

Challenges and Opportunities for Condensed Matter Physics of Thermoelectric Materials

G. Jeffrey Snyder

California Institute of Technology Pasadena, California, USA http://thermoelectrics.caltech.edu

 $Yb_{14}MnSb_{11}$

Ba₈Ga₁₆Ge₃₀ Type I Clathrate

Toberer, May, Snyder Chem. Mat., (DOI: 10.1021/cm901956r)

Thermoelectric Generator

Thermoelectric Applications

Solid State Advantage No moving parts No maintenance Long life Scalability

Power Generation (heat to electricity) Spacecrafts Voyager over 30 years!

Remote power sources

THERMOELECTRICS

Cooling - Thermal Management Small Refrigerators Optoelectronics

Detectors

Future Possibilities Waste Heat Recovery Automobiles CoGeneration Distributed Thermal Management

Heat in Energy Use

As in End Product Home, Business heating systems

As waste by product In production of useful energy In consumption of useful energy

Automotive TE Generator

Convert Exhaust heat to electricity •Replace alternator •Improve fuel economy by 10%,

KITP Outline

Transport Physics of Complex Thermoelectric Materials

Semi-empirical Approach

Solid-State Chemistry Inspired

- Single Parabolic Band
- Rigid Bands
- Acoustic Phonon Scattering

Successful examples of approach

- Predict trends in
 - Seebeck
 - mobility
 - zT
- Optimize material
- Simplify the physics

Challenges - Opportunities Band Structure Calculations

- Band Gap (within ~0.05eV)
- Band Edge Energy (within ~0.01eV)
- Effective Mass (within $\sim 0.1 m_e$)

Disorder

- Doping at ~1%
- Alloying ~10%
- Vacancies
- Anti-Site Defects
- Interstitial atoms

Transport Calculations

- Relaxation Time Approximation
- Constant RTA (?)
- Thermal Transport

Exotic TE Materials

- Resonant States
- Nano-structures/e- filtering
- Heavy Fermion
- Kondo
- Correlated Electron Systems

Ideal Thermoelectric Material

Desire High *zT* Figure of Merit

Carrier Concentration

Good Thermoelectric Materials

Very different materials but with some common features

- Structural complexity good for low thermal cond.
- Structurally related to intrinsic semiconductors near valence balanced compounds using Zintl concepts
- Transport properties of metals

THERMOELECTRICS

Are Thermoelectric Materials Semiconductors or Metals ?

Semiconductors vs. Metals

Semiconductors

Filled Valence Band & Empty Conduction band Separated by Band Gap E_g

• Elec. resistivity ρ , decreases as Temperature increases

 $\rho \twoheadrightarrow {}^{\infty}$ as $T \twoheadrightarrow 0 \; {\rm K}$

• charge carriers n_H increase with Temperature

Metals

no band edges near Fermi Level E_F

- Elec. resistivity ρ , *increases* as Temperature increases
- charge carriers n_H constant with Temperature

Valence Semiconductors

Semiconductors

Filled Valence Band & Empty Conduction band Separated by Band Gap E_{g}

Valence Compounds

THERMOELECTRICS

Stoichiometric balance of valences \Rightarrow Semiconductor

- Ionic Compound: Valence Band = filled anion states; Conduction = cation states
- Covalent Compound: Valence Band = filled bonding states; Conduction = antibonding states

Zintl Electron Counting

THERMOELECTRICS

Skutterudite: Sb⁻¹ two bonded rings

"Zintl Metals"

"Zintl Phases" = Semiconductors (G. Miller in Chemistry, Structure, and Bonding of Zintl Phases and Ions S. Kauzlarich ed.)

"Metallic Zintl Phases" (J. Corbett in Chemistry, Structure, and Bonding of Zintl Phases and Ions S. Kauzlarich ed.)

Semi-Metallic Zintl Phases

- Valence Precise according to Zintl electron counting
- but Band Gap $E_g < 0$

Valence Imbalanced Zintl-like Phases (~1e-/Formula)

- Zintl valence count is slightly off
- giving electron-rich or electron-poor phases that are metallic (heavily doped semicondutor)

Valence Metals with Band Gap

Thermoelectric materials are (postulate ?)

Off Valence Balance compounds

Where concentration of valence imbalance = free carrier concentration

- free Carrier Concentration measured by Hall Effect n_H
- Transport properties are metallic
 - Heavily doped, degenerate semiconductors
- Zintl electron counting rules apply
 - Poly anions, Metal-Metal bonding

Hall Effect

Hall Effect

Magnetic Field deflects mobile charges Hall Effect measurements give:

Sign of Charge Carrier

- n (electron) or p (hole) type
- Carrier concentration
- $n_{\rm H} = 1/R_{\rm H}e$

Mobility

- $\mu_{\rm H} = \sigma/n_{\rm H}e$
- Hall Effect of Extrinsic Semicond.
 - Constant $n_{\rm H}$ at low temp
 - $n_{\rm H}$ = dopant concentration

THERMOELECTRICS

Rises at high temp

• minority carriers activated across Band Gap

Yb₁₄AISb₁₁

Cation doping Yb₁₄MnSb₁₁

Mn⁺² (for Al⁺³) gives 1*h*⁺ per Yb₁₄MnSb₁₁ delocalized hole $n \sim 1.3 \times 10^{21}$ /cc Linear resistivity with T Metal (Heavily doped semiconductor) Linear p-type Seebeck with T $m^* \sim 3 m_e$, $\mu \sim 3 \text{ cm}^2$ /Vs, $E_g \sim 0.5 \text{ eV}$ Mn²⁺ (h.s. d^5) + spin paired hole (anti-ferro.) net spin = 5/2 - 1/2 = 2 Under-screened Kondo lattice Sales, et al. *PRB* **72** 205207 (2005)

High Efficiency, zTzT maximum > 1.0

Avg *zT* 0.95

- for 700 < T < 1000 C
- 2 x better than SiGe
- Due to low lattice thermal conductivity
 - Complex structure ?
- Currently being developed by NASA
 - Next generation RTG

Brown, Kauzlarich, Gascoin, Snyder, Chem. Materials 18, 873 (2006)

Complex Crystal Structures

Large Cells with low thermal cond.

ANNOT THE OFFICE OFFICE

Clathrates

Large Unit Cell expect low κ_l Covalent bonding high m^* and μ like elemental Si or Ge? can we modify n ?

Dong et al, Phys. Rev. Lett. 2001

Toberer, May, Snyder Chem. Mat., (DOI: 10.1021/cm901956r)

Thermoelectric Ba₈Ga_{16-x}Ge_{30+x}

May et. al. Phys. Rev. B, 80, 125205 (2009)

Other Thermoelectric Zintl Metals

Filled Skutterudites Sb square rings 2b-Sb⁻¹ Co⁺³Sb₃ valence semicond. La⁺³Fe₄⁺²Sb₁₂ Zintl Metal 1 hole/fu

Mo_3Sb_7

4x Sb dimers 1b-Sb⁻² 3x Sb isolated 0b-Sb⁻³ Mo-Mo dimer 1b-Mo⁺⁵ 2 holes/FU = metal

• Mo₃Sb₅Te₂ for SC

Gascoin, et al *J. Alloys. Compounds* **427,** 324 (2007) Kauzlarich, Snyder et al, *Dalton Trans.* p. 2099 (2007) Zn_4Sb_3

Extra Zn found in interstitial sites

Zn-i adds 2e⁻ (Zn²⁺)

Moves Ef up in valence band

- rigid band model
- Zn_{3.9}Sb₃ should be Semiconducting
 Does not add new states

Snyder et al, *Nature Materials* **3**, 458 (2004) See Haüsserman et al, *Chem. Eur. J.*, **11**, 4912 (2005)

High Efficiency from Band Structure Engineering

Enhancing Thermopower

Mott Equation

Thermopower of metals depends on Energy dependent Conductivity

• $\sigma(E)$ is conductivity σ when $E = E_F$

$$\alpha = \frac{\pi^2}{3} \frac{k_B}{q} k_B T \left\{ \frac{d \left[\ln(\sigma(E)) \right]}{dE} \right\}_{E=E_F}$$

• if $\sigma(E_{hot}) \neq \sigma(E_{cold})$ then charge will build up at the cold end

$$\alpha = \frac{\pi^2 k_b^2 T}{3q} \left(\frac{d \ln N(E)}{dE} + \frac{d \ln \tau(E) v(E)^2}{dE} \right)_{E=E_F}$$

Large Thermopower from rapidly changing density of states

 $\frac{dN(E)}{dE}$

- or Scattering
 - relaxation time τ
 - group velocity v
 - effective mass m^*
 - mobility μ
 - mean free path $\lambda \propto \tau$
 - carrier concentration n

$$\mu = \frac{e\tau}{m^*}$$

$$\sigma = ne\mu$$

La₂Te₃

Ionic $La_2Te_3 = La^{+3}_2Te^{-2}_3$ valence balanced insulator $E_g \sim 1.0 \text{ eV}$ Defect Th_3P_4 structure type • $La_{3-x}Te_4$ • La vacancies: x = 1/3 for La_2Te_3 Many RE_2X_3 chalcogenides have related structure

La₃Te₄ distorted octahedron around Te

May et. al. Phys. Rev. B, 79, p. 153101, (2009)

Thermoelectric La_{3-x}Te₄

May et. al. *Phys. Rev. B*, **78**, p. 125205, (2008) May et. al. *Phys. Rev. B*, **79**, p. 153101, (2009)

Yb₁₄MnSb₁₁ - La_{3-x}Te₄ Couple Testing

D

10% efficiency with 750°C ΔT (200°C - 950°C)
2 month lifetime test successful, 1 year underway

Resonant States

Goal:

Increase Density of States (DOS) Without ruining mobility

Isolated impurity state adds delta function in DOS but hopping conduction

Resonant Impurity State Adds DOS to existing bands

TI Resonant States in PbTe

TI impurity in PbTe add DOS to top of valence band

- Ga and In states are in the gap
 - Huang, Mahanti and Jena, PRB **76** 115432 (2007)

Increased DOS of holes observed

- larger electronic heat capacity
- superconducting T_c
 - Y. Matsushita, et al., Phys. Rev. B 74 134512 (2006)

Huang, Mahanti and Jena, PRB 76 115432 (2007)

PbTe:TI Pisarenko Plot

Improved *zT* from impurity states

PbTe:TI shows higher thermopower than p-type Na-doped at same carrier concentration

Results in a higher zTabout twice that of PbTe:Na

Mobility and effective mass are also different but net effect is positive

Thermal conductivity is about the same Would benefit from reduction in lattice thermal conductivity using other methods

J. P. Heremans, et al.. *Science* **321**, p 554 (2008).

Theory Challenges = **Opportunities**

Band Structure Calculations

- Need Accuracy near E_F Transport is derivative property
 - Band Gap (within ~0.05eV)
 - Band Edge Energy (within ~0.01eV)
 - location of resonant states, other bands
 - Effective Mass (within ~0.1me)

Imperfect crystals = Disorder

- Doping at ~1%
- Alloying ~10%
- Vacancies
- Anti-Site Defects
- Interstitial atoms

Transport Calculations

Relaxation Time Approximation

- $\tau \sim E^{\lambda}$
- Constant RTA (?)

Thermal Transport

• diamond structure is 2009

Exotic TE Materials

- Resonant States
- e- filtering
- Heavy Fermion
- Kondo
- Correlated Electron Systems
- Nano-structures
 - nanowires
 - superlattices
 - composites
 - interfaces

Complex Thermoelectrics from Nanosized Microstructures

PbTe - Sb₂Te₃ Composites

 Crystallization from liquid fast diffusion in liquid control by cooling rate

2) Solid-to-Solid eutectoid decomposition slow diffusion in solid control by quench and anneal

3) Solid-state Precipitation slow diffusion in solid control by composition and anneal

Ikeda, Snyder, Ch. 4.2 in "Handbook of Thermoelectric Conversion Technology" 熱電変換技術ハンドブック

Three Methods to Create Microstructure

in Sb₂Te₃ - PbTe System

Epitaxy-like Orientation

Ikeda, et al. Chem. Materials 19, p 763 (2007)

THERMOELECTRICS

Ikeda, et al. Chem. Materials 19, p 763 (2007)

Control of Lamellae size

Control by time (*t*) and Temperature (*T*) Solid-State transformation Slow diffusion = Fine microstructure

 $\lambda_0 = \frac{4\gamma T_{\rm E} V_{\rm m}}{\Delta H \Delta T}$

 $\lambda - \lambda_0 = \frac{KD(T)t}{T}$

500° C

400° C

300° C

Summary

Most Thermoelectrics are Heavily Doped SC ENear Valence Balance using Zintl Rules needed for Band Gap Slight Valence Imbalance E_F provides metallic carriers **Electronic Transport of Complex Materials** Semi-Emperical approach successful Ab initio is not accurate to be quantitative and difficulty including disorder Opportunities for theory Thermal transport Exotic electronic states resonant, Kondo, correlations Nanostructures composites Ε THERMOELECTRICS

