Continuous-Time Quantum Monte Carlo Algorithms

Emanuel Gull

January 7 2010

Funding: NSF-DMR-0705847

Overview

Quick introduction to the Dynamical Mean Field Theory (DMFT)

Continuous-Time Quantum Monte Carlo Methods and comparison to other methods

The Weak Coupling method

They Hybridization Expansion

Continuous-Time Auxiliary Field impurity solver algorithm and large clusters

Some (very few) results (see P.Werner's talk for more applications)

DMFT and Impurity Problem

$$H = -\sum_{\langle ij \rangle,\sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}.$$

Impurity Problem: $S_{\text{eff}} = -\sum_{\sigma} \iint_{0}^{\beta} d\tau d\tau' c_{\sigma}^{\dagger}(\tau) \mathcal{G}_{0\sigma}^{-1}(\tau - \tau') c_{\sigma}(\tau) + U \int_{0}^{\beta} d\tau n_{\uparrow}(\tau) n_{\downarrow}(\tau)$ Self Consistency: $G(i\omega_{n}) = \sum_{\vec{k}\in BZ} \frac{1}{i\omega_{n} + \mu - \epsilon(\vec{k}) - \Sigma(i\omega_{n})}.$

DMFT and Impurity Problem

DMFT Self Consistency

Cluster DMFT

Various variants developed by Lichtenstein et al., Jarrell et al., Kotliar et al.

Infinite coordination number: momentum independent self energy.

Dynamic Cluster Approximation (DCA): reintroduce momentum dependence to DMFT.

DCA self energy is chosen to be constant within patches of the Brillouin zone

Cluster impurity
problem
$$S_{\text{eff}} = -\iint_{0}^{\beta} d\tau \sum_{ij\sigma} c_{i\sigma}^{\dagger}(\tau) \mathcal{G}_{ij,\sigma}^{0}(\tau - \tau')^{-1} c_{j\sigma}(\tau') + \int_{0}^{\beta} d\tau \sum_{j=1}^{N_{c}} U n_{j\uparrow}(\tau) n_{j\downarrow}(\tau)$$

$$\Sigma_{K} = \mathcal{G}_{K}^{0}(i\omega_{n})^{-1} - \mathcal{G}_{\text{imp}}^{-1}$$

 $-\Sigma_K$

Self consistency condition

$$\mathbf{y} \quad \overline{G}(K, i\omega_n) = \int_{\text{BZ patch}} \frac{\omega_n}{i\omega_n + \mu - \epsilon(k)}$$
$$\mathcal{G}_K^0(i\omega_n)^{-1} = \Sigma_K + \overline{G}_K^{-1}(i\omega_n)$$

Hirsch, J. E., and R. M. Fye, 1986, Phys. Rev. Lett. 56, 2521

Hirsch Fye QMC Impurity Solver

$$H = -\sum_{\langle ij \rangle, \sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \cdot Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} \prod_{l=1}^{L} e^{-\Delta \tau (H_0 + V_l)} \cdot Z$$

$$Z \simeq \prod_{l=1}^{L} e^{-\Delta \tau H_0} e^{-\Delta \tau V}$$

Trotter breakup: discretization of the integral, introduces Trotter errors

Auxiliary field decomposition

$$\exp\left[-\Delta\tau\left(Un_{\uparrow}n_{\downarrow}-\frac{1}{2}(n_{\uparrow}+n_{\downarrow})\right)\right] = \frac{1}{2}\sum_{\sigma=\pm 1}\exp\left[\lambda\sigma(n_{\uparrow}-n_{\downarrow})\right]$$
$$\cosh(\lambda) = \exp(\Delta\tau U/2)$$

$$\begin{array}{c}
\Delta \tau \\
\leftrightarrow \\
0
\end{array}$$

Sampling of partition function integral on discretized time slices

Partition function in the interaction representation:

$$Z = \operatorname{Tr}\left[e^{-\beta H_0} T_{\tau} e^{-\int_0^\beta d\tau V(\tau)}\right]$$

Expansion into perturbation series (powers of the interaction V):

$$Z = \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-V) \cdots e^{-(\tau_2 - \tau_1) H_0} (-V) e^{-\tau_1 H_0} \right]$$

Graphical representation of terms of the integral at different orders:

Partition function in the interaction representation:

$$Z = \operatorname{Tr}\left[e^{-\beta H_0} T_{\tau} e^{-\int_0^\beta d\tau V(\tau)}\right]$$

Expansion into perturbation series (powers of the interaction V):

$$Z = \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-V) \cdots e^{-(\tau_2 - \tau_1) H_0} (-V) e^{-\tau_1 H_0} \right]$$

Graphical representation of terms of the integral at different orders:

$$W_0 = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} \end{bmatrix} \quad \text{a)} \quad \bigg|_{0}$$

Partition function in the interaction representation:

$$Z = \operatorname{Tr}\left[e^{-\beta H_0} T_{\tau} e^{-\int_0^\beta d\tau V(\tau)}\right]$$

Expansion into perturbation series (powers of the interaction V):

$$Z = \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-V) \cdots e^{-(\tau_2 - \tau_1) H_0} (-V) e^{-\tau_1 H_0} \right]$$

Graphical representation of
terms of the integral at
different orders: $W_0 = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} \end{bmatrix}$ a)
 $W_0 = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} \end{bmatrix}$ a)
 $U_0 = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} \end{bmatrix}$ b)
 $U_1 = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} \end{bmatrix}$ b)
 $W_1(\tau_1) = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} \end{bmatrix}$ b)
 $U_1 = \operatorname{Tr} \begin{bmatrix} e^{-\beta H_0} \end{bmatrix}$

Partition function in the interaction representation:

$$Z = \operatorname{Tr}\left[e^{-\beta H_0} T_{\tau} e^{-\int_0^\beta d\tau V(\tau)}\right]$$

Expansion into perturbation series (powers of the interaction V):

$$Z = \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-V) \cdots e^{-(\tau_2 - \tau_1) H_0} (-V) e^{-\tau_1 H_0} \right]$$

Partition function in the interaction representation:

$$Z = \operatorname{Tr}\left[e^{-\beta H_0} T_{\tau} e^{-\int_0^\beta d\tau V(\tau)}\right]$$

Expansion into perturbation series (powers of the interaction V):

$$Z = \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-V) \cdots e^{-(\tau_2 - \tau_1) H_0} (-V) e^{-\tau_1 H_0} \right]$$

A. N. Rubtsov and A. I. Lichtenstein, JETP Letters **80**, 61 (2004); Werner et al., PRL **97**, 076405 (2006)

Weak Coupling and Hybridization Expansion

$$Z = \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-V) \cdots e^{-(\tau_2 - \tau_1) H_0} (-V) e^{-\tau_1 H_0} \right]$$

Two complementary approaches: Expansion in the interaction (e.g. the 'Hubbard U')

$$\frac{1}{\sqrt{2}} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} H = -\sum_{\langle ij \rangle, \sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}.$$
Hopping exact
$$\text{Local Hamiltonian} \\
\text{exact} \\
H = -\sum_{\langle ij \rangle, \sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}.$$

Any analytical diagrammatic expansion can be converted into a QMC algorithm!

Advantages of Continuous Time QMC

No Approximations

General interactions (e.g. exchange & pair hopping), new physics

Speedup of about a factor of 10³:

β

Discretization Errors

No discretization of the imaginary time interval as in Hirsch-Fye is necessary, extrapolation is avoided from the start.

Gull, Werner, Troyer, Millis, Phys. Rev. B 76, 235123 (2007)

Performance Comparison

Gull, Werner, Troyer, Millis, Phys. Rev. B 76, 235123 (2007)

Performance Comparison

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^{\beta} d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_{\tau}[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^{\beta} d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^{\sigma}$$
$$\downarrow \frac{c_1^{\dagger}(\tau_1)}{k!} \bigotimes_{c_1(\tau_1)} \bigotimes_{c_1(\tau_1)} \bigotimes_{\beta} \operatorname{Location of interaction vertices}$$

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Location of interaction vertices

Green's function lines

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Location of interaction vertices

Green's function lines

Monte Carlosamplinga)
$$0$$
process:0 β

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Location of interaction vertices

Green's function lines

Monte Carlo sampling process: 0 \bowtie β

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Location of interaction vertices

Green's function lines

Monte Carlo sampling a) 💢 💢 💢 process:

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Location of interaction vertices

Green's function lines

Monte Carlo sampling process:

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_{\tau}[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^{\sigma}$$

Location of interaction vertices

Green's function lines

Monte Carlo sampling process:

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Location of interaction vertices

Green's function lines

Weak Coupling Algorithm

Weak coupling partition function expansion (SIAM):

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \langle T_\tau[n_{\sigma_1}(\tau_1) - \alpha_{s_1\sigma_1}] \cdots [n_{\sigma_k}(\tau_k) - \alpha_{s_k\sigma_k}] \rangle$$
$$= \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} \iiint_0^\beta d\tau_1 \cdots d\tau_k \sum_{s_1 \cdots s_k} \prod_{\sigma} \det D_k^\sigma$$

Location of interaction vertices

Green's function lines

Gull et al., EPL 84 37009 (2008)

Continuous-Time Auxiliary Field

Decoupling of the interaction with an auxiliary field:

Partition function expansion in the interaction representation:

$$1 - \frac{\beta U}{K} \left(n_{i\uparrow} n_{i\downarrow} - \frac{n_{i\uparrow} + n_{i\downarrow}}{2} \right) = \frac{1}{2} \sum_{s=\pm 1} \exp\left(\gamma s (n_{i\uparrow} - n_{i\downarrow})\right),$$
$$\cosh(\gamma) = 1 + \frac{U\beta}{2K}.$$
$$Z = \sum_{k=0}^{\infty} \sum_{s_1, \dots s_k = \pm 1} \int_0^\beta d\tau_1 \dots \int_{\tau_{k-1}}^\beta d\tau_k \left(\frac{K}{2\beta}\right)^k Z_k(\{s_k, \tau_k\}),$$
$$Z_k(\{s_i, \tau_i\}) \equiv \operatorname{Tr} \prod_{i=k}^1 \exp(-\Delta \tau_i H_0) \exp(s_i \gamma (n_{\uparrow} - n_{\downarrow})).$$

Gull et al., EPL 84 37009 (2008)

Continuous-Time Auxiliary Field

Decoupling of the interaction with an auxiliary field:

Partition function expansion in the interaction representation:

Diagrams of the partition function:

Gull et al., EPL 84 37009 (2008)

Continuous-Time Auxiliary Field

Decoupling of the interaction with an auxiliary field:

Partition function expansion in the interaction representation:

Diagrams of the partition function:

Monte Carlo Sampling:

Werner et al., PRL 97, 076405 (2006)

Hybridization Expansion

Expansion in the interaction representation, where $V = H_{mix}$, $H_0 = H_{loc}$. Density - density interactions.

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} \left[e^{-\beta H_0} T_{\tau} e^{-\int_0^{\beta} d\tau H_{\min}(\tau)} \right]$$
$$= \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-H_{\min}) \cdots e^{-(\tau_2 - \tau_1) H_0} (-H_{\min}) e^{-\tau_1 H_0} \right]$$

Configurations

P. Werner and A.J. Millis, PRB **74**, 155107 (2006) K. Haule, Phys. Rev. B **75**, 155113 (2007)

Hybridization - General Interactions

More complicated interactions (clusters, multiorbital, phonons, ...)?

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} \left[e^{-\beta H_0} T_{\tau} e^{-\int_0^{\beta} d\tau H_{\min}(\tau)} \right]$$

$$= \sum_{k=0}^{\infty} \int d\tau_1 \cdots \int_{\tau_{k-1}}^{\beta} d\tau_k \operatorname{Tr} \left[e^{-\beta H_0} e^{\tau_k H_0} (-H_{\min}) \cdots e^{-(\tau_2 - \tau_1) H_0} (-H_{\min}) e^{-\tau_1 H_0} \right]$$

occupation number basis $[H_{loc}, S_z] = 0 = [H_{loc}, N]$ further symmetries

Choosing the appropriate Algorithm

Large cluster calculations: Continuous-time auxiliary field method (up to 10x10 clusters)

Problems with density density interactions, many orbitals: Hybridization expansion (linear in the number of orbitals)

Problems with general but weak interactions: Weak Coupling expansion Problems with general interactions but few orbitals: Hybridization expansion.

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

Restriction to paramagnetic bath $\epsilon_p = -2t(\cos(p_x) + \cos(p_y)) - 4t' \cos(p_x) \cos(p_y)$

DCA self energy is chosen to be constant within patches of the Brillouin zone.

8-site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (Π,Π)) are not mixed in with regions around the FS.

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

Restriction to paramagnetic bath $\epsilon_p = -2t(\cos(p_x) + \cos(p_y)) - 4t' \cos(p_x) \cos(p_y)$

DCA self energy is chosen to be constant within patches of the Brillouin zone.

8-site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (Π,Π)) are not mixed in with regions around the FS.

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

Restriction to paramagnetic bath $\epsilon_p = -2t(\cos(p_x) + \cos(p_y)) - 4t' \cos(p_x) \cos(p_y)$

DCA self energy is chosen to be constant within patches of the Brillouin zone.

8-site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (Π,Π)) are not mixed in with regions around the FS.

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

Restriction to paramagnetic bath $\epsilon_p = -2t(\cos(p_x) + \cos(p_y)) - 4t' \cos(p_x) \cos(p_y)$

DCA self energy is chosen to be constant within patches of the Brillouin zone.

8-site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (Π,Π)) are not mixed in with regions around the FS.

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

Restriction to paramagnetic bath $\epsilon_p = -2t(\cos(p_x) + \cos(p_y)) - 4t' \cos(p_x) \cos(p_y)$

DCA self energy is chosen to be constant within patches of the Brillouin zone.

8-site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (Π,Π)) are not mixed in with regions around the FS.

Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

Restriction to paramagnetic bath $\epsilon_p = -2t(\cos(p_x) + \cos(p_y)) - 4t' \cos(p_x) \cos(p_y)$

DCA self energy is chosen to be constant within patches of the Brillouin zone.

8-site (cluster): clear node / antinode distinction. Regions away from the Fermi surface (at zero and (Π,Π)) are not mixed in with regions around the FS.

E. Gull, O. Parcollet, P. Werner, A. J. Millis, arXiv:0909.1795 P.Werner, E. Gull, O. Parcollet, A. J. Millis, Phys. Rev. B 80, 045120

Results: Doping Driven Transition

Spectral function A(0) at the Fermi energy as a function of chemical potential exhibits clear crossing points.

Sector C transition occurs before sector B transition. Transitions coalesce on the electron doped side for larger t', but not on the hole doped side.

For large electron and hole doping: behavior consistent with Fermi liquid theory.

For intermediate doping: A(0) is suppressed in comparison with FL, possible Non-FL phase in sector B.

E. Gull, O. Parcollet, P. Werner, A. J. Millis, arXiv:0909.1795 P.Werner, E. Gull, O. Parcollet, A. J. Millis, Phys. Rev. B 80, 045120

Results: Doping Driven Transition

Spectral function A(0) at the Fermi energy as a function of chemical potential exhibits clear crossing points.

Sector C transition occurs before sector B transition. Transitions coalesce on the electron doped side for larger t', but not on the hole doped side.

For large electron and hole doping: behavior consistent with Fermi liquid theory.

For intermediate doping: A(0) is suppressed in comparison with FL, possible Non-FL phase in sector B.

E. Gull, O. Parcollet, P. Werner, A. J. Millis, arXiv:0909.1795 P.Werner, E. Gull, O. Parcollet, A. J. Millis, Phys. Rev. B 80, 045120

Results: Doping Driven Transition

Spectral function A(0) at the Fermi energy as a function of chemical potential exhibits clear crossing points.

Sector C transition occurs before sector B transition. Transitions coalesce on the electron doped side for larger t', but not on the hole doped side.

For large electron and hole doping: behavior consistent with Fermi liquid theory.

For intermediate doping: A(0) is suppressed in comparison with FL, possible Non-FL phase in sector B.

Conclusions

For a review on continuous-time algorithms see my PhD thesis http://e-collection.ethbib.ethz.ch/view/eth:31103

Open source codes: In preparation, will be published this summer as part of the ALPS (alps.comp-phys.org) libraries.

New algorithms allow access to new physics: Larger systems, extrapolation to the infinite system, general interactions, and more orbitals.

