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Thermalizing

Volume-law eigenst. entanglement 

Many-body localized

Area law eigenstate entanglement

“Classical” dynamicsQuantum coherent dynamics

The many-body localization transition:

1. Sharp interface between quantum and classical worlds

2. Fundamental change in entanglement pattern. 

More radical than in any known transition.

Why the transition is interesting 

Can we understand the critical point?



Outline

• Toy model of the MBL critical point

• RG approach to the MBL transition

– Universal dynamics

– Entanglement sclaing

• Part II: 

Many-body delocalization via marginally localized phonons

( S. Banerjee and EA arXiv:1511.03676 ) 



Rough criterion for MBL  (T=∞)

Matrix element to move between typical configurations of L spins:

Resonance condition = condition for the system to serve as it‟s own bath:

Delocalized phase:



Rough criterion for MBL (T=∞)

Matrix element to move between typical configurations of L spins:

Does it mean non-diverging localization length and 1st order transition? NO!

requires

Localized phase:



Toy model of the critical point

Must they all individually have g(L/3)>>1? 

We want a thermal system of length L:

The thermal sides are then just able to thermalize the middle.

Now apply this reasoning to each of the two thermal sides to get:

And iterate:

Now consider 3 subsystems of length L/3. 

No! The minimal configuration should be something like this:



Toy model of the critical point

Critical system is a Cantor set of bare thermal regions 

with fractal dimension:

This should be just enough to thermalize the whole system! 

Fluctuation in the tuning parameter (bare disorder) 

resulting in a critical bubble 



RG approach to the MBL transition

Spin chain fragmented into puddles of different types:
incipient insulators and incipient metals.  
Modeled as coupled random matrices:

Time for entanglement to spread across the block

Mean level spacing in the block

“thermalizing block”“insulating block”

(Wigner-Dyson statistics)(Poisson level statistics)

RG flow: itteratively join matrices that entangle with each other at 

running cutoff scale. At the end of the flow we are left with one big 

block that is either insulating or thermalizing  

Vosk, Huse and E.A. arXiv:1412.3117



Starting point for RG: chain of coupled blocks
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ij =  far end-to-end entanglement rate of adjacent blocks 

( of the two blocks if they were considered as a single block) 

Dij =  Mean level spacing of the two block system

gij >> 1 „effective‟ link („thermalizing‟)

gij << 1 „ineffective‟ link („insulating‟)

Meaning of 

the link variables:



Schematics of the RG 
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Join blocks which entangle with each other on the fastest scale. 

Then compute renormalized couplings to the left and right.

Computing the flow will tell us whether we end up with one big 

thermalizing matrix (g>>1) or a big insulator (g<<1) at large scales 



RG scheme
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(i)  Two „insulating‟ links, i.e.  g12<<1 and g23<<1

The simplest limits:

Can be derived for insulators from first principles. 

But also simply understood by taking a log of the two sides:



RG scheme
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(ii)   Two thermalizing links, i.e. g12, g23 >>1

The simplest limits:

R cannot be derived perturbatively in this case. 

But we know: energy transport is diffusive 

and (therefore) entanglement propagates ballistically.

Rules (i) and (ii) apply to interfaces provided g12<<1,  g23 >>1



Outcome of the RG flow
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Outcome of the RG flow
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Thermal side: critical 

behavior (l<x) is insulating

MBL side: No sign of 

universal crossover



Scaling and universal crossover in the MBL side?

Plot log<g> instead of <log g>:



Scaling and universal crossover in the MBL side?

Plot log<g> instead of <log g>:

Transition is triggered by rare metallic regions.

Justifies Potter et. al. (first talk this session) 



Prediction for dynamics: 

Sub-diffusive behavior in the ergodic phase

Seen also in ED studies:  Bar-Lev et.al 2014; Agarwal et.al 2014

(bare coupling)

D
y
n
a
m

ic
a
l 
e
x
p
o
n
e

n
t
(a
)

A result of Griffiths regions: 

exponentially rare regions that cause exponential delay of transport.  



RG result II - eigenstate entropy



RG result II – eigenstate entropy

• Universal jump to full thermal entropy        Direct transition to thermal state

perfect data 

collapse! 



Broad entropy distribution at criticality



Thermalizing

Volume law entanglement 

Many-body localized

Area law entanglement

“Classical” dynamicsQuantum coherent dynamics

Localized

fixed-point

Dynamical RG Random

matrix RG
SA broadly 

distributed

at crit. point

diffusivesub-diffusive

Summary

• More microscopic foundations for the RG ? Controlled numerics ?

• Generalization to higher dimensions ?



Part II:

Many-body delocalization via marginally 

localized phonons ?

Sumilan Banerjee and EA arXiv:1511.03676 



Usual argument for absence of MBL with phonons

Phonon assisted hopping (Mott):

Phonons provide a 

bath with continuous 

spectrum.

But what if the phonons themselves are localized?

1. Random harmonic chain

Examples:

2. Phonons of a disordered superfluid 

	



Phonon localization in 1d

• Phonons localized at all non vanishing frequencies

• But the zero frequency mode is protected (Goldstone mode)

• Divergence of the localization length at low frequency: 

Gurarie, Refael and Chalker, PRL (2008)

• Implies discrete local spectrum:



standard VRH calculation

Is this a valid Fermi golden rule result? 

How does the rate compare to the level spacing of the bath at energy     ?

Saddle-point evaluation of the integral (d=1):

Typical hopping range:

Typical energy taken from phonon:



Failure of VRH in a 1d random chain ?

<<

At low T:

Does the failure of the Fermi golden rule 

hopping rate at low T imply many-body localization ?



Not necessarily!

Hopping assisted by a multiple-phonon process ?

The many-phonon level spacing collapses 

very rapidly with the number of phonons n:



Multi-phonon assisted hopping rate

Perturbative approach for two-phonon assisted hopping:

<<

• 2-phonon rate still smaller than level spacing at low T. 

• May need to go to very high order process!

Better to use a non-perturbative approach !



Polaron transformation

Electron-phonon Hamiltonian:

Eliminate coupling g by a unitary transformation:

Small residual el-ph coupling (order of t):

Coupling contains infinite 

number of phonons !



Polaron variable range hopping

Now can use lowest order Fermi golden rule:

But with “polaron” rather than phonon spectral function (bath DOS):

To assess validity of the Fermi golden rule rate: 

compare  1/t with level spacing of S(w) 



Rate for n-phonon process

Expand spectral function to orders of phonon numbers n:

n-phonon rate for n>>1:

n-phonon level spacing:

Minimal n-phonon process:

Modified VRH rate

Highly singular and strongly suppressed prefactor



Summary of part II

• Standard (Mott) variable range hopping 

fail in a random harmonic chain 

• Multi-phonon processes allow hopping

• Modified variable range hopping rate

Strongly suppressed prefactor.

Ref: S. Banerjee and EA arXiv:1511.03676 


