turns out to be inaccurate,
must wait several decades for solution

Complete disconnect from other methods
Full of arcane insider jargon

Too many functionals to choose from

Can only be learned from another DFT guru

ar 24,09 ACS



Things developers love about DFT

 No simple rule for reliability
* No systematic route to improvement

e |f a property turns out to be inaccurate, can
take several decades for solution

 Wonderful disconnect from other methods
e Lots of lovely arcane insider jargon

 So many functionals to choose from

e Must be learned from another DFT guru

Mar 24,09 ACS



Distinctions

e Calculations

— Is my bond length right? Is the magnetic state
correct?

* Approximations

— LDA is an approximation used in DFT

— Single-site DMFT is an approximation to DMFT
* Formalisms

— Schrodinger equation and wavefunctions

— Green’s functions

— Path integrals

*
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Important distinction

e Suppose | give you the EXACT XC functional
* You don't get

— Excitations, response properties, in general
— A KS band-gap equal to the correct one
* You can get

— all ground-state energies and densities right,
including Pu and fractional quantum hall states.

— The fundamental gap |-A
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Errors In standard functionals
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1: A.J. Cohen, P. Mori-Sanchez, W. Yang, Science 321, 792 (2008).
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Key difference between DFT and
strongly-correlated treatments

 DFT is always in real-space, basis-set
independent results.

e Strongly-correlated treatments usually begin
from model Hamiltonian on a lattice, e.g.
Hubbard model.

* Prototype example: Stretched H,, with
relative spin states.
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Outline

* Brief review of modern DFT
e Partition theory
 Fragment calculations
 Implications
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e Precursor

e Cortona’s
crystal
potential
(PRB,
1991)
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Partition Theory

J Phys. Chem. 4 2007, 111, 2229-2242 1129

On the Foundations of Chemical Reactivity Theory

Morrel H. Colien

Deparmment gf Physics and Astrononyy, Futgers Undversigy, 120 Frelimgiipzen Road,
Fizeataway, New Jersey 038534

Adam Wasserman®

Deparmment gf Chemiziry and Chemical Biology, Harvard Usiversity, 12 Oxford Sireer,
Cambridge, Massachusens 02138

Recaived: Ocrober 1, 2000; In Final Form: December 8, 2000

In formoulating chemical-reactivity theory (CET) so as to give 1t a deep foundation m dansity-fimetional theory
(DFT), Pam, lus collaborators, and subsequent workers have introduced reachvity mndices as properties of
1solated reactants, some of which are m apparent conflict with the undarlymg DFT. Indices which are fivst
dermvatives with respect to elecfron mumber are starcase functions of number, makmg electronegativity
equalization problematic. Second dermrative indices such as hardness vamsh, puting hardness-basad prmeiples
out of reach. By reformulating CET witlun our partiion theory, which provides an exact decompeosition of
a system into ifs component species, we resolve the conflict. We show that the reactivity of a species depends
on ifts chemueal context and define that context. We astablish when elactronegatmity equalization holds and
when 1t fails. We define a generalization of hardness, 2 hardness matix contaiming the self-hardness of the
individual species and the mwiual hardnesses of the pans of species of the svstem, and :dentify the phoysical
origin of hardness. We mioduce a comespondmg zeneralization of the Fukw funetion as well as of the local
and global sefinesses and the sofiness kemel of the earhier formulation. We augment ow previeuns formulation
of the parbifion theorv by mmbroducing a model energy fimehon and express the differance between the exact
and the modal forces on the nucler in ferms of the new reactivity mdices. For sumplicity, our presentation 15
linuted to fime-reversal invarant systems with vamshing spin density; it 15 strarghtforward to generalize the
theory to fimte spm den=ity.
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Simplified atoms
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Simplified moleule

* Here'sour 1d H,
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Basic partition theory

e Consider atoms as isolated and minimize the
sum of their energies, but requiring sum of
densities equal molecular density:

Ny

E: = min Fing|+ / d*rng(r) v, r)
= i > (Pl () v r)

N a=1
>ty nal(r)=n(r)
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Basic partition theory

e How to find minimum? Use Lagrange

multipliers:

N;
G=~FLs+ /d:j'.-" vp (1) (n(r) — Z nﬂ(r))
a=1

* Lagrange multiplier is ca
potential, v,(r), a global
molecule

led partition

oroperty of the

3/14/2010 KITP: Materials by design 19



Partition potential
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Relations In KS-DFT

e Totalenergy E[n]=F[n]+ /d:jr n(r)v(r)

e ‘KS energy’

E.[n] = (O [n]|T + V|®s[n]) = Ts[n] + / d*r n(r)v(r)
* Difference: Euxc|n] = E[n] — Es[n]

e Change in v(r) Vaxe () = 0 Eyxe[n] /on(r)
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Relations Iin Partition Theory

Total energy  E[n] = F[n] + / d*rn(r)v(r)

‘Fragment energy’

E: = min
/ [ra}

N
:E::c1;£]_?1f1 (I‘}::

Partition energy:

Change in v(r):

3/14/2010

z (Firad+ [ 2ot

n(r)

E,[{na}] = En] — Ef[{na}]

vp(r) = 6 Ep[{na}]/ona(r).
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Fragment calculations

 Can you do a calculation on a set of isolated
fragments?

 Need to calculate partition potential ‘on the
fly’

 Can you ensure it recovers the ‘exact’
molecular density?

3/14/2010 KITP: Materials by design
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Advantages of partitioning

e Can calculate
molecular
energy by
correcting
atomic
energies

. Ep much
smaller than E

3/14/2010

Eplinaj] = Eln] — Ef[{na}]

Ep — Ed’ig + E-rei
Eqs = E—EY

0
E,q=E}Y - E,
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Partition potential from energy

* Thus | fSEpHﬂﬁ}
v, (r)=

on,(r)

« Once Ep[{nﬂ}] IS known or approximated,

ohe can perform self-consistent
calculation:

— Guess fragment densities, {n°(r)}
— Calculate partition potential, vp(r)

— Use vp to find new fragment densities
— and so on until self-consistency

3/14/z0 .0



Self-consistent fragment
eguations

Vs f.a|las o l(r) = vs[ng|(r)+(v(r) + vaxc|n](r) — vsn](r))
vs[n|(r) = —d1sn|/on(r)

* The second term is the kicker, because you
need KS potential for entire molecule.

e But easy for 2-particles, since it’s just von
Weisacker.
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Convergence for H,
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Fractional occupations

* For system in contact with reservoir, the total
energy between integers is given by straight-
line segments (PPLB, PRL 1982)

na(r) = (1= va)np, (r) + vany, 1(r)

Flno| = (1 —vo)Flny, | + vaF|ny, +1]
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Isola

e Eg.,if
N=1.5,
then p=1,
v=0.5, and
E=€,+0.5¢,

3/14/2010
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Partial occupations

V(x)
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Thiine The Road to Partition

* Use PPLB for energy and density for fragments
with a non-integer N:

e, ==V )E |n, |+v E| ”;:ITH‘

—_—

. il
' .':"\-H‘;{%,I
-

F — !
j\l |'."l:_-1Z)|!"|!—|=_1I i
==V R, +V i

+ Total fragment energy =5

* Minimize ¢ with the constraints that nM(r) is the
sum of the fragment densities and N is sum of
the fragment N_
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e Exact
partitioning of
molecular
density

* Fractional
occupations 0.7
and 1.3

e MICAW,
Roberto Car,
and Kieron, J.
Phys. Chem. A
2009, 113, 2183
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Convergence of fragment

calculation
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Outline

* Brief review of modern DFT
e Partition theory
 Fragment calculations
 Implications
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Iterative scheme for N-particle KS
potential

Vs f.a|las o l(r) = vs[ng|(r)+(v(r) + vaxc|n](r) — vsn](r))
vs[n|(r) = —d1sn|/on(r)
e Can use any of many algorithms to find a KS
potential for a given density: Make inner loop

_I:éﬂl—kl) (I") — 'I,*E(;m.) (I‘) + 7y [T?.-(m’) (11) — T?.-(kj (I‘)}

* In outer loop, minimize chemical potential
difference:
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10 -5 ) - Ol 1 0C-

-20 -15
X b 4

e Construct chain of Eckhardt potentials

e Peter Elliott solved 12 single-atom fragment
problems.
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Partition potential in chain

-18 -15 -12

FIG. 2: The exact partition potential (solid line) for the at-
omized chain and the fragment potential for the last atom
(dashed line). The ground state with an occupation of 0.77
in this potential can be seen as the end fragment density in
Fig 1.
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Occupation numbers in chain
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FIG. 3: The convergence of the fragment occupation values,
N, during an exact PDFT calculation.

3/14/2010 KITP: Materials by design 38



Relative sizes of energies

e Traditional calculation:
— One ‘atom’ is -27.2 eV

— Entire molecule is -418.54 eV
— E, = -418.54+12x27.2=-92 eV

e Partition theory:
— At end of calculation, E=-320.43 eV, E =-98.1 eV
—So By =E —E=-98.1+6.1=-92.0eV

3/14/2010 KITP: Materials by design
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Outline

* Brief review of modern DFT
e Partition theory
 Fragment calculations

* Implications
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Atomic limit

Ny
E=> ¢ ,+E;

a=1
If XC contribution to E,=0, automatically gets
atomic limit right.

So both H,* and H, behave correctly.

Thus, can handle both self-interaction and
strong correlation automatically.

Sadly, then lousy back at equilibrium.



New many-body approximations
P'Hrf
E, = AT ng| + AEuxc|na] + Z / d3r n, (r)vs(r)

o, 3£
e If you set XC contribution to zero,
automatically dissociate correctly.

 Hartree partition energy contains long-range
polarizing Coulomb effects.

e Partition theory bridges gap between lattices
and real-space approaches.
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Orbital-free DFT/ O(N)

* If we knew T [n] sufficiently accurately, we
would not need to solve for KS orbitals.

e Codes would be much faster.

VOLUME 5%, NUMREE 14 PHYSICAL REVIEW LETTERS S MTORER 1957

Ab Initio Approach for Many-Electron Systems without Invoking Orbitals:
An Integral Formulation of Density-Functional Theory

Weitao Yang

VOLUME b, NUMBER 1] PHYSICAL REVIEW LETTERS 18 MarRCH 1991

e L m— —_—— — —— —— -

Direct Calculation of Electron Density in Density-Functional Theory

Weitao Yang
Depariment of Chemistey, Duke Uriversity, Durham, North Carolisa 27706
(Received 5 September 19940)
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Figure 2

Illustration of the pseudobond method. The side chain of the Gln residue is described with
quantum mechanics (yellow region) and the C, atom has a designed effective core potental, one
free valence, and a special basis set. The C,—Cz bond becomes a pseudobond with similar
bond length, bond strength, and charge distributions as in a normal C(sp3)—C(sp3) single bond.

Ane, Pov Phys Chom, 2008, 3357301
F:i.rul:pu]:-].i.uh:d onlire as a Bovdew in Advance on
Diccember 11, 2007

The Avewal Revver of Plysioal Chemirry is onlin at
i fphorschern. anmaalrevicws. org
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Free Energies of Chemical
Reactions in Solution

and in Enzymes with

Ab Initio Quantum
Mechanics/Molecular
Mechanics Methods

Hao Hu and Weitao Yang

Diepartment of Chernistry, Dules Undversty, Durham, Morth Carolina 27708;
emall: hao bu@duke.cdu, weinoyang@ dule cdu
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Atoms In molecules

* Many attempts to define atoms in molecules,

e.g. Bader, Parr,

Information theory, atoms in molecules, and

molecular similarity

Roman F. Nalewajski*' and Robert G. Parrt?

*|. Guminski, Department of Theoretical Chemistry, Jagiellonian University, B. Ingardena 2, 20-0680 Cracow, Poland; and tDepartmant of Chemistry,

University of Morth Caralina, Chapal Hill, NC 27599-3290
Contributad by Robert . Parr, May 15, 2000

Using information theory, itis argued that from among possible
definitions of what an atom is when itis in a molecule, a particular
one merits special attention. Namely, it is the atom defined by the
“stockholders partitioning” of a molecule invented by Hirshfeld
[{19]‘?1 Thanr Thim Atz A4 1761 The thenratical tanl nead i the

i nim

to the effective atomic number of the nucleus (16). AIM
densities should be related to both promolecule and molecular
densities, as representing the atomic fragments in a particular

molecular system. Dm v-:}ull:l want some degree of overlap
limdrrra nan #lam daswedttae =F +l B e L T T T {..l- tht.-

A PMAS | August1, 2000 | wol.97 | no.16 | BB79-8B82 o
similal s, for

3/14/2010
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Atomic ‘charges’

e Mulliken,...

* Boys localization (50’s)

 Maximally localized Wannier functions
(Vanderhbilt, etc.)
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Conclusions

Partition theory provides an exact
decomposition of molecule into fragments.

In KS-DFT, a simple algorithm allows fragment
calculations.

Allows many new ways to approximate the
energy, including ways that include strongly
correlated systems.

How does DMFT look in this scheme?
Thanks to NSF.



Fuxc|n] = En] — Eq[n]

Ny r) = 0FEuxc|n]/on(r)
g = Ef +/d3’f lp(]f') ?’1‘(1") — T?a(r)
; a=1
Eref "
vs By, = ATi[ng] + AEuxc|na] + Z / rna(r)us(ryr))
J o, F#ao
E;= min Fln, +/ A1 ny (1) -t,ﬂ(r))
! g {nal. &21( [ }
S L na(r)= n(r)
vs[n|(r) = —d1sn|/on(r) Ny
E, = AT ng| + AEuxc|na] + Z / e (r)vs(r)
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3/14/2010

FIG. 1: Solid line: The exact spin-unpolarized ground state
of 12 electrons in the potential of Eq. (17). Dashed lines: The
fractionally occupied fragment densities. By symmetry, the
other half of the density is simply the mirror image of that
shown.
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