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 Project out the ground state → imaginary time 
Schrodinger eq. (Fermi 1933)
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projector in 
parameter t

R , t =exp−tH 
T
R  R , t ∞ ∝ 

0
R

trial wave
function

ground state
of given symm.

Projection in a differential/integral form (imaginary time Sch. eq.)

R , t=∫G R ,R ' ,R ' , t d R '

−∂
t
R , t =H R , t 

H     : electrons + ions  and/or  other interactions 

R=r
1
, r
2
, ... , r

N
: 3N-dim. continuous space
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 Quantum Monte Carlo (QMC) in a nutshell 
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Evolution equation

with transition probability density  

can be  mapped onto an equivalent stochastic process: 

 Value of the wavefunction ↔ density of sampling points in 3N-space
     
    
   sampling points → “walkers” → eigenstates of position operator

       

Solution: find                     and iterate

                        Exact mapping but fermion sign problem!

R , t=∫G R ,R ' ,R ' , t d R '

R , t  = dens [∑i

walkers
R−Ri t ]statistical

G R ,R ' ,=〈R∣exp− H ∣R ' 〉

G R ,R ' ,
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Fix the sign problem by the fixed-node approximation: 
fixed-node diffusion Monte Carlo (FNDMC) 
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f R , t=∫G* R ,R ' , f R ' , t d R '

f R , t ∞  ∝  
T
R 

ground
R

 Fermion node: (3N-1)-dimen. hypersurface defined as                      

         
  Fixed-node (FN) approximation:                             
          
            - antisymmetry (nonlocal) replaced by a boundary (local)

            - accuracy determined by the  nodes of

            - exact node enables to recover exact energy (in polynomial time)  
           

f R , t 0

r
1
, r
2
, ... , r

N
=0

f R , t =
T
RR , t 


T
R

Consider a product:

modify Sch. eq. accordingly:

so that:
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QMC calculations: basic steps 

 Hamiltonian:  -  valence e- only, using pseudopots/ECPs
                         -  e-e interactions explicitly
                         -  size: up to a few hundreds valence e-

 Explicitly correlated trial wavefunction of Slater-Jastrow type:

 
                (or more sophisticated: BCS, pfaffians, backflow,..., later)       

  Orbitals:        -  from HF, DFT, hybrid DFT, possibly CI, etc
                

  Solids:           -  supercells
                         -  finite size corrections 


Trial

=det  [

]det [


]exp[ ∑

i , j , I

U
corr

r
ij

, r
iI

, r
jI
]
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Fixed nodes in reality: complex multi-D hypersurface, 
impossible to “see”, ...

- defined by the antisymmetric part
  of the trial function → difficult to 
  parametrize efficiently    

                     but 

- systematically improvable at least
  for small systems

- easy to enforce, eg, evaluate 
  the sign of an antisymmetric form,
  eg, a determinant

 
  Let's see how it works ...

Wavefunction value
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3D subset of 59-dim node
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Application example: which is the lowest energy 

isomer of C20 ?
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                ring                                   bowl                                    cage
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FNDMC/HF nodes: the lowest is the bowl isomer! 
(later confirmed by independent methods, still 

used in benchmarking of DFT functionals)
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J.C. Grossman, L. M., K. Raghavachari, Phys. Rev. Lett. '95
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Azobenzene: optically active molecule with 
photoisomerization
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M. Kostolny, R. Derian, I. Stich, L.M.  2010
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M. Kostolny, R. Derian, I. Stich, L.M,  2010

Azobenzene barrier and excitations:
better than 0.05 eV accuracy with FNDMC/multi-

det. 

Experiment
not ok (?) 

M. Kostolny, R. Derian,
 I. Stich, L.M.  2010
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Semiconductor example: solid Si (up to 214 atoms)
FNDMC/single-det/PBE nodes: stochastic and 

systematic errors are small

           Atom                                                             Solid/per atom
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FNDMC    1det

Exact (DMC/CI)
           ~ 0.03 eV FNDMC     1det

Exact atom+Exp. cohesion 

Cohesion:    - rigorous lower bound(!)   →  6.58(1) eV
                      - FNDMC (error canc.)        →  4.61(1) eV
                      - experiment                        →  4.62(8) eV 

  ~ 100 eV
  (3s, 3p val.
    states)

To
t.

 e
n

er
g

y
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FeO solid at high pressures
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      - large e-e correlations, difficult: competition of Coulomb, 

         exchange, correlation and crystal-field effects; important 
         high-pressure physics (Earth interior, for example)  

       - mainstream Density Functional Theories (DFT) predict:  
         wrong equilibrium structure; and for the correct
         structure predict a metal instead of large-gap insulator

                 B1/AFII (equil.)                                              iB8/AFII
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 FeO solid at high pressures DFT with HF mixing
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    In order to reconcile theory with experiment one needs Hubbard U 

         or, alternatively, mixing of an exact exchange into the effective 
         Hamiltonian: non-variational, certain arbitrariness  
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Comparisons of the FeO solid equilibrium parameters
FNDMC/single det. 

                                   DFT/PBE              FNDMC      Exp.(FeO
1-x

)

        
 iB8-B1/AFMII [eV]       - 0.2                    0.5 (1)              >0             
     
 Cohesion [eV]            ~ 11                     9.7 (1)             9.7(2)

 a_0 [A]                          4.28                   4.32                4.33

 K_0 [GPa]                     180                   170(10)           152(10)                          

 Opt. gap [eV]             ~ 0 (metal)          2.8(3) eV       ~ 2.4 eV

                     J. Kolorenc & LM, Phys. Rev. Lett.  '08  
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FeO solid at high pressures 
QMC shows transition at  ~ 65 GPa (Exper. 70-100)

       JK & LM, Phys. Rev. Lett.  '08    
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 Orbitals from hybrid PBE0 functional
 Optimal weight of the Fock exchange found by 

minimization of the fixed-node DMC energy

HF weight → d-p hybridization: HF “ionic”  vs  DFT “covalent”

    Note: variational FNDMC optimization of the DFT functional!
Lubos_Mitas@ncsu.edu
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QMC byproduct: construction of optimal effective 
Hamiltonians (one-body or beyond)

Lubos_Mitas@ncsu.edu

The mixing of exact exchange into the effective one-particle
(DFT) Hamiltonian is simple, useful and clearly justified:
 
- variationally optimized fixed-node DMC energy

- orbitals beyond Hartree-Fock → correlated (most of the   
  correlation in QMC is captured: all the bosonic correlations,  
  cusps, etc, captured exactly)

- points out towards a more general idea/tool: variational space
  includes not only wavefunction but also effective Hamiltonian  
  (more efficient and faster generation of accurate nodes)
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Enables also to look back at the (corrected) one-
particle picture, eg, density of states, gap, etc

Lubos_Mitas@ncsu.edu
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Large-scale QMC calculations: performance and cost 

FNDMC:   -  Ne-core relativistic ECPs for Fe
                 -  orbitals:  HF, hybrid DFT 
                 -  size: 8 and 16 FeO supercells, up to 352 valence e-
                 -  finite size corrections 

Slater-Jastrow wavefunction:
   

Scaling as ~ N2- N3,  parallel scalability

Computational cost: typical run 30,000 hours
(3 orders of magnitude slower than a typical DFT run)

Correlation energy  (E_HF – E_exact) recovered: ~ 90 - 95 %


Trial

=det  [

]det [


]exp[ ∑

i , j , I

U
corr

r
ij

, r
iI

, r
jI
]
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 FeO calculations illustrate a few key points about 
QMC 

Practical: 
- systems with hundreds of electrons are feasible 
- agreement with experiment within few % 
- the simplest, “plain vanilla” FNQMC → single-determinant nodes!

Fundamental:
- note: no ad hoc parameters, no Hubbard U or Stoner J, etc:
  applicable to solids, nanosystems, BEC-BCS condensates ... 

- 90-95 % of correlation is “bosonic”-like (within nodal domains),
  efficiently captured by algebraically scaling methods

- fixed-node approx. is the only key issue: 5-10% of correlation →
  enough accuracy for cohesion, gaps, optical excitations, etc

- 5-10% still important: magnetic effects, superconductivity, etc 
Lubos_Mitas@ncsu.edu
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Beyond the fixed-node approximation: fermion nodes
What do we need and want to know ?
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        Interest in nodes goes back to D. Hilbert and L. Courant (eg, n-th exc.
         state has n or less nodal domains). However,  ... we need (much) more:
                  
             
                -  nodal topologies, ie, number of nodal cells/domains → 
                    important for correct sampling of the configuration space

                -  accurate nodal shapes ?  how complicated are they ?  →  
                    affects the accuracy of the fixed-node energies
                        
                -  nodes ↔ types of wavefunctions ?

                -  nodes ↔ physical effects ? 

         
  

                                            → (DN-1)-dim. smooth hypersurface

It divides the space into domains with constant wf. sign (“+” and “- “)

r
1
, r
2
, ... , r

N
=0
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Topology of fermion antisymmetry: what do we 
know ? 

       1D:   the ground state node of N fermions on a line is known exactly,

                                                                                                             

          since each time two fermions cross each other they hit the node 
          and the system passes from one domain to another  →  N! domains
               
       3D:    a few special cases of 2e-, 3e-  atoms nodes known exactly: 

               A) 2e- He atom triplet 3S[1s2s] exact node:                 

               two domains (one +, one -)  →                  or
                    
               B) 3e- atomic lowest quartet of S symmetry and odd parity
              
                        4S[2p3]: the exact node is

           again two domains:                   either left-handed or right-handed  

r
1
⋅r

2
×r

3
=0

∣r1∣
2
−∣r 2∣

2
=0

r
1
r

2
r
2
r

1

r
1
, r
2
, r
3
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 Conjecture: for d >1 the ground states have only two 
nodal cells, one “+” and one “-”

 Then, for a given           find a point such that triple exchanges connect 
  all the particles into a single cluster: then there are only two nodal cells

                           

               +    _

  
  (Why ? Connected cluster of triple exchanges exhausts all even/odd 
               permutations + tiling property →  no space left)

                                     rN

    r1    

             r2

         All-particle
      configuration 
                   space

R

Numerical proof for 200 noninteracting fermions in 2D/3D (Ceperley '92):

Tiling by permutations property for nondegenerate ground states:
                  
 

Let Q  R
0
be the nodal domain around R

0


∑P
Q PR

0
 = whole configuration space
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Sliding 15-puzzle: an example of 3-cycle (triple 
exchange) permutation cluster 

even permutations (only!) 
 
                 “+”   

     odd permutations 
  
                   “ -”

 Cheat! Flip 14,15  
 

                   X
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Is this the case of fermionic ground states for d>1? 
Yes!

Two nodal cells theorem. Consider a spin-polarized, closed-
-shell ground state given by a Slater determinant 

Let the Slater matrix elements be monomials             
of positions or their homeomorphic maps in d>1. 

Then the wavefunction has only two nodal cells for any d>1.

 (L.M. PRL, 96, 240402; cond-mat/0605550) 
 
Covers many noninteracting models: harmonic fermions,
homog. gas (fermions on Td),  fermions on a sphere (S2), ...

Can be extended also to inhomogeneous polynomials such 
as atoms, HF atoms, etc  

x
i

n y
i

m z
i

l


exact

=C
symm

1,. .. , N det {
j
i}; C

symm
≥0
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 Proof sketch for spin-polarized noninteracting 2D 
harmonic fermions:

Step 1 →  Wavefunction factorization

=M −11,. .. , N M / I 
1

∏i j

i , j∈ I 
1  y j− y i∏1k ≤M

k−1
n

k


1
... 

M −1 
M


M

1,. . , N
M

=C
gauss

det [1, x , y , x2 , xy , y2 , ... , y M ]=

Place fermions on a Pascal-like triangle → 
 
                       fermions on      lines  

Factorize out the particles on the vertical line:

y

1

3

2

M 1M 2/2 M

   lines coords

General: factorizable along vertical, horizontal or diagonal lines, 
recursive → “multi-dimensional Vandermonde determinant” 

x

   particle coords
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Explicit proof of two nodal cells for spin-polarized 
harmonic fermions: Step  2  → Induction 

Therefore all particles connected, any size. Q.E.D.

assume
particles are
connected 
by 3-exchanges

1

3

2

N
M

N
M 1

1

3

2

1

3

2

M  M 1 particles
connected 

“lines”
factorized
    out 
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For noninteracting/HF systems with both spin channel 
occupied →  more nodal cells.

Interactions →  minimal number of two cells again!

 Unpolarized nonintenracting/HF systems: 2*2=4 nodal cells!!!
        ->    product of two independent Slater determinants

       
        What happens when interactions are switched on ?

        “Nodal domain degeneracy” is lifted → topology change
        →  multiple nodal cells fuse into the minimal two again!

    
      Bosonic ground states    → global/all-electron   S-waves
      Fermionic ground states → global/all-electron “P-waves” !

               Fundamental and generic property of fermions!
                        
 


HF

=det  {

}det  {


}
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The same is true for the nodes of 
temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

fix            →   nodes/cells  in the       subspace

High (classical) temperature: 
 
enables to prove that R and R' subspaces have only two nodal
cells.  Stunning: sum over the whole spectrum!!!
L.M. PRL, 96, 240402; cond-mat/0605550

H. Monkhorst: “So what you are saying is that nodes are simple!” 
Topology: yes!  Shapes: no! →  better wavefunctions: pfaffians ...
   

R , R ' ,=C
N

det {exp [−r
i
−r '

j
2/2]}

R , R ' ,=∑
exp [− E]∗  RR ' 

R' , R
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The simplest case of a nodal topology change from 
interactions/correlations: three e- in Coulomb pot.
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               Consider three electrons in Coulomb potential, in the lowest
               quartet (all spins up)  of S symmetry and even parity state

               Noninteracting Hamiltonian has two degenerate states:

         non-interacting

                                                                                                       excit.
      Interaction -> states split
      (already in HF)                             ground                                                  
                                                                     
           

      4S(1s2s3s) HF node:                                                →  6 domains (quasi 1D!)
         
  
           


I
=det [1s ,2s ,3s] 

II
=det [1s ,2p

x
,3p

x
]

 x  y  y  z

r
1
−r

2
r

2
−r

3
r

3
−r

1
=0
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Nodal topology change from interactions/correlation 
(“triplet pairings”: tiny but nonzero effect)

  

  

 
   

          
             
             HF node                                            Pfaffian (or expansion
                                                                        in dets) → corr. node
              6 cells                                                       2 cells

    _       +        _

    +       _         +
              

            +        _

   
              

r
1
=r

2



r
2
=r

3

r
3
=r

1

r
1

r
2

r
3
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Pfaffian: signed sum of all distinct pair partitions of 
permutations (Pfaff, Cayley ~ 1850) ->

the simplest antisymm. pair spinorbital wavefunction

 

pf [a
ij
]=∑P

−1P a
i
1

j
1

...a
i

N
j

N

, i
k
 j

k
, k=1,. .. , N


PF

=A [x
1
, x

2
x

3
, x

4
 ...]= pf [x

i
, x

j
] i , j=1,... ,2N

 Pair orbital                  + antisymmetry →  pfaffian*

 

 

           
                symmetric/singlet            antisymmetric/triplet

  

x
1
, x

2


● determinant is a special case of pfaffian (pfaffian is more general)
● pfaffian algebra similar to determinants (minors, etc)  
●          is a special case of  

HF


PF

x
i
, x

j
=  r

i
, r

j
 −   r

i
, r

j
   r

i
, r

j
   r

i
, r

j
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Pfaffian wavefunctions with both singlet and triplet 
pairs (beyond BCS!) -> all spin states treated 

consistently: simple, elegant

   

-  pairing orbitals (geminals) expanded in one-particle basis 
 

    - unpaired
        

BCS wf. for 2N-particle singlet is a special case:  
   
 Pairing wavefuctions enable to get the correct nodal topologies ...

                            (M. Bajdich et al PRL '06; PRB '08)


PF

= pf [     

−  T   

− T − T 0 ]× exp [U
corr

]

i , j =∑≥
a[hih j hi h j ]

i =∑
c hi 

i , j =∑
b[hi h j −hi h j ]


BCS

=det [ ]
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 DMC correlation energies of atoms, dimers  
Pfaffians: more accurate and systematic than HF 

while scalable (unlike CI)
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Expansions in many pfaffians for first row atoms: 
FNDMC ~ 98 % of correlation with a few pfaffians

Table of correlation energies [%] recovered: MPF vs CI nodes

                                           n  =  # of pfs/dets

WF                         n          C           n          N          n            O      

DMC/MPF              3        98.9         5        98.4       11        97.2

DMC/CI                 98       99.3        85       98.9     136        98.4
   
- further generalizations: pairing with backflow coordinates,
  independent pairs, etc (M. Bajdich et al, PRL 96, 130201 (2006))
 
                Pfaffians describe nodes more efficiently
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Nodes of different wfs (%E_corr in DMC): 
oxygen atom wf scanned by 2e- singlet 

(projection into 3D -> node subset)
    HF (94.0(2)%)        MPF (97.4(1)%)   CI (99.8(3)%)
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Ultracold atoms in a special state: unitary gas
Total energy first calculated by QMC
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    Effective, short-range attractive interaction        Scattering length:  a 

     1/a    > 0                              BCS, weakly paired superconductor

     1/a    < 0                              BEC of covalently bonded molecules

     1/a   → 0                              unitary limit →   
                         
    Tuned, so that a pair is on the verge of forming a bound state (ie, E=0)

                               

                                                                   

       

E
tot

unitary= E
tot

freer
int

≪r
s
≪a ,


FNDMC

/ HF nodes =0.50 1


FNDMC

/ BCS nodes=0.44 1 J.Carlson et al , ' 03


exact

/release nodes≤0.40 1 J.Carlson , unpub. ; X. Li , L.M. ,unpub.
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Unitary limit: seemingly a weakly interacting system
Opposite is true: strongly interacting regime, large 

amount of condensate (BEC ↔ unitary ↔ BCS)
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      Find  the amount of the condensate directly: averaged two-body 
            density matrix at long-range (BCS wavefunction)     
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Correlated nodes in a fermion gas: singlet pair of e- 
winds around the box without crossing the node

r
i
=r

i5 offset , i=1,. .. ,5

Correl.
    

            HF

HF crosses the node, BCS/pfaffian does not (supercond.) 

Wavefunction along the winding
                      path 
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The four particle exchange: illustration of pair 
exchange without node crossing
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          Exchange in each spin channel separately has to cross the node,
          concerted both spin channels exchange can avoid the node

                                                                                                        node scanning
                                                                                                        particle

                                                                                                       (X. Li, LM,'09) 
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I. 
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Another type of wavefunction with improved nodes:
 backflow coordinates

Improve the Slater-Jastrow wf.  
 

                                                                               “spurious” term

                                  → strongly inhomogeneous -> excitations 
                                        (CI, pfaffians) cancel out the spurious terms

              
                                  → backflow terms are effective 
                                      (homogeneous systems)

                                      
                                      backflow described by “dressed” coordinates
                                       -> combine with pfaffian wavefunctions

exp − H 
T
≈

T
− H 

T

x
i
=r

i
∑i j

r
ij
 r
ij

He
U

corr det [ .]=e
U

corr T V
eI

det [.]det [.]T V
ee

e
U

corr−∇ e
U

corr⋅∇ det [ .]

∣∇ det [.]∣≫∣∇ e
U

corr∣

∣∇ det [.]∣≪∣∇ e
U

corr∣
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FNDMC correlation energies of C_2 molecule for 
various wavefunctions with and without the backflow

                          BF
                          no BF   
 

                             
                              BF gain

                                                              
                       Slater/HF              PF                   CI
                            
                Gains from backflow are rather small ...                                   
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Backflow for homogeneous periodic electron gas
(Coulomb e-e + neutralizing background)
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       characterized by a single parameter: r_s  → inverse density

              r_s                 HF                DMC/HF nodes             DMC/BF nodes

               
                1              0.56925              0.53087(4)                      0.52990(4)                  
              

                5            -0.056297           -0.07862(1)                     -0.07886(1)

              20            -0.022051           -0.031948(2)                   -0.032007(2)

        About  1% gain but significant since it cuts the fixed-node error
        by a factor of 2 or so. Works better for homogeneous systems,
        as expected. Still, not enough understanding! 
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Summary

- QMC: practical for hundreds of interacting quantum particles
  but also  
  provides new unique insights into many-body effects

- explicit proof of two nodal cells for d>1 and arbitrary size 
  with rather general conditions →  fundamental topological 
  property of fermionic ground states: global “P-wave” like

- another example of importance of geometry for quantum 
  many-body effects
                            
Open source code: QWalk (“Quantum Walk”) →  www.qwalk.org 
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Working hypothesis

 Geometry is not the only thing, but it is the most important thing

                                                                                               Connolly
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