Continuous-Time Quantum Monte Carlo Algorithms

Emanuel Gull
啇 COLUMBIA UnIVERSITY
January 72010
Funding: NSF-DMR-0705847

Overview

Quick introduction to the Dynamical Mean Field Theory (DMFT)

Continuous-Time Auxiliary Field impurity solver algorithm and large clusters

Some (very few) results (see P.Werner's talk for more applications)

DMFT and Impurity Problem

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} .
$$

Impurity Problem: $S_{\text {eff }}=-\sum_{\sigma} \iint_{0}^{\beta} d \tau d \tau^{\prime} c_{\sigma}^{\dagger}(\tau) \mathcal{G}_{0 \sigma}^{-1}\left(\tau-\tau^{\prime}\right) c_{\sigma}(\tau)+U \int_{0}^{\beta} d \tau n_{\uparrow}(\tau) n_{\downarrow}(\tau)$ Self Consistency: $\quad G\left(i \omega_{n}\right)=\sum_{\vec{k} \in B Z} \frac{1}{i \omega_{n}+\mu-\epsilon(\vec{k})-\Sigma\left(i \omega_{n}\right)}$.

DMFT and Impurity Problem

Limit of infinite coordination number:

Impurity coupled to a bath \& self consistency condition

Impurity Problem: $S_{\text {eff }}=-\sum_{\sigma} \iint_{0}^{\beta} d \tau d \tau^{\prime} c_{\sigma}^{\dagger}(\tau) \mathcal{G}_{0 \sigma}^{-1}\left(\tau-\tau^{\prime}\right) c_{\sigma}(\tau)+U \int_{0}^{\beta} d \tau n_{\uparrow}(\tau) n_{\downarrow}(\tau)$ Self Consistency: $\quad G\left(i \omega_{n}\right)=\sum_{\vec{k} \in B Z} \frac{1}{i \omega_{n}+\mu-\epsilon(\vec{k})-\Sigma\left(i \omega_{n}\right)}$.

DMFT Self Consistency

Noninteracting Density of States: Theory, LDA, ...

Cluster DMFT

Various variants developed by Lichtenstein et al., Jarrell et al., Kotliar et al.

Infinite coordination number: momentum independent self energy.

Dynamic Cluster Approximation (DCA): reintroduce momentum dependence to DMFT.

DCA self energy is chosen to be constant within patches of the Brillouin zone Cluster impurity $S_{\text {eff }}=-\iint_{0}^{\beta} d \tau \sum_{i j \sigma} c_{i \sigma}^{\dagger}(\tau) \mathcal{G}_{i j, \sigma}^{0}\left(\tau-\tau^{\prime}\right)^{-1} c_{j \sigma}\left(\tau^{\prime}\right)+\int_{0}^{\beta} d \tau \sum_{j=1}^{N_{c}} U n_{j \uparrow}(\tau) n_{j \downarrow}(\tau)$
problem

$$
\Sigma_{K}=\mathcal{G}_{K}^{0}\left(i \omega_{n}\right)^{-1}-G_{\operatorname{imp}}^{-1}
$$

Self consistency condition

$$
\begin{aligned}
\bar{G}\left(K, i \omega_{n}\right) & =\int_{\mathrm{BZ} \text { patch }} \frac{d k}{\overline{\omega_{n}+\mu-\epsilon(k)-\Sigma_{K}}} \\
\mathcal{G}_{K}^{0}\left(i \omega_{n}\right)^{-1} & =\Sigma_{K}+\bar{G}_{K}^{-1}\left(i \omega_{n}\right)
\end{aligned}
$$

Hirsch Fye QMC Impurity Solver

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} \cdot \quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr} \prod_{l=1}^{L} e^{-\Delta \tau\left(H_{0}+V\right)}
$$

$$
Z \simeq \prod_{l=1}^{L} e^{-\Delta \tau H_{0}} e^{-\Delta \tau V}
$$

Trotter breakup: discretization of the integral, introduces Trotter errors

Auxiliary field decomposition

$$
\begin{aligned}
\exp \left[-\Delta \tau\left(U n_{\uparrow} n_{\downarrow}-\frac{1}{2}\left(n_{\uparrow}+n_{\downarrow}\right)\right)\right] & =\frac{1}{2} \sum_{\sigma= \pm 1} \exp \left[\lambda \sigma\left(n_{\uparrow}-n_{\downarrow}\right)\right] \\
\cosh (\lambda) & =\exp (\Delta \tau U / 2)
\end{aligned}
$$

Sampling of partition function integral on discretized time slices

Continuous-Time Algorithms

Partition function in the interaction representation:

$$
Z=\operatorname{Tr}\left[e^{-\beta H_{0}} T_{\tau} e^{-\int_{0}^{\beta} d \tau V(\tau)}\right]
$$

Expansion into perturbation series (powers of the interaction V):

$$
Z=\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}(-V) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}(-V) e^{-\tau_{1} H_{0}}\right] .
$$

Graphical representation of terms of the integral at different orders:

Continuous-Time Algorithms

Partition function in the interaction representation:

$$
Z=\operatorname{Tr}\left[e^{-\beta H_{0}} T_{\tau} e^{-\int_{0}^{\beta} d \tau V(\tau)}\right]
$$

Expansion into perturbation series (powers of the interaction V):

$$
Z=\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}(-V) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}(-V) e^{-\tau_{1} H_{0}}\right] .
$$

Graphical representation of terms of the integral at

$$
W_{0}=\operatorname{Tr}\left[e^{-\beta H_{0}}\right] \quad \text { а) }\left.\right|_{0}
$$ different orders:

Continuous-Time Algorithms

Partition function in the interaction representation:

$$
Z=\operatorname{Tr}\left[e^{-\beta H_{0}} T_{\tau} e^{-\int_{0}^{\beta} d \tau V(\tau)}\right]
$$

Expansion into perturbation series (powers of the interaction V):

$$
Z=\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}(-V) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}(-V) e^{-\tau_{1} H_{0}}\right]
$$

Graphical representation of terms of the integral at different orders:

$$
W_{0}=\operatorname{Tr}\left[e^{-\beta H_{0}}\right]
$$

a) $\left.\right|_{0}$
$W_{1}\left(\tau_{1}\right)=\operatorname{Tr}\left[e^{-\left(\beta-\tau_{1}\right) H_{0}} V e^{-\tau_{1} H_{0}}\right]$
b) \mid

Continuous-Time Algorithms

Partition function in the interaction representation:

$$
Z=\operatorname{Tr}\left[e^{-\beta H_{0}} T_{\tau} e^{-\int_{0}^{\beta} d \tau V(\tau)}\right]
$$

Expansion into perturbation series (powers of the interaction V):

$$
Z=\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}(-V) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}(-V) e^{-\tau_{1} H_{0}}\right]
$$

Graphical representation of terms of the integral at different orders:

$$
W_{0}=\operatorname{Tr}\left[e^{-\beta H_{0}}\right]
$$

a) $\left.\right|_{0}$
$W_{1}\left(\tau_{1}\right)=\operatorname{Tr}\left[e^{-\left(\beta-\tau_{1}\right) H_{0}} V e^{-\tau_{1} H_{0}}\right]$
b) \mid
$W_{2}\left(\tau_{1}, \tau_{2}\right)=\operatorname{Tr}\left[e^{-\left(\beta-\tau_{1}\right) H_{0}} V e^{-\left(\tau_{1}-\tau_{2}\right) H_{0}} V e^{-\tau_{2} H_{0}}\right]$
c) $\left.\right|_{0} \bigcirc_{\tau_{1}}$

Continuous-Time Algorithms

Partition function in the interaction representation:

$$
Z=\operatorname{Tr}\left[e^{-\beta H_{0}} T_{\tau} e^{-\int_{0}^{\beta} d \tau V(\tau)}\right]
$$

Expansion into perturbation series (powers of the interaction V):

$$
Z=\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}(-V) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}(-V) e^{-\tau_{1} H_{0}}\right] .
$$

Graphical representation of terms of the integral at different orders:

$$
W_{0}=\operatorname{Tr}\left[e^{-\beta H_{0}}\right]
$$

a) ${ }_{0}$

$$
W_{1}\left(\tau_{1}\right)=\operatorname{Tr}\left[e^{-\left(\beta-\tau_{1}\right) H_{0}} V e^{-\tau_{1} H_{0}}\right]
$$

b) \mid

$$
W_{2}\left(\tau_{1}, \tau_{2}\right)=\operatorname{Tr}\left[e^{-\left(\beta-\tau_{1}\right) H_{0}} V e^{-\left(\tau_{1}-\tau_{2}\right) H_{0}} V e^{-\tau_{2} H_{0}}\right]
$$

c)

$W_{3}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=\operatorname{Tr}\left[e^{-\left(\beta-\tau_{1}\right) H_{0}} V e^{-\left(\tau_{1}-\tau_{2}\right) H_{0}} V e^{-\left(\tau_{2}-\tau_{3}\right) H_{0}} V e^{-\tau_{3} H_{0}}\right]$
d) $\left.\right|_{0} \overbrace{1}$

Weak Coupling and

Hybridization Expansion

$$
Z=\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}(-V) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}(-V) e^{-\tau_{1} H_{0}}\right] .
$$

Two complementary approaches: Expansion in the interaction (e.g. the 'Hubbard U')

Expansion in the hybridization

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

Hopping exact

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} . ~ \$
$$

Any analytical diagrammatic expansion can be converted into a QMC algorithm!

Advantages of Continuous Time QMC

No Approximations

> General interactions (e.g. exchange \& pair hopping), new physics

Speedup of about a factor of 10^{3} :
Intuitive picture: Smooth functions (diagrams) need to be approximated by a discretized version; resolution needs to be about 10 times larger than the features. Numerical effort is cubic $\left(\mathrm{O}\left(\mathrm{N}^{3}\right)\right)$ for all algorithms

Discretization Errors

No discretization of the imaginary time interval as in Hirsch-Fye is necessary, extrapolation is avoided from the start.

Performance Comparison

Gull,Werner, Troyer, Millis, Phys. Rev. B 76, 235I23 (2007)

Performance Comparison

A. N. Rubtsov and A. I. Lichtenstein, JETP Letters 80,6I (2004)

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

A. N. Rubtsov and A. I. Lichtenstein, JETP Letters 80,6I (2004)

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
& \frac{Z}{Z_{0}}=\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Monte Carlo
sampling process:

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Monte Carlo

sampling process:
a! 碞 !

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Monte Carlo
b) $\left.\right|_{0} ^{\text {Kow }}$ K K K K K K

Weak Coupling Algorithm

Weak coupling partition function expansion（SIAM）：

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Green＇s function lines

Monte Carlo sampling process：

a）！緅
碞 碞 ！
Vertex removal．

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Green's function lines

Monte Carlo sampling process:
a)

K
K

c) $\left.\right|_{0} K$

领!
Vertex removal.

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Green's function lines

Monte Carlo sampling process:
a) $\left.\right|_{0} ^{5}$
K
K
K
K

c) $\left.\right|_{0}$ K
2) !

Vertex shift.

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$
\begin{aligned}
\frac{Z}{Z_{0}} & =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma}\left\langle T_{\tau}\left[n_{\sigma_{1}}\left(\tau_{1}\right)-\alpha_{s_{1} \sigma_{1}}\right] \cdots\left[n_{\sigma_{k}}\left(\tau_{k}\right)-\alpha_{s_{k} \sigma_{k}}\right]\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-U)^{k}}{k!} \iiint_{0}^{\beta} d \tau_{1} \cdots d \tau_{k} \sum_{s_{1} \cdots s_{k}} \prod_{\sigma} \operatorname{det} D_{k}^{\sigma}
\end{aligned}
$$

Green's function lines

Monte Carlo sampling process:
a) \mid K
碞
維

c) $\left.\right|_{0} ^{\text {K }}$

K
Vertex removal.
d)

Vertex shift.

Continuous-Time Auxiliary Field

Decoupling of the interaction with an auxiliary field:

Partition function expansion in the interaction representation:

$$
\begin{aligned}
1-\frac{\beta U}{K}\left(n_{i \uparrow} n_{i \downarrow}-\frac{n_{i \uparrow}+n_{i \downarrow}}{2}\right) & =\frac{1}{2} \sum_{s= \pm 1} \exp \left(\gamma s\left(n_{i \uparrow}-n_{i \downarrow}\right)\right), \\
\cosh (\gamma) & =1+\frac{U \beta}{2 K} .
\end{aligned}
$$

$$
Z=\sum_{k=0}^{\infty} \sum_{s_{1}, \cdots s_{k}= \pm 1} \int_{0}^{\beta} d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k}\left(\frac{K}{2 \beta}\right)^{k} Z_{k}\left(\left\{s_{k}, \tau_{k}\right\}\right)
$$

$$
Z_{k}\left(\left\{s_{i}, \tau_{i}\right\}\right) \equiv \operatorname{Tr} \prod_{i=k}^{1} \exp \left(-\Delta \tau_{i} H_{0}\right) \exp \left(s_{i} \gamma\left(n_{\uparrow}-n_{\downarrow}\right)\right)
$$

Continuous-Time Auxiliary Field

Decoupling of the interaction with an auxiliary field:

Partition function expansion in the interaction representation:

Diagrams of the partition function:

$$
\begin{aligned}
1-\frac{\beta U}{K}\left(n_{i \uparrow} n_{i \downarrow}-\frac{n_{i \uparrow}+n_{i \downarrow}}{2}\right) & =\frac{1}{2} \sum_{s= \pm 1} \exp \left(\gamma s\left(n_{i \uparrow}-n_{i \downarrow}\right)\right), \\
\cosh (\gamma) & =1+\frac{U \beta}{2 K} .
\end{aligned}
$$

$$
Z=\sum_{k=0}^{\infty} \sum_{s_{1}, \cdots s_{k}= \pm 1} \int_{0}^{\beta} d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k}\left(\frac{K}{2 \beta}\right)^{k} Z_{k}\left(\left\{s_{k}, \tau_{k}\right\}\right)
$$

$$
Z_{k}\left(\left\{s_{i}, \tau_{i}\right\}\right) \equiv \operatorname{Tr} \prod_{i=k}^{1} \exp \left(-\Delta \tau_{i} H_{0}\right) \exp \left(s_{i} \gamma\left(n_{\uparrow}-n_{\downarrow}\right)\right) .
$$

Continuous-Time Auxiliary Field

Decoupling of the interaction with an auxiliary field:

Partition function expansion in the interaction representation:

Diagrams of the partition function:

$$
Z=\sum_{k=0}^{\infty} \sum_{s_{1}, \cdots s_{k}= \pm 1} \int_{0}^{\beta} d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k}\left(\frac{K}{2 \beta}\right)^{k} Z_{k}\left(\left\{s_{k}, \tau_{k}\right\}\right)
$$

$$
Z_{k}\left(\left\{s_{i}, \tau_{i}\right\}\right) \equiv \operatorname{Tr} \prod_{i=k}^{1} \exp \left(-\Delta \tau_{i} H_{0}\right) \exp \left(s_{i} \gamma\left(n_{\uparrow}-n_{\downarrow}\right)\right) .
$$ Sampling:

$$
\begin{aligned}
1-\frac{\beta U}{K}\left(n_{i \uparrow} n_{i \downarrow}-\frac{n_{i \uparrow}+n_{i \downarrow}}{2}\right) & =\frac{1}{2} \sum_{s= \pm 1} \exp \left(\gamma s\left(n_{i \uparrow}-n_{i \downarrow}\right)\right), \\
\cosh (\gamma) & =1+\frac{U \beta}{2 K} .
\end{aligned}
$$

Hybridization Expansion

Expansion in the interaction representation, where $V=H_{m i x}, H_{0}=H_{l o c}$. Density - density interactions.

$$
\begin{aligned}
Z & =\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\beta H_{0}} T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{\text {mix }}(\tau)}\right] \\
& =\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}\left(-H_{\text {mix }}\right) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}\left(-H_{\text {mix }}\right) e^{-\tau_{1} H_{0}}\right]
\end{aligned}
$$

Configurations

Hybridization - General Interactions

More complicated interactions (clusters, multiorbital, phonons, ...)?

Configuration of $H_{l o c}$
Configuration of V

$$
\begin{aligned}
Z & =\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\beta H_{0}} T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{\text {mix }}(\tau)}\right] \\
& =\sum_{k=0}^{\infty} \int d \tau_{1} \cdots \int_{\tau_{k-1}}^{\beta} d \tau_{k} \operatorname{Tr}\left[e^{-\beta H_{0}} e^{\tau_{k} H_{0}}\left(-H_{\text {mix }}\right) \cdots e^{-\left(\tau_{2}-\tau_{1}\right) H_{0}}\left(-H_{\text {mix }}\right) e^{-\tau_{1} H_{0}}\right]
\end{aligned}
$$

occupation number basis $\left[H_{\mathrm{loc}}, S_{z}\right]=0=\left[H_{\mathrm{loc}}, N\right]$ further symmetries

$H_{\text {loc }}$

$H_{\text {loc }}$

$H_{\text {loc }}$

$\operatorname{Tr}[$

c_{\uparrow}^{\dagger}

$e^{-H_{\text {loc }} \tau_{2}}$

$\left.e^{-H_{\text {loc }} \tau_{3}} \ldots\right]$

Choosing the appropriate Algorithm

Large cluster calculations: Continuous-time auxiliary field method (up to 10×10 clusters)

Problems with density density interactions, many orbitals: Hybridization expansion (linear in the number of orbitals)

Problems with general but weak interactions:Weak Coupling expansion
Problems with general interactions but few orbitals: Hybridization expansion.

Cluster Dynamical Mean Field Theory

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)
Hubbard model on 2d square lattice:

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} .
$$

8 -site cluster

Tiling of the BZ

Restriction to paramagnetic bath

$$
\epsilon_{p}=-2 t\left(\cos \left(p_{x}\right)+\cos \left(p_{y}\right)\right)-4 t^{\prime} \cos \left(p_{x}\right) \cos \left(p_{y}\right)
$$

DCA self energy is chosen to be constant within patches of the Brillouin zone.
8 -site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (π, π)) are not mixed in with regions around the FS.

Cluster Dynamical Mean Field Theory

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)
Hubbard model on 2d square lattice:

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} .
$$

8 -site cluster

Tiling of the BZ

Restriction to paramagnetic bath

$$
\epsilon_{p}=-2 t\left(\cos \left(p_{x}\right)+\cos \left(p_{y}\right)\right)-4 t^{\prime} \cos \left(p_{x}\right) \cos \left(p_{y}\right)
$$

DCA self energy is chosen to be constant within patches of the Brillouin zone.
8 -site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (π, Π)) are not mixed in with regions around the FS.

Cluster Dynamical Mean Field Theory

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)
Hubbard model on 2d square lattice:

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} .
$$

Tiling of the BZ

Restriction to paramagnetic bath

$$
\epsilon_{p}=-2 t\left(\cos \left(p_{x}\right)+\cos \left(p_{y}\right)\right)-4 t^{\prime} \cos \left(p_{x}\right) \cos \left(p_{y}\right)
$$

DCA self energy is chosen to be constant within patches of the Brillouin zone.
8 -site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (π, Π)) are not mixed in with regions around the FS.

Cluster Dynamical Mean Field Theory

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)
Hubbard model on 2d square lattice:

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} .
$$

$t^{\prime}=-0.15 t$
Tiling of the BZ

Restriction to paramagnetic bath

$$
\epsilon_{p}=-2 t\left(\cos \left(p_{x}\right)+\cos \left(p_{y}\right)\right)-4 t^{\prime} \cos \left(p_{x}\right) \cos \left(p_{y}\right)
$$

DCA self energy is chosen to be constant within patches of the Brillouin zone.
8 -site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (π, Π)) are not mixed in with regions around the FS.

Cluster Dynamical Mean Field Theory

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)
Hubbard model on 2d square lattice:

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} .
$$

$\mathrm{t}^{\prime}=-0.3 \mathrm{t}$
Tiling of the BZ

Restriction to paramagnetic bath

$$
\epsilon_{p}=-2 t\left(\cos \left(p_{x}\right)+\cos \left(p_{y}\right)\right)-4 t^{\prime} \cos \left(p_{x}\right) \cos \left(p_{y}\right)
$$

DCA self energy is chosen to be constant within patches of the Brillouin zone.
8 -site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (π, Π)) are not mixed in with regions around the FS.

Cluster Dynamical Mean Field Theory

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)
Hubbard model on 2d square lattice:

$$
H=-\sum_{\langle i j\rangle, \sigma} t_{i j}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow} .
$$

8 -site cluster

Tiling of the BZ

Restriction to paramagnetic bath

$$
\epsilon_{p}=-2 t\left(\cos \left(p_{x}\right)+\cos \left(p_{y}\right)\right)-4 t^{\prime} \cos \left(p_{x}\right) \cos \left(p_{y}\right)
$$

DCA self energy is chosen to be constant within patches of the Brillouin zone.
8 -site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (π, Π)) are not mixed in with regions around the FS.

Results: Doping Driven Transition

Spectral function $\mathrm{A}(0)$ at the Fermi energy as a function of chemical potential exhibits clear crossing points.

Sector C transition occurs before sector B transition. Transitions coalesce on the electron doped side for larger t ', but not on the hole doped side.

For large electron and hole doping: behavior consistent with Fermi liquid theory.

For intermediate doping: $\mathrm{A}(0)$ is suppressed in comparison with FL, possible Non-FL phase in sector B.

Results: Doping Driven Transition

Spectral function $\mathrm{A}(0)$ at the Fermi energy as a function of chemical potential exhibits clear crossing points.

Sector C transition occurs before sector B transition. Transitions coalesce on the electron doped side for larger t ', but not on the hole doped side.

For large electron and hole doping: behavior consistent with Fermi liquid theory.

For intermediate doping: $\mathrm{A}(0)$ is suppressed in comparison with FL, possible Non-FL phase in sector B.

Results: Doping Driven Transition

Spectral function $\mathrm{A}(0)$ at the Fermi energy as a function of chemical potential exhibits clear crossing points.

Sector C transition occurs before sector B transition. Transitions coalesce on the electron doped side for larger t^{\prime}, but not on the hole doped side.

For large electron and hole doping: behavior consistent with Fermi liquid theory.

For intermediate doping: $\mathrm{A}(0)$ is suppressed in comparison with FL, possible Non-FL phase in sector B.

Conclusions

For a review on continuous-time algorithms see my PhD thesis http://e-collection.ethbib.ethz.ch/view/eth:31103

Open source codes: In preparation, will be published this summer as part of the ALPS (alps.comp-phys.org) libraries.

New algorithms allow access to new physics: Larger systems, extrapolation to the infinite system, general interactions, and more orbitals.

