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FIG. 1: Illustration of the diagrams generated by the
continuous-time impurity solvers. i) Weak-coupling method:
third order diagram consisting of three vertices (dia-
monds) Un↑(τ )n↓(τ ) linked by lines representing the function
G0,σ(τi − τj). ii) Hybridization expansion method: here, the
orders of the diagrams for up- and down-spins can be differ-
ent. Each creation operator c†σ(τs) (empty dot) is connected
to an annihilation operator cσ(τe) (full dot) by a line rep-
resenting the hybridization function Fσ(τe − τs). The black
lines correspond to a particle number 1, empty spaces to par-
ticle number 0, so the overlaps between the lines for up- and
down-spins yield the potential energy. In both approaches,
the diagrams corresponding to different connecting G0 or F
lines are summed up into a determinant and these determi-
nants are sampled by a Monte Carlo procedure.

C. Hybridization expansion

A complimentary continuous-time algorithm (also il-
lustrated in Fig. 1) is obtained by expanding in the hy-
bridization functions Fσ, while treating the chemical po-
tential and interaction terms exactly. This approach has
been worked out in Refs. [10, 11]. For the hybridization
expansion, one decomposes the effective action (1) into
the (non-local in time) hybridization part

SF = −

∫ β

0
dτdτ ′

∑

σ

cσ(τ)Fσ(τ − τ ′)c†σ(τ ′) (12)

and the local part

SL = −µ

∫ β

0
dτ(n↑ + n↓) + U

∫ β

0
dτn↑n↓. (13)

Expanding the partition function Z = TrTτe−(SF +SL) in
powers of Fσ then leads to

Z = TrTτe−SL

∏

σ

∑

kσ

1

kσ!

∫ β

0
dτσ

1 ...dτσ
kσ

∫ β

0
dτ̃σ

1 ...dτ̃σ
kσ

×
[

cσ(τ1)Fσ(τ1 − τ̃1)c
†
σ(τ̃1) . . .

. . . cσ(τkσ
)Fσ(τkσ

− τ̃kσ
)c†σ(τ̃kσ

)
]

. (14)

The individual terms in this series can have positive or
negative sign, but as shown in Ref. [10], it is possible to
express the combined weight of the kσ! diagrams corre-
sponding to a given collection {c†σ(τ̃i), cσ(τi)}i=1,...,kσ

of
creation and annihilation operators as the determinant
of a matrix DF,σ, whose entries are the F -functions,

DF,σ(τ1, . . . , τkσ
; τ̃1, . . . , τ̃kσ

)(i, j) = Fσ(τi − τ̃j). (15)

It is found empirically that this determinental formula-
tion does not suffer from a sign problem. The partition
function finally becomes

Z = TrTτsTτ
e−SL

∏

σ

∑

kσ

∫ β

0
dτ̃σ

1

∫ β

τ̃σ
1

dτσ
1 . . .

. . .

∫ β

τ̃kσ−1

dτ̃σ
kσ

∫ ◦τ̃σ
1

τ̃σ
kσ

dτσ
kσ

detDF,σsσ

×cσ(τσ
kσ

)c†σ(τ̃σ
kσ

) . . . cσ(τσ
1 )c†σ(τ̃σ

1 ), (16)

where ◦τ denotes an upper integral bound which “winds
around” the circle of length β. If the last segment winds
around, the sign sσ is −1 and otherwise +1, whereas
sTτ

compensates for any sign change produced by the
time ordering operator. The trace finds an easy and in-
tuitive interpretation in terms of configurations of seg-
ments marking the times where a particle of spin σ is
present [10]. In such a representation, the µ-part of SL

is determined by the total length of the segments while
the interaction is given by the total overlap between seg-
ments of opposite spin (see Fig. 1).

III. MEASURING THE GREEN FUNCTION

The diagrams obtained from the expansion of the par-
tition function contain vertices or operators which are
connected to each other by “bare” Green functions G0

or hybridization functions F . In order to measure the
Green function, one needs a configuration with two “un-
connected” operators c†(τ) and c(τ ′). This may either be
achieved by inserting such a pair of operators into a given
configuration, or removing one of the G0- or F -functions
from an existing diagram. The former approach has been
implemented in the weak-coupling algorithm, and the lat-
ter in the hybridization expansion algorithm.
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Overview

Quick introduction to the Dynamical Mean Field Theory 
(DMFT)

Continuous-Time Quantum Monte Carlo Methods and 
comparison to other methods

The Weak Coupling method

They Hybridization Expansion

Continuous-Time Auxiliary Field impurity solver algorithm 
and large clusters

Some (very few) results (see P. Werner’s talk for more 
applications)
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DMFT and Impurity Problem

Impurity Problem:

Self Consistency:

Seff = −
∑

σ

∫∫ β

0
dτdτ ′c†σ(τ)G−1

0σ (τ − τ ′)cσ(τ) + U

∫ β

0
dτn↑(τ)n↓(τ)

G(iωn) =
∑

!k∈BZ

1
iωn + µ− ε(#k)− Σ(iωn)

.

t

t
′

1

H = −
∑

〈ij〉,σ

tij(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓.
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Impurity Problem:

Self Consistency:

Seff = −
∑

σ

∫∫ β

0
dτdτ ′c†σ(τ)G−1

0σ (τ − τ ′)cσ(τ) + U

∫ β

0
dτn↑(τ)n↓(τ)

G(iωn) =
∑

!k∈BZ

1
iωn + µ− ε(#k)− Σ(iωn)

.

Impurity coupled to a bath 
& self consistency 
condition

Limit of infinite 
coordination number:

↑↓

↑ ↑
↑

↓
↓ ↓

↑↓
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DMFT Self Consistency

Fourier Transform

Fourier Transform

H
ilb

er
t T

ra
ns

fo
rm

Solver

DMFT
Selfconsistency

Loop

Noninteracting 
Density of States: 
Theory, LDA, ...

Maximum Entropy 
Method

Spectral Functions

G
(iω)

G
(τ
)

G
0 (
τ)
G 0

(iω
)

Impurity 
Solvers
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Cluster DMFT

Px

PyS

(−π,−π) (π,−π)

(π, π)

D

(π, π)

Infinite coordination number: 
momentum independent self 
energy.

Dynamic Cluster Approximation 
(DCA): reintroduce momentum 
dependence to DMFT.

DCA self energy is chosen to be constant within patches of the Brillouin zone

Seff = −
∫∫ β

0
dτ

∑

ijσ

c†iσ(τ)G0
ij,σ(τ − τ ′)−1cjσ(τ ′) +

∫ β

0
dτ

Nc∑

j=1

Unj↑(τ)nj↓(τ)

ΣK = G0
K(iωn)−1 −G−1

imp

G(K, iωn) =
∫

BZ patch

dk

iωn + µ− ε(k)− ΣK

G0
K(iωn)−1 = ΣK + G

−1
K (iωn)

Cluster impurity 
problem

Self consistency 
condition

Various variants developed by Lichtenstein et al., Jarrell et al., Kotliar et al.
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Hirsch Fye QMC Impurity Solver

Z !
L∏

l=1

e−∆τH0e−∆τV
Trotter breakup: discretization of 
the integral, introduces Trotter 
errors

H = −
∑

〈ij〉,σ

tij(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓. Z = Tre−βH = Tr
L∏

l=1

e−∆τ(H0+V )

Auxiliary field decomposition

exp
[
−∆τ

(
Un↑n↓ −

1
2
(n↑ + n↓)

)]
=

1
2

∑

σ=±1

exp [λσ(n↑ − n↓)]

cosh(λ) = exp(∆τU/2)

↑ ↓ ↓ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
↔
∆τ

0 β

Sampling of partition 
function integral on 
discretized time slices

Hirsch, J. E., and R. M. Fye, 1986, Phys. Rev. Lett. 56, 2521
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Continuous-Time Algorithms

Partition function in the 
interaction representation:

Expansion into perturbation series (powers of the interaction V ):

Graphical representation of 
terms of the integral at 
different orders:

Z =
∞∑

k=0

∫
dτ1 · · ·

∫ β

τk−1

dτkTr
[
e−βH0eτkH0(−V ) · · · e−(τ2−τ1)H0(−V )e−τ1H0

]
.

Z = Tr
[
e−βH0Tτe−

R β
0 dτV (τ)

]
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c)

0 β
τ1 τ2

W2(τ1, τ2) = Tr
[
e−(β−τ1)H0V e−(τ1−τ2)H0V e−τ2H0

]

Z =
∞∑
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∫
dτ1 · · ·

∫ β

τk−1

dτkTr
[
e−βH0eτkH0(−V ) · · · e−(τ2−τ1)H0(−V )e−τ1H0

]
.
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[
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R β
0 dτV (τ)

]
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Weak Coupling and 
Hybridization Expansion

Two complementary approaches: Expansion in the interaction (e.g. the ‘Hubbard U’)

Expansion in the hybridization

Z =
∞∑

k=0

∫
dτ1 · · ·

∫ β

τk−1

dτkTr
[
e−βH0eτkH0(−V ) · · · e−(τ2−τ1)H0(−V )e−τ1H0

]
.
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FIG. 1: Illustration of the diagrams generated by the
continuous-time impurity solvers. i) Weak-coupling method:
third order diagram consisting of three vertices (dia-
monds) Un↑(τ )n↓(τ ) linked by lines representing the function
G0,σ(τi − τj). ii) Hybridization expansion method: here, the
orders of the diagrams for up- and down-spins can be differ-
ent. Each creation operator c†σ(τs) (empty dot) is connected
to an annihilation operator cσ(τe) (full dot) by a line rep-
resenting the hybridization function Fσ(τe − τs). The black
lines correspond to a particle number 1, empty spaces to par-
ticle number 0, so the overlaps between the lines for up- and
down-spins yield the potential energy. In both approaches,
the diagrams corresponding to different connecting G0 or F
lines are summed up into a determinant and these determi-
nants are sampled by a Monte Carlo procedure.

C. Hybridization expansion

A complimentary continuous-time algorithm (also il-
lustrated in Fig. 1) is obtained by expanding in the hy-
bridization functions Fσ, while treating the chemical po-
tential and interaction terms exactly. This approach has
been worked out in Refs. [10, 11]. For the hybridization
expansion, one decomposes the effective action (1) into
the (non-local in time) hybridization part

SF = −

∫ β

0
dτdτ ′

∑

σ

cσ(τ)Fσ(τ − τ ′)c†σ(τ ′) (12)

and the local part

SL = −µ

∫ β

0
dτ(n↑ + n↓) + U

∫ β

0
dτn↑n↓. (13)

Expanding the partition function Z = TrTτe−(SF +SL) in
powers of Fσ then leads to

Z = TrTτe−SL

∏

σ
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kσ

1

kσ!

∫ β

0
dτσ

1 ...dτσ
kσ

∫ β

0
dτ̃σ

1 ...dτ̃σ
kσ

×
[

cσ(τ1)Fσ(τ1 − τ̃1)c
†
σ(τ̃1) . . .

. . . cσ(τkσ
)Fσ(τkσ

− τ̃kσ
)c†σ(τ̃kσ

)
]

. (14)

The individual terms in this series can have positive or
negative sign, but as shown in Ref. [10], it is possible to
express the combined weight of the kσ! diagrams corre-
sponding to a given collection {c†σ(τ̃i), cσ(τi)}i=1,...,kσ

of
creation and annihilation operators as the determinant
of a matrix DF,σ, whose entries are the F -functions,

DF,σ(τ1, . . . , τkσ
; τ̃1, . . . , τ̃kσ

)(i, j) = Fσ(τi − τ̃j). (15)

It is found empirically that this determinental formula-
tion does not suffer from a sign problem. The partition
function finally becomes

Z = TrTτsTτ
e−SL

∏

σ

∑

kσ

∫ β

0
dτ̃σ

1

∫ β

τ̃σ
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dτσ
1 . . .

. . .
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τ̃kσ−1
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∫ ◦τ̃σ
1

τ̃σ
kσ

dτσ
kσ

detDF,σsσ

×cσ(τσ
kσ

)c†σ(τ̃σ
kσ

) . . . cσ(τσ
1 )c†σ(τ̃σ

1 ), (16)

where ◦τ denotes an upper integral bound which “winds
around” the circle of length β. If the last segment winds
around, the sign sσ is −1 and otherwise +1, whereas
sTτ

compensates for any sign change produced by the
time ordering operator. The trace finds an easy and in-
tuitive interpretation in terms of configurations of seg-
ments marking the times where a particle of spin σ is
present [10]. In such a representation, the µ-part of SL

is determined by the total length of the segments while
the interaction is given by the total overlap between seg-
ments of opposite spin (see Fig. 1).

III. MEASURING THE GREEN FUNCTION

The diagrams obtained from the expansion of the par-
tition function contain vertices or operators which are
connected to each other by “bare” Green functions G0

or hybridization functions F . In order to measure the
Green function, one needs a configuration with two “un-
connected” operators c†(τ) and c(τ ′). This may either be
achieved by inserting such a pair of operators into a given
configuration, or removing one of the G0- or F -functions
from an existing diagram. The former approach has been
implemented in the weak-coupling algorithm, and the lat-
ter in the hybridization expansion algorithm.
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FIG. 1: Illustration of the diagrams generated by the
continuous-time impurity solvers. i) Weak-coupling method:
third order diagram consisting of three vertices (dia-
monds) Un↑(τ )n↓(τ ) linked by lines representing the function
G0,σ(τi − τj). ii) Hybridization expansion method: here, the
orders of the diagrams for up- and down-spins can be differ-
ent. Each creation operator c†σ(τs) (empty dot) is connected
to an annihilation operator cσ(τe) (full dot) by a line rep-
resenting the hybridization function Fσ(τe − τs). The black
lines correspond to a particle number 1, empty spaces to par-
ticle number 0, so the overlaps between the lines for up- and
down-spins yield the potential energy. In both approaches,
the diagrams corresponding to different connecting G0 or F
lines are summed up into a determinant and these determi-
nants are sampled by a Monte Carlo procedure.

C. Hybridization expansion

A complimentary continuous-time algorithm (also il-
lustrated in Fig. 1) is obtained by expanding in the hy-
bridization functions Fσ, while treating the chemical po-
tential and interaction terms exactly. This approach has
been worked out in Refs. [10, 11]. For the hybridization
expansion, one decomposes the effective action (1) into
the (non-local in time) hybridization part

SF = −
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0
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∑
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and the local part
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The individual terms in this series can have positive or
negative sign, but as shown in Ref. [10], it is possible to
express the combined weight of the kσ! diagrams corre-
sponding to a given collection {c†σ(τ̃i), cσ(τi)}i=1,...,kσ

of
creation and annihilation operators as the determinant
of a matrix DF,σ, whose entries are the F -functions,

DF,σ(τ1, . . . , τkσ
; τ̃1, . . . , τ̃kσ

)(i, j) = Fσ(τi − τ̃j). (15)

It is found empirically that this determinental formula-
tion does not suffer from a sign problem. The partition
function finally becomes
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where ◦τ denotes an upper integral bound which “winds
around” the circle of length β. If the last segment winds
around, the sign sσ is −1 and otherwise +1, whereas
sTτ

compensates for any sign change produced by the
time ordering operator. The trace finds an easy and in-
tuitive interpretation in terms of configurations of seg-
ments marking the times where a particle of spin σ is
present [10]. In such a representation, the µ-part of SL

is determined by the total length of the segments while
the interaction is given by the total overlap between seg-
ments of opposite spin (see Fig. 1).

III. MEASURING THE GREEN FUNCTION

The diagrams obtained from the expansion of the par-
tition function contain vertices or operators which are
connected to each other by “bare” Green functions G0

or hybridization functions F . In order to measure the
Green function, one needs a configuration with two “un-
connected” operators c†(τ) and c(τ ′). This may either be
achieved by inserting such a pair of operators into a given
configuration, or removing one of the G0- or F -functions
from an existing diagram. The former approach has been
implemented in the weak-coupling algorithm, and the lat-
ter in the hybridization expansion algorithm.

Any analytical diagrammatic expansion can be converted into a QMC algorithm!

H = −
∑

〈ij〉,σ

tij(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓.

H = −
∑

〈ij〉,σ

tij(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓.

Hopping exact
Local Hamiltonian 
exact

A. N. Rubtsov and  A. I. Lichtenstein, JETP Letters 80, 61 (2004); 
Werner et al., PRL 97, 076405 (2006)
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Advantages of Continuous Time QMC
No Approximations

General interactions 
(e.g. exchange & pair 
hopping), new physics

Speedup of about a factor of 103:

↑ ↓ ↓ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
0 β

Intuitive picture: Smooth functions (diagrams) 
need to be approximated by a discretized 
version; resolution needs to be about 10 
times larger than the features. Numerical 
effort is cubic (O(N3)) for all algorithms
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FIG. 1: Illustration of the diagrams generated by the
continuous-time impurity solvers. i) Weak-coupling method:
third order diagram consisting of three vertices (dia-
monds) Un↑(τ )n↓(τ ) linked by lines representing the function
G0,σ(τi − τj). ii) Hybridization expansion method: here, the
orders of the diagrams for up- and down-spins can be differ-
ent. Each creation operator c†σ(τs) (empty dot) is connected
to an annihilation operator cσ(τe) (full dot) by a line rep-
resenting the hybridization function Fσ(τe − τs). The black
lines correspond to a particle number 1, empty spaces to par-
ticle number 0, so the overlaps between the lines for up- and
down-spins yield the potential energy. In both approaches,
the diagrams corresponding to different connecting G0 or F
lines are summed up into a determinant and these determi-
nants are sampled by a Monte Carlo procedure.

C. Hybridization expansion

A complimentary continuous-time algorithm (also il-
lustrated in Fig. 1) is obtained by expanding in the hy-
bridization functions Fσ, while treating the chemical po-
tential and interaction terms exactly. This approach has
been worked out in Refs. [10, 11]. For the hybridization
expansion, one decomposes the effective action (1) into
the (non-local in time) hybridization part

SF = −

∫ β

0
dτdτ ′

∑

σ

cσ(τ)Fσ(τ − τ ′)c†σ(τ ′) (12)

and the local part

SL = −µ

∫ β

0
dτ(n↑ + n↓) + U

∫ β

0
dτn↑n↓. (13)

Expanding the partition function Z = TrTτe−(SF +SL) in
powers of Fσ then leads to
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]

. (14)

The individual terms in this series can have positive or
negative sign, but as shown in Ref. [10], it is possible to
express the combined weight of the kσ! diagrams corre-
sponding to a given collection {c†σ(τ̃i), cσ(τi)}i=1,...,kσ

of
creation and annihilation operators as the determinant
of a matrix DF,σ, whose entries are the F -functions,

DF,σ(τ1, . . . , τkσ
; τ̃1, . . . , τ̃kσ

)(i, j) = Fσ(τi − τ̃j). (15)

It is found empirically that this determinental formula-
tion does not suffer from a sign problem. The partition
function finally becomes
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×cσ(τσ
kσ

)c†σ(τ̃σ
kσ
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1 ), (16)

where ◦τ denotes an upper integral bound which “winds
around” the circle of length β. If the last segment winds
around, the sign sσ is −1 and otherwise +1, whereas
sTτ

compensates for any sign change produced by the
time ordering operator. The trace finds an easy and in-
tuitive interpretation in terms of configurations of seg-
ments marking the times where a particle of spin σ is
present [10]. In such a representation, the µ-part of SL

is determined by the total length of the segments while
the interaction is given by the total overlap between seg-
ments of opposite spin (see Fig. 1).

III. MEASURING THE GREEN FUNCTION

The diagrams obtained from the expansion of the par-
tition function contain vertices or operators which are
connected to each other by “bare” Green functions G0

or hybridization functions F . In order to measure the
Green function, one needs a configuration with two “un-
connected” operators c†(τ) and c(τ ′). This may either be
achieved by inserting such a pair of operators into a given
configuration, or removing one of the G0- or F -functions
from an existing diagram. The former approach has been
implemented in the weak-coupling algorithm, and the lat-
ter in the hybridization expansion algorithm.
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HF & ED results: Georges et al, RMP 68, 13 (1996)

Discretization Errors

No discretization of the imaginary time interval as in Hirsch-Fye is necessary, 
extrapolation is avoided from the start.
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Weak Coupling Algorithm
Weak coupling partition function expansion (SIAM):

A. N. Rubtsov and  A. I. Lichtenstein, JETP Letters 80, 61 (2004)

Z

Z0
=
∞∑

k=0

(−U)k

k!

∫∫∫ β

0
dτ1 · · · dτk

∑

s1···sk

∏

σ

〈Tτ [nσ1(τ1) − αs1σ1 ] · · · [nσk(τk) − αskσk ]〉

=
∞∑

k=0

(−U)k

k!

∫∫∫ β

0
dτ1 · · · dτk

∑

s1···sk

∏

σ

det Dσ
k

Friday, January 8, 2010



Weak Coupling Algorithm
Weak coupling partition function expansion (SIAM):

0 β

c↑(τ1)

c†↓(τ1) c↓(τ1)

c†↑(τ1)

Location of interaction vertices

A. N. Rubtsov and  A. I. Lichtenstein, JETP Letters 80, 61 (2004)
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Weak Coupling Algorithm
Weak coupling partition function expansion (SIAM):

0 β
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A. N. Rubtsov and  A. I. Lichtenstein, JETP Letters 80, 61 (2004)
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Weak Coupling Algorithm
Weak coupling partition function expansion (SIAM):

0 β

c↑(τ1)
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Location of interaction vertices

0 β

G0
↑

G0
↑

G0
↑

G0
↓

G0
↓

G0
↓

Green’s function lines

Monte Carlo 
sampling 
process:
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Weak Coupling Algorithm
Weak coupling partition function expansion (SIAM):

0 β

c↑(τ1)
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Location of interaction vertices
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↑
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G0
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G0
↓

Green’s function lines

Monte Carlo 
sampling 
process:

Vertex insertion.

A. N. Rubtsov and  A. I. Lichtenstein, JETP Letters 80, 61 (2004)
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Weak Coupling Algorithm
Weak coupling partition function expansion (SIAM):
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Weak coupling partition function expansion (SIAM):
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Continuous-Time Auxiliary Field

Decoupling of the 
interaction with an 
auxiliary field:

Partition function 
expansion in the 
interaction 
representation:

Gull et al., EPL 84 37009 (2008)

1− βU

K

(
ni↑ni↓ −

ni↑ + ni↓

2

)
=

1
2

∑

s=±1

exp (γs(ni↑ − ni↓)) ,

cosh(γ) = 1 +
Uβ

2K
.

Z =
∞∑

k=0

∑

s1,···sk=±1

∫ β

0
dτ1 · · ·

∫ β

τk−1

dτk

(
K

2β

)k

Zk({sk, τk}),

Zk({si, τi}) ≡ Tr
1∏

i=k

exp(−∆τiH0) exp(siγ(n↑ − n↓)).
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Hybridization Expansion

0 β
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c†
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c†
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c†

0 β

lmax

0 β

remove

insert
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0 β

H full
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H1,wrap
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c†
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c
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c†

τe
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c

τs
3

c†

τe
3

c

0 β 0 β

0 β

Hloc
τs
1

c†

τe
1

c

τs
2

c†

τe
2

c

τs
3

c†

τe
3

c

τ = τs
3 − τe

1

Expansion in the interaction representation, where V = Hmix, H0 = Hloc. Density - density 
interactions.

Z = Tre−βH = Tr
[
e−βH0Tτe−

R β
0 dτHmix(τ)

]

=
∞∑

k=0

∫
dτ1 · · ·

∫ β

τk−1

dτkTr
[
e−βH0eτkH0(−Hmix) · · · e−(τ2−τ1)H0(−Hmix)e−τ1H0

]

Configurations

Sampling 
Process

Interactions 
(density density)

Werner et al., PRL 97, 076405 (2006)
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Hybridization - General Interactions

0 β

Hloc

0 β

Hloc

occupation number basis

Hloc

N1

N2

N3

N4

[Hloc, Sz] = 0 = [Hloc, N ]

Hloc

further symmetries

Hloc e−Hlocτ1Tr[ c†↑ e−Hlocτ2 c↓ e−Hlocτ3 · · · ]

c†↑ c↓

n↑=1
n↓=1 {
n↑=1
n↓=0

{

n↑=0
n↓=1

{

n↑=0
n↓=0 {

More complicated interactions (clusters, multiorbital, phonons, ...)?

Configuration of Hloc

Configuration of  V

Z = Tre−βH = Tr
[
e−βH0Tτe−

R β
0 dτHmix(τ)

]

=
∞∑

k=0

∫
dτ1 · · ·

∫ β

τk−1

dτkTr
[
e−βH0eτkH0(−Hmix) · · · e−(τ2−τ1)H0(−Hmix)e−τ1H0

]

Matrix exponentials

P.  Werner and A.J. Millis, PRB 74, 155107 (2006)
K. Haule, Phys. Rev. B 75, 155113 (2007)
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Choosing the appropriate Algorithm

Large cluster calculations: 
Continuous-time auxiliary 
field method (up to 10x10 
clusters)

A

DC
BE
FPx

PyS

(−π,−π) (π,−π)

(π, π)

D

(π, π)

D

A
B

C

Problems with density density interactions, many 
orbitals: Hybridization expansion (linear in the number 
of orbitals)

Problems with general but weak interactions: Weak Coupling expansion

Problems with general interactions but few orbitals: Hybridization 
expansion.

↑↓

↑↓
↑↓

↑↓
↑↓
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↑

↑

↑
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!0

ii)

0
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FIG. 1: Illustration of the diagrams generated by the
continuous-time impurity solvers. i) Weak-coupling method:
third order diagram consisting of three vertices (dia-
monds) Un↑(τ )n↓(τ ) linked by lines representing the function
G0,σ(τi − τj). ii) Hybridization expansion method: here, the
orders of the diagrams for up- and down-spins can be differ-
ent. Each creation operator c†σ(τs) (empty dot) is connected
to an annihilation operator cσ(τe) (full dot) by a line rep-
resenting the hybridization function Fσ(τe − τs). The black
lines correspond to a particle number 1, empty spaces to par-
ticle number 0, so the overlaps between the lines for up- and
down-spins yield the potential energy. In both approaches,
the diagrams corresponding to different connecting G0 or F
lines are summed up into a determinant and these determi-
nants are sampled by a Monte Carlo procedure.

C. Hybridization expansion

A complimentary continuous-time algorithm (also il-
lustrated in Fig. 1) is obtained by expanding in the hy-
bridization functions Fσ, while treating the chemical po-
tential and interaction terms exactly. This approach has
been worked out in Refs. [10, 11]. For the hybridization
expansion, one decomposes the effective action (1) into
the (non-local in time) hybridization part

SF = −

∫ β

0
dτdτ ′

∑

σ

cσ(τ)Fσ(τ − τ ′)c†σ(τ ′) (12)

and the local part

SL = −µ

∫ β

0
dτ(n↑ + n↓) + U

∫ β

0
dτn↑n↓. (13)

Expanding the partition function Z = TrTτe−(SF +SL) in
powers of Fσ then leads to

Z = TrTτe−SL

∏

σ

∑

kσ

1

kσ!

∫ β

0
dτσ

1 ...dτσ
kσ

∫ β

0
dτ̃σ

1 ...dτ̃σ
kσ

×
[

cσ(τ1)Fσ(τ1 − τ̃1)c
†
σ(τ̃1) . . .

. . . cσ(τkσ
)Fσ(τkσ

− τ̃kσ
)c†σ(τ̃kσ

)
]

. (14)

The individual terms in this series can have positive or
negative sign, but as shown in Ref. [10], it is possible to
express the combined weight of the kσ! diagrams corre-
sponding to a given collection {c†σ(τ̃i), cσ(τi)}i=1,...,kσ

of
creation and annihilation operators as the determinant
of a matrix DF,σ, whose entries are the F -functions,

DF,σ(τ1, . . . , τkσ
; τ̃1, . . . , τ̃kσ

)(i, j) = Fσ(τi − τ̃j). (15)

It is found empirically that this determinental formula-
tion does not suffer from a sign problem. The partition
function finally becomes

Z = TrTτsTτ
e−SL

∏

σ

∑

kσ

∫ β

0
dτ̃σ

1

∫ β

τ̃σ
1

dτσ
1 . . .

. . .

∫ β

τ̃kσ−1

dτ̃σ
kσ

∫ ◦τ̃σ
1

τ̃σ
kσ

dτσ
kσ

detDF,σsσ

×cσ(τσ
kσ

)c†σ(τ̃σ
kσ

) . . . cσ(τσ
1 )c†σ(τ̃σ

1 ), (16)

where ◦τ denotes an upper integral bound which “winds
around” the circle of length β. If the last segment winds
around, the sign sσ is −1 and otherwise +1, whereas
sTτ

compensates for any sign change produced by the
time ordering operator. The trace finds an easy and in-
tuitive interpretation in terms of configurations of seg-
ments marking the times where a particle of spin σ is
present [10]. In such a representation, the µ-part of SL

is determined by the total length of the segments while
the interaction is given by the total overlap between seg-
ments of opposite spin (see Fig. 1).

III. MEASURING THE GREEN FUNCTION

The diagrams obtained from the expansion of the par-
tition function contain vertices or operators which are
connected to each other by “bare” Green functions G0

or hybridization functions F . In order to measure the
Green function, one needs a configuration with two “un-
connected” operators c†(τ) and c(τ ′). This may either be
achieved by inserting such a pair of operators into a given
configuration, or removing one of the G0- or F -functions
from an existing diagram. The former approach has been
implemented in the weak-coupling algorithm, and the lat-
ter in the hybridization expansion algorithm.
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Hubbard model on 
2d square lattice:

H = −
∑

〈ij〉,σ

tij(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓.

Cluster Dynamical Mean Field Theory
Maier et al., Rev. Mod. Phys. 77, 1027 (2005)

DCA self energy is chosen to be constant within patches of the Brillouin zone.

8-site cluster Tiling of the BZ

Restriction to paramagnetic bath

8-site (cluster): clear node / antinode distinction. Regions away from the Fermi 
surface (at zero and (π,π) ) are not mixed in with regions around the FS. 
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A

DC
B

E. Gull, O. Parcollet, P. Werner, A. J. Millis, arXiv:0909.1795
P. Werner, E. Gull, O. Parcollet, A. J. Millis, Phys. Rev. B 80, 045120 

Results: Doping Driven Transition

-3 -2 -1 0 1 2
µ/t

0

0.5

1

1.5

2

βG
C(β

/2
)

βt = 10
βt = 15
βt = 20
βt = 25
FL G0

A

DC
B

-3 -2 -1 0 1 2
µ/t

0

0.2

0.4

0.6

βG
B(β

/2
)

βt = 10
βt = 15
βt = 20
βt = 25
FL G0

A

DC
B

U = 7t, t’ = -0.15t

U = 7t, t’ = -0.15t

Spectral function A(0) at the Fermi 
energy as a function of chemical potential 
exhibits clear crossing points.

Sector C transition occurs before sector 
B transition. Transitions coalesce on the 
electron doped side for larger t’, but not 
on the hole doped side.

For large electron and hole doping: 
behavior consistent with Fermi liquid 
theory.

For intermediate doping: A(0) is 
suppressed in comparison with FL, 
possible Non-FL phase in sector B.
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Conclusions

For a review on continuous-time algorithms see my PhD thesis
http://e-collection.ethbib.ethz.ch/view/eth:31103 

Open source codes: In preparation, will be published this summer as part of the 
ALPS (alps.comp-phys.org) libraries.

New algorithms allow access to new physics: Larger systems, extrapolation to the 
infinite system, general interactions, and more orbitals. 3

i)

!0

ii)

0
!

FIG. 1: Illustration of the diagrams generated by the
continuous-time impurity solvers. i) Weak-coupling method:
third order diagram consisting of three vertices (dia-
monds) Un↑(τ )n↓(τ ) linked by lines representing the function
G0,σ(τi − τj). ii) Hybridization expansion method: here, the
orders of the diagrams for up- and down-spins can be differ-
ent. Each creation operator c†σ(τs) (empty dot) is connected
to an annihilation operator cσ(τe) (full dot) by a line rep-
resenting the hybridization function Fσ(τe − τs). The black
lines correspond to a particle number 1, empty spaces to par-
ticle number 0, so the overlaps between the lines for up- and
down-spins yield the potential energy. In both approaches,
the diagrams corresponding to different connecting G0 or F
lines are summed up into a determinant and these determi-
nants are sampled by a Monte Carlo procedure.

C. Hybridization expansion

A complimentary continuous-time algorithm (also il-
lustrated in Fig. 1) is obtained by expanding in the hy-
bridization functions Fσ, while treating the chemical po-
tential and interaction terms exactly. This approach has
been worked out in Refs. [10, 11]. For the hybridization
expansion, one decomposes the effective action (1) into
the (non-local in time) hybridization part
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The individual terms in this series can have positive or
negative sign, but as shown in Ref. [10], it is possible to
express the combined weight of the kσ! diagrams corre-
sponding to a given collection {c†σ(τ̃i), cσ(τi)}i=1,...,kσ

of
creation and annihilation operators as the determinant
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where ◦τ denotes an upper integral bound which “winds
around” the circle of length β. If the last segment winds
around, the sign sσ is −1 and otherwise +1, whereas
sTτ

compensates for any sign change produced by the
time ordering operator. The trace finds an easy and in-
tuitive interpretation in terms of configurations of seg-
ments marking the times where a particle of spin σ is
present [10]. In such a representation, the µ-part of SL

is determined by the total length of the segments while
the interaction is given by the total overlap between seg-
ments of opposite spin (see Fig. 1).

III. MEASURING THE GREEN FUNCTION

The diagrams obtained from the expansion of the par-
tition function contain vertices or operators which are
connected to each other by “bare” Green functions G0

or hybridization functions F . In order to measure the
Green function, one needs a configuration with two “un-
connected” operators c†(τ) and c(τ ′). This may either be
achieved by inserting such a pair of operators into a given
configuration, or removing one of the G0- or F -functions
from an existing diagram. The former approach has been
implemented in the weak-coupling algorithm, and the lat-
ter in the hybridization expansion algorithm.
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