KITP, Nov 2015

Finite-size scaling of MBL phase transitions

Anushya Chandran

Perimeter Institute

With Chris Laumann (UW) and Vadim Oganesyan (CUNY) arXiv:1509.04285

Eigenstate phase transitions

Eigenstate phase transitions

Harris criterion

Characterized by $\xi \sim \delta^{-\nu}$

A. B. Harris, J. Phys. C 7, 1671 (1974)

Harris criterion

Add disorder in δ

wwwwwwwwwww

$$\delta \text{ in a box: } \ \bar{\delta} \pm C \sqrt{\frac{1}{\xi^d}}$$

RMS Fluctuation > Mean

 \Rightarrow clean fixed point unstable

 $\nu \geq 2/d$ for stability

A. B. Harris, J. Phys. C 7, 1671 (1974)

Generalization by CCFS

- What if no reference clean transition?
- Chayes, Chayes, Fisher, Spencer (CCFS)
 - Probability distribution of order parameter
 - Finite-size scaling

ummmmmmmm

Probability distribution of order parameter

Finite-size scaling

ummmmmmmm

An elementary upper bound

ummmmmmmm

Disorder distribution $p(\text{Disorder}) \propto e^{-E}$

Disorder susceptibility

$$\left. \frac{d[X]}{d\delta} \right| \le \sqrt{[(\partial_{\delta} E)^2]_c}$$

Disorder local \Rightarrow Extensive susceptibility

$$\left|\frac{d[X]}{d\delta}\right| \le \alpha L^{d/2}$$

Tail theorem

 $\nu_{FS} \ge 2/d$

Mean theorem

- Order parameter Y is a bounded random variable
- Finite-size scaling ansatz

$$[Y](L,\delta) \sim \frac{1}{L^a} \tilde{Y}(L^{1/\nu}\delta)$$

For any short-range correlated quenched disorder

$$\nu \ge \frac{2}{d+2a}$$

Chandran, Laumann, Oganesyan, arXiv:1509.04285 (2015)

Application: MBL-ETH transition

Entanglement entropy density

wwwwwwwwwww

Pal and Huse, PRB 82, 174411 (2010) Bauer and Nayak, J Stat Mech P09005 (2013) Tarun Grover, arXiv:1405.1471 (2014)

Entanglement entropy density

• Finite size scaling ansatz

ummmmmmmm

$$[s](L, L_A, \delta) \sim \frac{1}{L^a} \tilde{s}(L^{1/\nu} \delta, L_A/L)$$

- [s] jumps at transition \Rightarrow a=0
- Mean theorem $\Rightarrow \nu \ge 2/d$
- If CCFS assumptions apply, $\nu_{FS} \geq 2/d$

Matrix element/Level spacing

Local perturbation \hat{V} effectiveness in hybridizing eigenstates

Serbyn, Papic, and Abanin, arXiv:1507.01635 (2015) Vosk, Huse, and Altman, PRX 5, 031032 (2015) Potter, Vasseur, and Parameswaran, PRX 5, 031033 (2015)

Matrix element/Level spacing

Serbyn, Papic, and Abanin, arXiv:1507.01635 (2015)

- Fat tails
- Mean and tail theorems don't apply
- No Harris bound on scaling window

Vosk, Huse, and Altman, PRX 5, 031032 (2015) Potter, Vasseur, and Parameswaran, PRX 5, 031033 (2015)

Nightmare on numerics street

ишишишишиши

Kjall, Bardarson, Pollmann, PRL 113, 107204 (2014)

Conservative estimate of asymptotic system sizes L = 500 - 5000

There's no time but.

- Applies to MBL-delocalized, MBL-MBL transitions
- Can generalize to correlated disorder
- Applies to multiple diverging length scales
- Applies to first order transitions

Take-away messages

- $\nu \geq 2/d$ at MBL-ETH transition
 - Mean entanglement entropy density ([s])
 - Mean level spacing parameter ([r])
 - ...
- Going forward
 - Gaussian distributed disorder
 - Medians, entire distribution
 - Caution: collapsing tails can lead to smaller apparent v