Efficient treatment of phonons and frequency dependent interactions in DMFT

Philipp Werner

ETH Zürich

Motivation

Aryasetiawan, Imada, Georges, Kotliar, Biermann \& Lichtenstein, PRB (2005)

- Gd, Ce, ...: ab-initio calculation of interaction parameters yields strong frequency dependence

Outline

- Introduction / reminder
- Hybridization expansion for the Hubbard model
- Electron-phonon coupling
- Hybridization expansion for the Holstein-Hubbard model
- Frequency-dependent interactions
- Frequency-dependent U for the Holstein-Hubbard model
- General formalism
- Application
- Metal-insulator transition
- Collaborators
- Andy Millis (Columbia)

Dynamical mean field theory

- Self-consistency loop
lattice model

$G_{l a t t}$
π

$$
\int d k \frac{1}{i \omega_{n}+\mu-\epsilon_{k}-\Sigma_{l a t t}}
$$

$$
\Sigma_{l a t t}
$$

$$
\begin{aligned}
& \Sigma_{l a t t} \equiv \Sigma_{i m p}
\end{aligned}
$$

impurity model

$H_{i m p}$

impurity solver

$G_{i m p}, \Sigma_{i m p}$

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
& H=H_{1}+H_{2}, \quad \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
& \langle\mathcal{O}\rangle=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathrm{O} \longrightarrow \mathrm{O}-\mathrm{O}-\mathrm{O} \longrightarrow-\longrightarrow \\
& 0-H_{2}-H_{2}-H_{2} \quad-H_{2} \quad \beta
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Weak-coupling expansion: $H_{2}=$ interaction term
- "'Strong-coupling" expansion: $H_{2}=$ hybridization term

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
& H=H_{1}+H_{2}, \quad \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
& \langle\mathcal{O}\rangle=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathrm{O} \longrightarrow \mathrm{O}-\mathrm{O}-\mathrm{O} \longrightarrow-\longrightarrow \\
& 0-H_{2}-H_{2}-H_{2} \quad-H_{2} \quad \beta
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Sample Monte Carlo configurations through random insertions and removals of (pairs) of operators
- Measure contribution to \mathcal{O}

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
H & =H_{1}+H_{2}, \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
\langle\mathcal{O}\rangle & =\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathcal{O} \xrightarrow[\beta]{ }
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Sample Monte Carlo configurations through random insertions and removals of (pairs) of operators
- Measure contribution to \mathcal{O}

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
H & =H_{1}+H_{2}, \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
\langle\mathcal{O}\rangle & =\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathcal{O} \xrightarrow[\beta]{ } \xrightarrow{-} \quad
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Sample Monte Carlo configurations through random insertions and removals of (pairs) of operators
- Measure contribution to \mathcal{O}

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
H & =H_{1}+H_{2}, \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
\langle\mathcal{O}\rangle & =\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathcal{O} \xrightarrow[\beta]{ } \xrightarrow{\beta}
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Sample Monte Carlo configurations through random insertions and removals of (pairs) of operators
- Measure contribution to \mathcal{O}

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
H & =H_{1}+H_{2}, \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
\langle\mathcal{O}\rangle & =\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathcal{O} \xrightarrow[\beta]{ } \xrightarrow{\beta}
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Sample Monte Carlo configurations through random insertions and removals of (pairs) of operators
- Measure contribution to \mathcal{O}

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
H & =H_{1}+H_{2}, \quad \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
\langle\mathcal{O}\rangle & =\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathcal{O} \xrightarrow{\beta}
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Sample Monte Carlo configurations through random insertions and removals of (pairs) of operators
- Measure contribution to \mathcal{O}

Continuous-time OMC

- Interaction picture

$$
\begin{aligned}
H & =H_{1}+H_{2}, \quad \mathcal{O}(\tau)=e^{\tau H_{1}} \mathcal{O} e^{-\tau H_{1}} \\
\langle\mathcal{O}\rangle & =\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H} \mathcal{O}\right]=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H_{1}}\left(T_{\tau} e^{-\int_{0}^{\beta} d \tau H_{2}(\tau)}\right) \mathcal{O}\right] \\
& \mathcal{O} \xrightarrow{\beta}
\end{aligned}
$$

Expand time evolution operator in powers of H_{2}

- Sample Monte Carlo configurations through random insertions and removals of (pairs) of operators
- Measure contribution to \mathcal{O}

Hybridization expansion

- Hybridization expansion for the Hubbard model

$$
\begin{aligned}
H & =\underbrace{H_{\mathrm{loc}}+H_{\mathrm{bath}}}_{H_{1}}+\underbrace{H_{\mathrm{hyb}}}_{H_{2}} \\
H_{\mathrm{loc}} & =-\mu\left(n_{\uparrow}+n_{\downarrow}\right)+U n_{\uparrow} n_{\downarrow} \\
H_{\mathrm{bath}} & =\sum_{p \sigma} \epsilon_{p} a_{p \sigma}^{\dagger} a_{p \sigma} \\
H_{\mathrm{hyb}} & =\sum_{p \sigma} V_{p \sigma} c_{\sigma}^{\dagger} a_{p \sigma}+h . c .
\end{aligned}
$$

- Expand partition function in powers of $H_{2}=H_{\text {hyb }}$
- Compute $\operatorname{Tr}_{c} \operatorname{Tr} r_{a}[\ldots]$

Hybridization expansion

- Monte Carlo configurations consist of $2 n$ impurity creation and annihilation operators $\left\{O_{i}\left(\tau_{i}\right)\right\}_{0<\tau_{1}<\ldots<\tau_{2 n}}$

$$
\begin{aligned}
w_{\text {Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)= & \operatorname{Tr}_{c}\left[e^{-\beta H_{\mathrm{loc}}} O_{2 n}\left(\tau_{2 n}\right) \ldots O_{1}\left(\tau_{1}\right)\right] \\
& \times d \tau_{1} \ldots d \tau_{2 n} \operatorname{det} M_{\uparrow}(V, \epsilon) M_{\downarrow}(V, \epsilon)
\end{aligned}
$$

- $\operatorname{Tr}_{a}[\ldots]$ yields two determinants of hybridization matrices
- $\operatorname{Tr}_{c}[\ldots]$ must be computed explicitly

Hybridization expansion

- Monte Carlo configurations consist of $2 n$ impurity creation and annihilation operators $\left\{O_{i}\left(\tau_{i}\right)\right\}_{0<\tau_{1}<\ldots<\tau_{2 n}}$

$$
\begin{aligned}
w_{\text {Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)= & \operatorname{Tr}_{c}\left[e^{-\beta H_{\mathrm{loc}}} O_{2 n}\left(\tau_{2 n}\right) \ldots O_{1}\left(\tau_{1}\right)\right] \\
& \times d \tau_{1} \ldots d \tau_{2 n} \operatorname{det} M_{\uparrow}(V, \epsilon) M_{\downarrow}(V, \epsilon)
\end{aligned}
$$

- $\operatorname{Tr}_{a}[\ldots]$ yields two determinants of hybridization matrices
- $T r_{c}[\ldots]$ must be computed explicitly \leftrightharpoons segment picture

Hybridization expansion

- Monte Carlo configurations consist of $2 n$ impurity creation and annihilation operators $\left\{O_{i}\left(\tau_{i}\right)\right\}_{0<\tau_{1}<\ldots<\tau_{2 n}}$

$$
\begin{aligned}
w_{\text {Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)= & e^{\mu\left(l_{\uparrow}+l_{\downarrow}\right)-U l_{\text {overlap }}} \\
& \times d \tau_{1} \ldots d \tau_{2 n} \operatorname{det} M_{\uparrow}(V, \epsilon) M_{\downarrow}(V, \epsilon)
\end{aligned}
$$

- $\operatorname{Tr}_{a}[\ldots]$ yields two determinants of hybridization matrices
- $T r_{c}[\ldots]$ must be computed explicitly \leftrightharpoons segment picture

Hybridization expansion

- Hybridization expansion for the Holstein-Hubbard model

$$
\begin{aligned}
H & =\underbrace{H_{\mathrm{loc}}+H_{\mathrm{bath}}}_{H_{1}}+\underbrace{H_{\mathrm{hyb}}}_{H_{2}} \\
H_{\mathrm{loc}} & =-\mu\left(n_{\uparrow}+n_{\downarrow}\right)+U n_{\uparrow} n_{\downarrow}+\lambda\left(n_{\uparrow}+n_{\downarrow}-1\right)\left(b^{\dagger}+b\right)+\omega_{0} b^{\dagger} b \\
H_{\mathrm{bath}} & =\sum_{p \sigma} \epsilon_{p} a_{p \sigma}^{\dagger} a_{p \sigma} \\
H_{\mathrm{hyb}} & =\sum_{p \sigma} V_{p \sigma} c_{\sigma}^{\dagger} a_{p \sigma}+h . c .
\end{aligned}
$$

- Expand partition function in powers of $H_{2}=H_{\text {hyb }}$
- Compute $\operatorname{Tr}_{c} \operatorname{Tr}_{a} \operatorname{Tr}_{b}[\ldots]$

Hybridization expansion

- Monte Carlo configurations consist of $2 n$ impurity creation and annihilation operators $\left\{O_{i}\left(\tau_{i}\right)\right\}_{0<\tau_{1}<\ldots<\tau_{2 n}}$

$$
\begin{aligned}
w_{\text {Holstein-Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)= & \operatorname{Tr}_{c} \operatorname{Tr}_{b}\left[e^{-\beta H_{\mathrm{log}}} O_{2 n}\left(\tau_{2 n}\right) \ldots O_{1}\left(\tau_{1}\right)\right] \\
& \times d \tau_{1} \ldots d \tau_{2 n} \operatorname{det} M_{\uparrow}(V, \epsilon) M_{\downarrow}(V, \epsilon)
\end{aligned}
$$

- $\operatorname{Tr}_{a}[\ldots]$ yields two determinants of hybridization matrices
- $\operatorname{Tr}_{c} \operatorname{Tr}_{b}[\ldots]$ must be computed explicitly

Hybridization expansion

- Monte Carlo configurations consist of $2 n$ impurity creation and annihilation operators $\left\{O_{i}\left(\tau_{i}\right)\right\}_{0<\tau_{1}<\ldots<\tau_{2 n}}$

$$
\begin{aligned}
\operatorname{spin} \uparrow \mid & \\
\text { spin } \downarrow \mid & \\
w_{\text {Holstein-Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)= & \operatorname{Tr}_{c} T r_{b}\left[e^{-\beta H_{\text {loc }}} O_{2 n}\left(\tau_{2 n}\right) \ldots O_{1}\left(\tau_{1}\right)\right] \\
& \times d \tau_{1} \ldots d \tau_{2 n} \operatorname{det} M_{\uparrow}(V, \epsilon) M_{\downarrow}(V, \epsilon) \\
= & w_{\text {phonon }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right) T r_{c}\left[e^{-\beta \tilde{H}_{\text {loc }}^{\text {Hubbard }}} O_{2 n}\left(\tau_{2 n}\right) \ldots O_{1}\left(\tau_{1}\right)\right] \\
& \times d \tau_{1} \ldots d \tau_{2 n} \operatorname{det} M_{\uparrow}(V, \epsilon) M_{\downarrow}(V, \epsilon)
\end{aligned}
$$

Holstein phonons

- Decouple electrons and phonons by Lang-Firsov transformation

$$
\begin{aligned}
& H_{\mathrm{loc}}=-\mu\left(n_{\uparrow}+n_{\downarrow}\right)+U n_{\uparrow} n_{\downarrow}+\lambda\left(n_{\uparrow}+n_{\downarrow}-1\right) \sqrt{2} X+\frac{\omega_{0}}{2}\left(X^{2}+P^{2}\right) \\
& X=\frac{b^{\dagger}+b}{\sqrt{2}}, P=\frac{b^{\dagger}-b}{i \sqrt{2}},[P, X]=i
\end{aligned}
$$

- Shift X by $X_{0}=\left(\sqrt{2} \lambda / \omega_{0}\right)\left(n_{\uparrow}+n_{\downarrow}-1\right)$ using $e^{i P X_{0}}$

$$
\begin{array}{rlr}
\tilde{H}_{\mathrm{loc}} & =e^{i P X_{0}} H_{\mathrm{loc}} e^{-i P X_{0}}=\underbrace{-\tilde{\mu}\left(n_{\uparrow}+n_{\downarrow}\right)+\tilde{U} n_{\uparrow} n_{\downarrow}}_{\tilde{H}_{\text {Hoc }}^{\text {Hubbard }}}+\frac{\omega_{0}}{2}\left(X^{2}+P^{2}\right) \\
\tilde{\mu} & =\mu-\lambda^{2} / \omega_{0} & \square\} \\
\tilde{U} & =U-2 \lambda^{2} / \omega_{0} & \tilde{w}_{\text {Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)
\end{array}
$$

Holstein phonons

- Phonon contribution

$$
\begin{aligned}
w_{\text {phonon }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right) & =\left\langle e^{s_{2 n} A\left(\tau_{2 n}\right)} \ldots e^{s_{1} A\left(\tau_{1}\right)}\right\rangle_{b} \\
A(\tau) & =\frac{\lambda}{\omega_{0}}\left(e^{\omega_{0} \tau} b^{\dagger}-e^{-\omega_{0} \tau} b\right)
\end{aligned}
$$

$$
w_{\text {phonon }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)=\exp \left[-\frac{\lambda^{2}}{\omega_{0}^{2}} \frac{1}{\sinh \left(\frac{\beta \omega_{0}}{2}\right)}\left\{n \cosh \left(\frac{\beta \omega_{0}}{2}\right)\right.\right.
$$

$$
\left.\left.+\sum_{2 n \geq i>j \geq 1} s_{i} s_{j} \cosh \left(\left(\frac{\beta}{2}-\left(\tau_{i}-\tau_{j}\right)\right) \omega_{0}\right)\right\}\right]
$$

$$
\begin{array}{ccccccccc}
i= & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
s= & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 \\
\mid & 0 & \square & \bullet & 0 & \square & \square & \bullet & \square \\
0 & & & & & & & \beta
\end{array}
$$

Holstein phonons

- Total weight
$w_{\text {Holstein-Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)=\tilde{w}_{\text {Hubbard }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right) w_{\text {phonon }}\left(\left\{O_{i}\left(\tau_{i}\right)\right\}\right)$
- Phonons yield additional (nonlocal) interaction between segment end points

Holstein phonons

- Phasediagram
bandwidth $=4, \quad \omega_{0}=0.2$

Frequency dependent U

- Arbitrary nonlocal (screened) interactions

$$
\begin{aligned}
w_{\mathrm{int}}=\exp [& -\sum_{\alpha \neq \beta} \int_{0}^{\beta} d \tau U_{\alpha \beta} n_{\alpha}(\tau) n_{\beta}(\tau) \\
& \left.-\frac{1}{2} \sum_{\alpha, \beta} \int_{0}^{\beta} d \tau_{1} \int_{0}^{\beta} d \tau_{2} W_{\alpha \beta}\left(\tau_{1}-\tau_{2}\right) n_{\alpha}\left(\tau_{1}\right) n_{\beta}\left(\tau_{2}\right)\right]
\end{aligned}
$$

- Contribution from one pair of segments

$$
\begin{aligned}
& \int_{\tau_{1}^{s}}^{\tau_{1}^{e}} d \tau_{1} \int_{\tau_{2}^{s}}^{\tau_{2}^{e}} d \tau_{2} W\left(\tau_{1}-\tau_{2}\right)=-H\left(\tau_{1}^{e}-\tau_{2}^{e}\right)+H\left(\tau_{1}^{e}-\tau_{2}^{s}\right)+H\left(\tau_{1}^{s}-\tau_{2}^{e}\right)-H\left(\tau_{1}^{s}-\tau_{2}^{s}\right) \\
& H^{\prime \prime}(\tau)=W(\tau)
\end{aligned}
$$

Frequency dependent U

- Arbitrary nonlocal (screened) interactions

$$
\begin{aligned}
w_{\mathrm{int}}=\exp [& -\sum_{\alpha \neq \beta} \int_{0}^{\beta} d \tau U_{\alpha \beta} n_{\alpha}(\tau) n_{\beta}(\tau) \\
& \left.-\frac{1}{2} \sum_{\alpha, \beta} \int_{0}^{\beta} d \tau_{1} \int_{0}^{\beta} d \tau_{2} W_{\alpha \beta}\left(\tau_{1}-\tau_{2}\right) n_{\alpha}\left(\tau_{1}\right) n_{\beta}\left(\tau_{2}\right)\right]
\end{aligned}
$$

- Contribution from one pair of segments

$$
\begin{aligned}
& \int_{\tau_{1}^{s}}^{\tau_{1}^{e}} d \tau_{1} \int_{\tau_{2}^{s}}^{\tau_{2}^{e}} d \tau_{2} W\left(\tau_{1}-\tau_{2}\right)=-H\left(\tau_{1}^{e}-\tau_{2}^{e}\right)+H\left(\tau_{1}^{e}-\tau_{2}^{s}\right)+H\left(\tau_{1}^{s}-\tau_{2}^{e}\right)-H\left(\tau_{1}^{s}-\tau_{2}^{s}\right) \\
& H^{\prime \prime}(\tau)=W(\tau)
\end{aligned}
$$

Frequency dependent U

- Comparison with Holstein-Hubbard model yields

$$
\begin{aligned}
& W_{\text {Holstein-Hubbard }}(\tau)=-\lambda^{2} \frac{\cosh \left((\beta / 2-\tau) \omega_{0}\right)}{\sinh \left(\beta \omega_{0} / 2\right)} \\
& W_{\text {Holstein-Hubbard }}(\omega)=\frac{2 \lambda^{2} \omega_{0}}{\omega^{2}-\omega_{0}^{2}}
\end{aligned}
$$

Frequency dependent U

- Comparison with Holstein-Hubbard model yields

$$
\begin{aligned}
& W_{\text {Holstein-Hubbard }}(\tau)=-\lambda^{2} \frac{\cosh \left((\beta / 2-\tau) \omega_{0}\right)}{\sinh \left(\beta \omega_{0} / 2\right)} \\
& W_{\text {Holstein-Hubbard }}(\omega)=\frac{2 \lambda^{2} \omega_{0}}{\omega^{2}-\omega_{0}^{2}} \rightleftharpoons \operatorname{Im}[W]=-\lambda^{2} \pi \delta\left(\omega-\omega_{0}\right)
\end{aligned}
$$

Frequency dependent U

- Comparison with Holstein-Hubbard model yields

$$
\begin{aligned}
& W_{\text {Holstein-Hubbard }}(\tau)=-\lambda^{2} \frac{\cosh \left((\beta / 2-\tau) \omega_{0}\right)}{\sinh \left(\beta \omega_{0} / 2\right)} \\
& W_{\text {Holstein-Hubbard }}(\omega)=\frac{2 \lambda^{2} \omega_{0}}{\omega^{2}-\omega_{0}^{2}} \leftrightarrows \operatorname{Im}[W]=-\lambda^{2} \pi \delta\left(\omega-\omega_{0}\right)
\end{aligned}
$$

Aryasetiawan et al., PRB (2004)

Frequency dependent U

- Non-local interaction for arbitrary $\operatorname{Im}[W(\omega)]$

$$
W(\tau)=\int_{0}^{\infty} d \omega \frac{\operatorname{Im}[W(\omega)]}{\pi} \frac{\cosh ((\beta / 2-\tau) \omega)}{\sinh (\beta \omega / 2)}
$$

Werner \& Millis, PRL (2007)

Aryasetiawan et al., PRB (2004)

Metal-insulator transition

- Holstein-Hubbard model with $\omega_{0} \sim$ bandwidth
- Insulator-metal transition at $U \gg U_{c 2}$ induced by increasing λ

Metal-insulator transition

- Screening effect on $U_{c 2}$ non-negligible even for $\omega_{0} \gg$ bandwidth

Metal-insulator transition

- $U_{\text {bare }}=10, \omega_{0}=3$
- spectral function has multi-peak structure
- as screening strength is increased the gap shrinks

Metal-insulator transition

- $U_{\text {bare }}=8, U_{\text {screened }}=3$
- "screened U" and "unscreened U" Hubbard bands ...
- ... but no good estimate of $U_{\text {bare }}, U_{\text {screened }}$ from spectral function

Metal-insulator transition

- Same for " 'Ohmic" model: $\operatorname{Im} W(\omega)=-\alpha \pi \Theta\left(\omega^{2}-\omega_{c}^{2}\right)$
- qualitatively similar to "plasmon" model
- broad high energy tail instead of "unscreened U" Hubbard bands

Summary

- Hybridization expansion for the Holstein-Hubbard model
- General formalism for frequency-dependent interactions
- Metal-insulator transition for $U \gg U_{c 2}, \quad \omega_{0} \sim$ bandwidth
- Outlook: application to real materials, GW+DMFT, E-DMFT, ...

