Classical Nonlinear Lattice Waves - any MBL?

Sergej Flach
PCS NZIAS
Daejeon IBS MU Auckland

Based on collaborations with:
S Aubry, J Bodyfelt, F Dalfovo, I Gkolias, G Gligoric, M Ivanchenko, R Khomeriki, S Komineas, G Kopidakis, D Krimer, T Laptyeva, M Larcher, N Li, M Modugno, G Radons, K Rayanov, C Skokos, X Yu

AWARNING

Messenger Lectures on ‘The Character of Physical Law’ Cornell U 1964 lecture 6 : Probability and Uncertainty - the Quantum Mechanical View of Nature

Nonlinear Hamiltonian lattice waves?

- all about systems which are close to integrability

$$
H=H_{0}(\vec{J})+\epsilon H_{1}(\vec{J}, \vec{\theta})
$$

- e.g. countable set of linear modes integrable

$$
H_{0}=\sum \omega_{l} J_{l}
$$

- add nonlinear interaction between these modes typically the system becomes nonintegrable

$$
H_{1}=\sum_{l, m, p, q} I_{l, m, p, q} V\left((J, \theta)_{l},(J, \theta)_{m},(J, \theta)_{p},(J, \theta)_{q}\right)
$$

- follow the spreading of a localized (e.g. single mode) wave packet
- or compute properly defined conductivities

Examples: disorder (AL), quasiperiodics (AA), finite systems (FPU) or simply weakly coupled anharmonic oscillators/rotors

MBL? No? But perhaps outside MBL, in the bad metal nonergodic regime?

Nonlinear Hamiltonian lattice waves?

- MBL - quantum, nonergodic bad metal - classical ?
- What about KAM, Arnold diffusion, stochastic web?
- Is QM simply coarse-graining over fine classical phase space structures?
- Or is classical dynamics a brutal projection from high-d Hilbert into low(er)-d phase space ?

Example: FPU Paradox : selective but long range coupling

Origin of equipartition and ergodicity?

Wave interactions?

$$
\begin{aligned}
& \ddot{x}_{n}=\left(x_{n+1}-2 x_{n}+x_{n-1}\right)+\alpha\left[\left(x_{n+1}-x_{n}\right)^{2}-\left(x_{n}-x_{n-1}\right)^{2}\right] \\
& \ddot{Q}_{q}+\omega_{q}^{2} Q_{q}=-\frac{\alpha}{\sqrt{2(N+1)}} \sum_{l, m=1}^{N} \omega_{q} \omega_{l} \omega_{m} B_{q, l, m} Q_{l} Q_{m} \quad \omega_{q}=2 \sin \left(\frac{\pi q}{2(N+1)}\right) \\
& B_{q, l, m}=\sum_{ \pm}\left(\delta_{q \pm l \pm m, 0}-\delta_{q \pm l \pm m, 2(N+1)}\right)
\end{aligned}
$$

FPU problem:
excited mode $q=1$
did not observe equipartition
energy stays localized in few modes recurrences after more integrations thresholds in energy, system size etc

two time scales

T1: formation of exponentially localized packets
T2: gradual destruction and equipartition
Computing periodic orbits, obtain boundary of pert. theory: $\mathrm{T} 2 \sim \mathrm{~T} 1: \quad \frac{E_{t h}}{N} \sim \pi^{4} /\left(\alpha^{2} N^{4}\right)$

FPU: Examples of open problems

- dependence of T2 on parameters
- where is KAM
- dynamical mechanisms of spreading
- Quantum case: Finite System MBL?

Short range mode-mode interactions: model inflation

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{D}}=\sum_{\mathbf{r}}\left[\epsilon_{\mathbf{r}}\left|\psi_{\mathbf{r}}\right|^{2}+\frac{2 \beta\left|\psi_{\mathbf{r}}\right|^{\sigma+2}}{\sigma+2}-\sum_{\mathbf{n}} \psi_{\mathbf{r}} \psi_{\mathbf{n}}^{*}\right] \\
& i \dot{\psi}_{\mathbf{r}}=\epsilon_{\mathbf{r}} \psi_{\mathbf{r}}+\beta\left|\psi_{\mathbf{r}}\right|^{\sigma} \psi_{\mathbf{r}}-\sum_{\mathbf{n}} \psi_{\mathbf{n}} \\
& \mathcal{H}_{\mathrm{K}}=\sum_{\mathbf{r}}\left[\frac{p_{\mathbf{r}}^{2}}{2}+\frac{\tilde{\epsilon}_{\mathbf{r}} u_{\mathbf{r}}^{2}}{2}+\frac{\left|u_{\mathbf{r}}\right|^{\sigma+2}}{\sigma+2}+\frac{1}{4 W} \sum_{\mathbf{n}}\left(u_{\mathbf{n}}-u_{\mathbf{r}}\right)^{2}\right] \\
& \ddot{u}_{\mathbf{r}}=-\tilde{\epsilon}_{\mathbf{r}} u_{\mathbf{r}}-\left|u_{\mathbf{r}}\right|^{\sigma} u_{\mathbf{r}}+\frac{1}{W} \sum_{\mathbf{n}}\left(u_{\mathbf{n}}-u_{\mathbf{r}}\right) \\
& \mathcal{H}=\sum_{n}\left[\frac{p_{n}^{2}}{2}+\frac{\varepsilon_{n} x_{n}^{2}}{2}+\sum_{m \in D(n)} \frac{\left(x_{m}-x_{\boldsymbol{n}}\right)^{\gamma}}{2 \gamma}\right],
\end{aligned}
$$

Various classes of models can be defined and are available on the market:

- Number of additional integrals of motion (e.g. norm = particle number)
- Power (exponent) of nonlinearity, not only restricted to two-body int.
- Space dimension
- Connectivity between normal modes (number, long vs short range)

$$
i \frac{\partial \psi_{l}}{\partial t}=\epsilon_{l} \psi_{l}-\psi_{l+1}-\psi_{l-1} \quad\left\{\epsilon_{l}\right\} \text { in }[-W / 2, W / 2]
$$

Eigenvalues: $\quad \lambda_{\nu} \in\left[-2-\frac{W}{2}, 2+\frac{W}{2}\right]$
Width of EV spectrum: $\Delta=4+W$
Asymptotic decay: $\quad A_{\nu, l} \sim \mathrm{e}^{-l / \xi\left(\lambda_{\nu}\right)}$
Localization length: $\xi\left(\lambda_{\nu}\right) \leq \xi(0) \approx 100 / W^{2}$
Localization volume of NM: L

$$
\lambda A_{l}=\epsilon_{l} A_{l}-A_{l-1}-A_{l+1} \quad\left\{\epsilon_{l}\right\} \text { in }[-W / 2, W / 2]
$$

Eigenvalues: $\quad \lambda_{\nu} \in\left[-2-\frac{W}{2}, 2+\frac{W}{2}\right]$
Width of EV spectrum: $\Delta=4+W$
Asymptotic decay: $A_{\nu, l} \sim \mathrm{e}^{-l / \xi\left(\lambda_{\nu}\right)}$
Localization length: $\xi\left(\lambda_{\nu}\right) \leq \xi(0) \approx 100 / W^{2}$
Localization volume of NM: L

Topical Reviews:
Nonlinear waves: spreading!

- SF, Springer 2015
- T.V.Lapteva,M.V. Ivanchenko and SF, J Phys A Topical Review 47 (2014) 493001
- a disordered medium
- linear equations of motion: all eigenstates are localized with a finite upper bound on the localization length
- add short range nonlinearity (interactions)
- follow the spreading of an initially localized wave packet
- these models may serve as approximations to quantum many body systems in certain limits, e.g. of a large number of (bosonic) particles photons or cold atoms

$$
i \dot{\psi}_{l}=\epsilon_{l} \psi_{l}+\beta\left|\psi_{l}\right|^{2} \psi_{l}-\psi_{l+1}-\psi_{l-1}
$$

Two conserved quantities: energy and norm (aka number of particles)

Topical Reviews:

Defining the problem

- SF, Springer 2015
- T.V.Lapteva,M.V. Ivanchenko and SF, J Phys A Topical Review 47 (2014) 493001
- a disordered medium
- linear equations of motion: all eigenstates are localized with a finite upper bound on the localization length
- add short range nonlinearity (interactions)
- follow the spreading of an initially localized wave packet

Will it delocalize?
Yes because of nonintegrability and ergodicity
No because of energy conservation spreading leads to small energy/norm density, nonlinearity can be neglected, dynamics becomes integrable, and Anderson localization is restored

Equations in normal mode space:

$$
\begin{aligned}
& i \dot{\phi}_{\nu}=\lambda_{\nu} \phi_{\nu}+\beta \sum_{\nu_{1}, \nu_{2}, \nu_{3}} I_{\nu, \nu_{1}, \nu_{2}, \nu_{3}} \phi_{\nu_{1}}^{*} \phi_{\nu_{2}} \phi_{\nu_{3}} \\
& I_{\nu, \nu_{1}, \nu_{2}, \nu_{3}}=\sum_{l} A_{\nu, l} A_{\nu_{1}, l} A_{\nu_{2}, l} A_{\nu_{3}, l}
\end{aligned}
$$

NM ordering in real space: $\quad X_{\nu}=\sum_{l} l A_{\nu, l}^{2}$

Characterization of wavepackets in normal mode space:
$z_{\nu} \equiv\left|\phi_{\nu}\right|^{2} / \sum_{\mu}\left|\phi_{\mu}\right|^{2} \quad \bar{\nu}=\sum_{\nu} \nu z_{\nu}$
Second moment: $\quad m_{2}=\sum_{\nu}(\nu-\bar{\nu})^{2} z_{\nu} \longrightarrow \quad$ location of tails
Participation number: $P=1 / \sum_{\nu} z_{\nu}^{2} \longrightarrow$ number of strongly excited modes
Compactness index: $\zeta=\frac{P^{2}}{m_{2}} \xrightarrow{\longrightarrow} \mathrm{~K}$ adjacent sites equally excited: $\zeta=12$ or equipartition:
$\zeta=3$

- Eigenvalue (frequency) spectrum width: $\Delta=W+4$
- Localization volume of eigenstate: $V \approx 360 / \mathbf{W}^{2}$
~18 (sites)
- Average frequency spacing inside localization volume: $d=\Delta / \mathbf{V}$
0.43
- Nonlinearity induced frequency shift: $\quad \delta_{l}=\beta\left|\psi_{l}\right|^{2}$

Three expected evolution regimes:
Weak chaos : $\delta<d$
Strong chaos $\quad: \mathrm{d}<\delta<2$ (partial) self trapping : $2<\delta$

SF Chem Phys 2010, TV Laptyeva et al EPL 2010

Disordered chains: subdiffusion!

$$
\psi_{l}=\delta_{l, l_{0}}
$$

SF+D.Krimer+H.Skokos $09 \quad \epsilon_{l_{0}}=0$
$W=4, \beta=0,0.1,1,4.5$

M. Molina 98,
D. Shepelyansky+A. Pikovsky 08, SF+D.Krimer+H.Skokos 09, + MANY MORE

Wavepacket spreads volume.
 DNLS at $t=10^{8}$

 way beyond localization$$
W=4, \beta=1,5
$$

Test: additional manual dephasing in normal mode space

SF et al PRL 2009
$\mathrm{W}=4$
Wave packet with 20 sites
Norm density = 1
Random initial phases
Averaging over 1000 realizations

$$
\begin{aligned}
& \alpha=0.33 \pm 0.02 \text { (DNLS) } \\
& \alpha=0.33 \pm 0.05(\mathrm{KG})
\end{aligned}
$$

Strong chaos and crossover to weak chaos

TV Laptyeva et al EPL 2010

Integrability or chaos?

$$
i \dot{\phi}_{v}=\lambda_{v} \phi_{v}+\beta \sum_{v_{1}, v_{2}, v_{3}} I_{v, v_{1}, v_{2}, v_{3}} \phi_{v_{1}}^{*} \phi_{v_{2}} \phi_{v_{3}} \quad I_{v, v_{1}, v_{2}, v_{3}}=\sum_{l} A_{v, l} A_{v_{1}, l} A_{v_{2}, l} A_{v_{3}, l}
$$

$$
i \dot{\chi}_{v}=\beta \sum_{v_{1}, v_{2}, v_{3}} I_{v, v_{1}, v_{2}, v_{3}} \chi_{v_{1}}^{*} \chi_{v_{2}} \chi_{v_{3}} \mathrm{e}^{i\left(\lambda_{v}+\lambda_{v_{1}}-\lambda_{v_{2}}-\lambda_{v_{3}}\right) t} \quad \phi_{v}=\mathrm{e}^{-i \lambda_{\nu} t} \chi_{v}
$$

Average over time, obtain secular normal form = integral approximation Nr 2 : NO SPREADING!

$$
i \dot{\chi}_{v}=\beta \sum_{v_{1}} I_{v, v, v_{1}, v_{1}}\left|\chi_{v_{1}}\right|^{2} \chi_{v} \quad \chi_{v}(t)=\eta_{v} \mathrm{e}^{-i \Omega_{v} t}, \Omega_{v}=\beta \sum_{v_{1}} I_{v, v, v_{1}, v_{1}}\left|\eta_{v_{1}}\right|^{2}
$$

One of the neglected terms: perturbation approach

$$
\begin{aligned}
& \dot{\chi}_{v}=\beta I_{v, \mathbf{n}} \chi_{v_{1}}^{*} \chi_{v_{2}} \chi_{v_{3}} \mathrm{e}^{\mathrm{i} \lambda_{v, n} t} \quad \lambda_{v, \mathbf{n}} \equiv \lambda_{v}+\lambda_{v_{1}}-\lambda_{v_{2}}-\lambda_{v_{3}}, \mathbf{n} \equiv\left(v_{1}, v_{2}, v_{3}\right) \\
& \left|\chi_{v}^{(1)}\right|=\left|\beta \eta_{v_{1}} \eta_{v_{2}} \eta_{v_{3}}\right| R_{v, \mathbf{n}}^{-1}, R_{v, \mathbf{n}} \sim\left|\frac{\lambda_{v, \mathbf{n}}}{I_{v, \mathbf{n}}}\right| \\
& \mathscr{W}_{\lambda}\left(\lambda_{v, \mathbf{n}}\right) \quad \mathscr{W}_{\lambda}(x) \approx \frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{\chi^{2}}{2 \sigma^{2}}}, \sigma^{2}=\frac{\Delta^{2}}{12} \\
& \mathscr{W}_{R}(x)=\langle I\rangle \mathscr{W}_{\lambda}(\langle I\rangle x), \mathscr{W}_{R}(0)=\frac{\sqrt{3}\langle I\rangle}{\sqrt{2 \pi} \Delta}
\end{aligned}
$$

Breakdown of perturbation approach = resonance

$$
\begin{aligned}
& \beta n<R_{V, \mathbf{n}} \\
& \mathscr{P}_{v}=1-\left(1-\int_{0}^{\beta n} \mathscr{W}_{R}(x) d x\right)^{V^{3}},\left.\mathscr{P}_{v}\right|_{\beta n \rightarrow 0} \rightarrow \frac{\sqrt{3} V^{3}\langle I\rangle}{\sqrt{2 \pi} \Delta} \beta n
\end{aligned}
$$

Effective noise theory

- at some time t packet contains $1 / \mathrm{n}$ modes: $1 / n \gg \overline{P_{\nu}}$
- each mode on average has norm $\left|\phi_{\nu}\right|^{2} \sim n \ll 1$
μ
- the second moment amounts to $\quad m_{2} \sim 1 / n^{2}$

Simplest assumption:

- some modes in packet interact resonantly and therefore evolve chaotic
- Probability of resonance: P(βn)
- all phases decohere on some time scale
exterior mode:

$$
i \dot{\phi}_{\mu} \approx \lambda_{\mu} \phi_{\mu}+\beta n^{3 / 2} \mathcal{P}(\beta n) f(t)
$$

$$
\left\langle f(t) f\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right)
$$

confirmed by:
Michaely et al
PRE 2012
Skokos et al 2013
momentary diffusion rate:

$$
D=1 / T \sim \beta^{2} n^{2}(\mathcal{P}(\beta n))^{2}
$$

Main findings (sweeping a lot of stuff under the carpet)

- d - mean level spacing in localization volume

$$
m_{2} \sim \begin{cases}\beta t^{1 / 2}, & \beta n / d>1(\text { strong chaos }) \\ d^{-2 / 3} \beta^{4 / 3} t^{1 / 3}, & \beta n / d<1(\text { weak chaos })\end{cases}
$$

$m_{2} \sim\left(\beta^{2} t\right)^{\frac{2}{2+\sigma D}}$, strong chaos, $m_{2} \sim\left(\beta^{4} t\right)^{\frac{1}{1+\sigma D}}$, weak chaos.

- Strong chaos: intermediate but potentially long lasting regime
- Weak chaos: so far asymptotic
- Spread: up to 300ξ, time up to 10^{10}, averaging up to 1000 realizations
- Chaotic dynamics, positive Lyapunovs
- No signs of slowing down
- confirmed for quasiperiodics, disorder, nonlinear quantum kicker rotor, 1d, 2d
- Qualitatively similar for Wannier Stark ladder (but exponents nonuniversal)

Restoring Anderson localization? A matter of probability and KAM

Fix the size of a wave packet:

- the probability P to hit a regular trajectory tends to unity in the limit of zero nonlinearity
(Aubry/Johansson, Fishman/Pikovsky, Basko, Ivanchenko/Laptyeva/SF)

Fix the norm/energy but vary the size of a wave packet:

- The probability to hit a regular trajectory tends to unity in the limit of infinite size
(Fishman/Pikovsky)
- This depends on the particular model, and nonlinearity exponent (Ivanchenko/Laptyeva/SF)

NOTE: spreading wave packets are observed to penetrate this KAM regime !

Interacting BEC with quasiperiodic Aubry-Andre potential

Observation of Subdiffusion in a Disordered Interacting System

E. Lucioni, ${ }^{1, *}$ B. Deissler, ${ }^{1}$ L. Tanzi, ${ }^{1}$ G. Roati, ${ }^{1}$ M. Zaccanti, ${ }^{1, \dagger}$ M. Modugno, ${ }^{2,3}$ M. Larcher, ${ }^{4}$
F. Dalfovo, ${ }^{4}$ M. Inguscio, ${ }^{1}$ and G. Modugno ${ }^{1,{ }^{\text {, }}}$

Bose-Einstein condensate of ${ }^{39} \mathrm{~K}$ atoms

Finite temperature conductivities

$$
\begin{gathered}
\mathcal{H}_{K}=\sum_{l} \frac{p_{l}^{2}}{2}+\frac{\tilde{\epsilon}_{l}}{2} u_{l}^{2}+\frac{1}{4} u_{l}^{4}+\frac{1}{2 W}\left(u_{l+1}-u_{l}\right)^{2} \quad \kappa=j N /\left(T_{N}-T_{1}\right) \\
\ddot{u}_{1, N}=-\partial H / \partial u_{1, N}+\xi_{1, N}-\lambda \dot{u}_{1, N} \quad\left\langle\xi_{1, N}\right\rangle=0 \text { and }\left\langle\xi_{1, N}(t) \xi_{1, N}(0)\right\rangle=2 \lambda T_{1, N} \delta(t)
\end{gathered}
$$

Figure 2. KG chain: $\kappa(T)$ for $W=2$ (filled squares). For comparison we also show the data for $\tilde{\epsilon}_{l} \equiv 1$ (filled circles). Thin solid lines guide the eye. The dashed line corresponds to the power law T^{2}. The stronger disorder case $W=6$ corresponds to the open diamond data points.

Some questions

- Will spreading slow down log-like in a further regime of KAM?
- Weak chaos definitely persists into a KAM regime!
- Is the weak chaos regime a nonergodic bad metal, with $\mathrm{D} \sim(\mathrm{bn})^{4}$?
- If yes, what is then the predicted log-like VeryWeakChaos regime some kind of classical pseudo-MBL?
- If there is VWC, what kind of not-so-bad metal is then weak chaos?
- Spreading wave packets allow to explore the Arnold web by simply penetrating into it deeper and deeper upon spreading!
- Or is everything only the physics of roundoff errors?
- All this is about penetrating a KAM + Arnold diffusion/web regime for short range mode-mode interactions.
Naive quantizing implies a coarse-graining of classical phase space structures. Is that enough to get some kind of MBL?

Some questions

- With the assumption of chaos the spreading characteristics could be related to equilibrium properties at corresponding densities
- KAM: for a sufficiently localized wave packet, AL is restored for weak nonlinearities in a probabilistic way (Basko, Ivanchenko et al, Fishman)
- Can one perform similar computations in MBL settings?
- Experiments (light, cold atoms) so far reach 104-5 in our dimensionless time units, and do observe onset of spreading, but no reliable exponents, not even mentioning the issue of asymptotics, or quantum deviations
- Is this all about zero density and of no relevance for finite T? Or are the insights from 'thermalizing' wave packets connecting nonequilibrium dynamics with expected equilibrium properties?

Nonlinear diffusion equations and scaling

$$
\begin{aligned}
& \quad \partial_{t} \mathcal{P}=\partial_{x}\left(\kappa \mathcal{P}^{a} \partial_{x} \mathcal{P}\right) \quad \mathcal{P}(x, t)=\left[A-\frac{a x^{2}}{2(2+a) t^{2 /(2+a)}}\right]^{1 / a} t^{-1 /(2+a)} \\
& \text { Zeldovich, Kompaneets, }
\end{aligned}
$$

\section*{Zeldovich, Kompaneets,

Zeldovich, Kompaneets, Barenblatt et al, 1950s-1960s

$$
m_{\eta}=\left[\frac{2(2+a)}{a}\right]^{\frac{\eta+1}{2}} \mathcal{B}\left[\frac{a+1}{a}, \frac{\eta+1}{2}\right] A^{\frac{a(\eta+1)+2}{2 a}} t^{\frac{\eta}{2+a}}
$$

TV Laptyeva et al, Physica D 2013

Density resolved spreading

$$
\begin{aligned}
H & =\sum_{l=1}^{N} \epsilon_{l}\left|\Psi_{l}\right|^{2}-J\left(\Psi_{l} \Psi_{l+1}^{*}+c c\right)+\frac{1}{2} \beta\left|\Psi_{l}\right|^{4} \\
S & =\sum_{l=1}^{N}\left|\Psi_{l}\right|^{2}
\end{aligned}
$$

$$
\text { scaled densities : } y=\beta H / N, x=\beta S / N
$$ partition function : $\mathcal{Z}=\int d \Gamma \mathrm{e}^{-\frac{1}{T}(H+\mu S)}$

$$
\begin{aligned}
& T=0 \text { line }, J=1, W \leq 10: \\
& y_{0} \approx-(2+W / 2) x-x^{2} \ln (x) / 2, x \leq d \\
& y_{0} \approx-2 x+x^{2} / 2, x \gg d
\end{aligned}
$$

$T=\infty$ line, any J, W, lattice dimension : $y_{\infty}=x^{2}$

Courtesy J Bodyfelt

Density resolved spreading

wave packets spread along straight lines, straight to zero
x < d : weak chaos, observed down to $x=d / 100$!

crossing the Gibbs-nonGibbs line shows no impact on spreading

Ivanchenko et al, Basko:
$\mathbf{x} \ll \mathbf{d}$ is KAM regime for wave packets $P_{K A M} \sim(1-x / d)^{\xi}$
spreading wave packets launched outside the KAM regime with $x>d$ simply spread into it once $x<d$
$x \ll d$ might be a nonergodic regime with nonzero conductivity
work in progress ...

