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Nonlinear Hamiltonian lattice waves ? 

•  all about systems which are close to integrability 

•  e.g. countable set of linear modes 
   integrable 
 
•  add nonlinear interaction between these modes 
   typically the system becomes nonintegrable 
 
 

•  follow the spreading of a localized ( e.g. single mode) wave packet 

•  or compute properly defined conductivities 

Examples: disorder (AL), quasiperiodics (AA), finite systems (FPU) 
                   or simply weakly coupled anharmonic oscillators/rotors 
 
MBL? No? But perhaps outside MBL, in the bad metal nonergodic regime ? 

H0 =
X

!lJl

H = H0( ~J) + ✏H1( ~J, ~✓)

H1 =
X

l,m,p,q

Il,m,p,qV ((J, ✓)l, (J, ✓)m, (J, ✓)p, (J, ✓)q)



Nonlinear Hamiltonian lattice waves ? 

•  MBL – quantum, nonergodic bad metal – classical ? 

•  What about KAM, Arnold diffusion, stochastic web ? 

•  Is QM simply coarse-graining over fine classical phase space structures? 

•  Or is classical dynamics a brutal projection from high-d Hilbert into  
   low(er)-d phase space ? 



Origin of equipartition and ergodicity? 
Wave interactions ? 

 Example: FPU Paradox : selective but long range coupling 

FPU problem: 
excited mode q=1 
did not observe equipartition 
energy stays localized in few modes 
recurrences after more integrations 
thresholds in energy, system size etc 

two time scales 
T1: formation of exponentially localized packets 
T2: gradual destruction and equipartition  
 
Computing periodic orbits, obtain boundary of pert. theory:   T2 ~ T1:  

Eth

N
⇠ ⇡4/(↵2N4)

!q = 2 sin(
⇡q

2(N + 1)
)



FPU: Examples of open problems 

•  dependence of T2 on parameters 

•  where is KAM 

•  dynamical mechanisms of spreading 

•  Quantum case: Finite System MBL ? 



Short range mode-mode interactions: model inflation 



Various classes of models can be defined and are available on the market: 
 
•  Number of additional integrals of motion (e.g. norm = particle number) 

•  Power (exponent) of nonlinearity, not only restricted to two-body int. 

•  Space dimension 

•  Connectivity between normal modes (number, long vs short range) 



Eigenvalues: 

Width of EV spectrum: 

Asymptotic decay: 

Localization volume of NM: L 

l 

Localization length: 

Anderson localization 

in 

Anderson (1958) 
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Nonlinear waves: spreading! 

•  a disordered medium 
 
•  linear equations of motion: all eigenstates are localized  
  with a finite upper bound on the localization length 
 
•  add short range nonlinearity (interactions) 
 
•  follow the spreading of an initially localized wave packet 

•  these models may serve as approximations to quantum many body 
  systems in certain limits, e.g. of a large number of (bosonic) particles – 
  photons or cold atoms   

Topical Reviews:  
•  SF, Springer 2015 
•  T.V.Lapteva,M.V. Ivanchenko and SF, 
       J Phys A Topical Review 47 (2014) 493001 

Two conserved quantities: energy and norm (aka number of particles)  



Defining the problem 

Will it delocalize? Yes because of nonintegrability and ergodicity 
 
No because of energy conservation –  
      spreading leads to small energy/norm density,  
      nonlinearity can be neglected,  
      dynamics becomes integrable, and  
      Anderson localization is restored 

Topical Reviews:  
•  SF, Springer 2015 
•  T.V.Lapteva,M.V. Ivanchenko and SF, 
       J Phys A Topical Review 47 (2014) 493001 

•  a disordered medium 
 
•  linear equations of motion: all eigenstates are localized  
  with a finite upper bound on the localization length 
 
•  add short range nonlinearity (interactions) 
 
•  follow the spreading of an initially localized wave packet 



Equations in normal mode space: 

NM ordering in real space: 

Characterization of wavepackets in normal mode space: 

Second moment: 

Participation number: 

Compactness index: 

K adjacent sites equally excited: 

K adjacent sites, every second empty 
or equipartition: 

location of tails 

number of strongly excited modes 



Scales 

•  Eigenvalue (frequency) spectrum width:  

•  Localization volume of eigenstate:   V ≈ 360/W 

•  Average frequency spacing inside  
                           localization volume:    d = Δ/V  

W=4 : 

8 

~18 (sites) 

0.43 

•  Nonlinearity induced frequency shift: 

Three expected evolution regimes: 
Weak chaos                : δ < d 
Strong chaos              : d < δ < 2 
(partial) self trapping : 2 < δ 

2 

SF Chem Phys 2010, TV Laptyeva et al EPL 2010 



W=4, β= 0, 0.1, 1, 4.5 

Disordered chains: subdiffusion!  

1/6 

Wavepacket spreads 
way beyond localization 
volume. 
DNLS at 

1/3 

M. Molina 98, 
D. Shepelyansky+A. Pikovsky 08,  
SF+D.Krimer+H.Skokos 09, + MANY MORE 

SF+D.Krimer+H.Skokos 09 

W=4, β= 1 , 5 



Test: additional manual dephasing in normal mode space   

W=4,7,10 β= 3,4,6 

1/3 

1/2 

SF et al PRL 2009 

m2 ⇠ t↵

↵ =???



W=4 
Wave packet with 20 sites 
Norm density = 1 
Random initial phases 
Averaging over 1000 realizations  

DNLS, W=4 KG, W=4 KG 
TV Laptyeva et al EPL 2010 Strong chaos and crossover to weak chaos  

α = 0.33 ± 0.02 (DNLS) 
α = 0.33 ± 0.05 (KG) SF et al PRL 2009 

↵(log10 t) =
d

log10 t
hlog10 m2i



Integrability or chaos? 
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The asymptotic spatial decay of an eigenvector is given by A

n ,l ⇠ e�|l|/x (l
n

)

where x (l
n

) is the localization length and x (l
n

)⇡ 24(4�l

2
n

)/W

2 for weak disor-
der W  4 [30].

The NM participation number p

n

= 1/Â
l

A

4
n ,l measures the number of strongly

excited lattice sites in a given wave density distribution. It is one possible way to
quantize the spatial extend V

n

(localization volume) of a NM. However fluctuations
of the density distribution inside a given NM lead to an underestimate of V

n

when
using p

n

. A better way to estimate the distance between the two exponential tails
of an eigenvector is to use the second moment of its density distribution m

(n)
2 =

Â
l

(X
n

� l)2
A

2
n ,l . It follows that the estimate V

n

=
q

12m

(n)
2 is highly precise and

sufficient for most purposes [31]. The localization volume V is on average of the
order of 3x for weak disorder, and tends to V = 1 in the limit of strong disorder.

Consider an eigenstate A

n ,l for a given disorder realization. How many of the
neighboring eigenstates will have non-exponentially small amplitudes inside its lo-
calization volume V

n

? Note that there is a one-to-one correspondence between the
number of lattice sites, and the number of eigenstates. Therefore, on average the
number of neighboring eigenstates will be simply V

n

. Let us consider sets of neigh-
boring eigenstates. Their eigenvalues will be in general different, but confined to the
interval D of the spectrum. Therefore the average spacing d of eigenvalues of neigh-
boring NMs within the range of a localization volume is of the order of d ⇡ D/V ,
which becomes d ⇡DW

2/300 for weak disorder. The two scales d D are expected
to determine the packet evolution details in the presence of nonlinearity.

Due to the localized character of the NMs, any localized wave packet with size
L which is launched into the system for b = 0 , will stay localized for all times. If
L ⌧V , then the wave packet will expand into the localization volume. This expan-
sion will take a time of the order of t

lin

= 2p/d. If instead L � V , no substantial
expansion will be observed in real space. We remind that Anderson localization is
relying on the phase coherence of waves. Wave packets which are trapped due to
Anderson localization correspond to trajectories in phase space evolving on tori, i.e.
they evolve quasi-periodically in time.

4 Adding nonlinearity

The equations of motion of (2) in normal mode space read

iḟ

n

= l

n

f

n

+b Â
n1,n2,n3

I

n ,n1,n2,n3f

⇤
n1

f

n2f

n3 (6)

with the overlap integral

I

n ,n1,n2,n3 = Â
l

A

n ,lAn1,lAn2,lAn3,l . (7)

The variables f

n

determine the complex time-dependent amplitudes of the NMs.
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Integral approximation (Nr. 1): 
NO SPREADING!  

6 Sergej Flach

The frequency shift of a single site oscillator induced by the nonlinearity is d

l

=
b |y

l

|2. If instead a single mode is excited, its frequency shift can be estimated by
d

n

= b |f
n

|2/p

n

.
As it follows from (6), nonlinearity induces an interaction between NMs. Since

all NMs are exponentially localized in space, each normal mode is effectively cou-
pled to a finite number of neighboring NMs, i.e. the interaction range is finite. How-
ever the strength of the coupling is proportional to the norm density n = |f |2. Let us
assume that a wave packet spreads. In the course of spreading its norm density will
become smaller. Therefore the effective coupling strength between NMs decreases
as well. At the same time the number of excited NMs grows. One possible outcome
would be: (I) that after some time the coupling will be weak enough to be neglected.
If neglected, the nonlinear terms are removed, the problem is reduced to the linear
wave equation, and we obtain again Anderson localization. That implies that the
trajectory happens to be on a quasiperiodic torus - on which it was in fact from the
beginning. Another possibility is: (II) that spreading continues for all times. That
would imply that the trajectory evolves not on a quasiperiodic torus, but in some
chaotic part of phase space. This second possibility (II) can be subdivided further,
e.g. assuming that the wave packet will exit, or enter, a Kolmogorov-Arnold-Moser
(KAM) regime of mixed phase space, or stay all the time outside such a perturbative
KAM regime. In particular if the wave packet dynamics will enter a KAM regime for
large times, one might speculate that the trajectory will get trapped between denser
and denser torus structures in phase space after some spreading, leading again to
localization as an asymptotic outcome, or at least to some very strong slowing down
of the spreading process.

Consider a wave packet with size L and norm density n. Replace it by a finite
system of size L and norm density n. Such a finite system will be in general noninte-
grable. Therefore the only possibility to generically obtain a quasiperiodic evolution
is to be in the regime where the KAM theorem holds. Then there is a finite fraction
of the available phase space volume which is filled with KAM tori. For a given L

it is expected that there is a critical density n

KAM

(L) below which the KAM regime
will hold. We do not know this L-dependence. Computational studies may not be
very conclusive here, since it is hard to distinguish a regime of very weak chaos
from a strict quasiperiodic one on finite time scales.

The above first possible outcome (I) (localization) will be realized if the packet is
launched in a KAM regime. Whether that is possible at all for an infinite system is
an open issue. The second outcome (II) (spreading) implies that we start in a chaotic
regime and remain there. Since the packet density is reduced and is proportional to
its inverse size L at later times, this option implies that the critical density n

KAM

(L)
decays faster than 1/L, possibly faster than any power of 1/L.

Let us discuss briefly one example of an integrable system, for which Anderson
localization will not be destroyed. Consider a Hamiltonian in NM representation
using actions J

n

and angles q

n

as coordinates:

H
int

= Â
n

l

n

J

n

+b Â
n1,n2,n3,n4

I

n1,n2,n3,n4

p
J

n1J

n2J

n3J

n4 . (8)
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We assume that the set of eigenfrequencies {l

n

} and the overlap integrals I

n1,n2,n3,n4
are identical with those describing the DNLS model (6), (7). The equations of
motion J̇

n

= �∂H
int

/∂q

n

and q̇

n

= ∂H
int

/∂J

n

yield J̇

n

= 0 since the integrable
Hamiltonian (8) depends only on the actions. Therefore, any localized initial condi-
tion (e. g. J

n

(t = 0) µ d

n ,n0 ) will stay localized, since actions of modes which are at
large distances will never get excited. Thus, any observed spreading of wave pack-
ets, which we will study in detail in the present work, is presumably entirely due to
the nonintegrability of the considered models, at variance to (8).

4.1 The secular normal form

Let us perform a further transformation f

n

= e�il

n

t

c

n

and insert it into Eq. (6):

iċ

n

= b Â
n1,n2,n3

I

n ,n1,n2,n3 c

⇤
n1

c

n2 c

n3ei(l
n

+l

n1�l

n2�l

n3 )t . (9)

The right hand side contains oscillating functions with frequencies

l

n ,n ⌘ l

n

+l

n1 �l

n2 �l

n3 , n ⌘ (n1,n2,n3) . (10)

For certain values of n ,n the value l

n ,n becomes exactly zero. These secular terms
define some slow evolution of (9). Let us perform an averaging over time of all
terms in the rhs of (9), leaving therefore only the secular terms. The resulting secular
normal form equations (SNFE) take the form

iċ

n

= b Â
n1

I

n ,n,n1,n1 |cn1 |
2
c

n

. (11)

Note that possible missing factors due to index permutations can be absorbed into
the overlap integrals, and are not of importance for what is following. The SNFE
can be now solved for any initial condition c

n

(t = 0) = h

n

and yields

c

n

(t) = h

n

e�iW

n

t , W

n

= b Â
n1

I

n ,n,n1,n1 |hn1 |
2 . (12)

Since the norm of every NM is preserved in time for the SNFE, it follows that
Anderson localization is preserved within the SNFE. The only change one obtains
is the renormalization of the eigenfrequencies l

n

into l̃

n

= l

n

+W

n

. Moreover,
the phase coherence of NMs is preserved as well. Any different outcome will be
therefore due to the nonsecular terms, neglected within the SNFE. We note that
I

n ,n,n ,n ⌘ p

�1
n

. Then the sum in (7) contains only nonnegative terms. By normal-
ization A

n ,l ⇠ 1/
p

V inside its localization volume, and therefore I

n ,n,n ,n ⇠ 1/V .
Similar argumentation leads to I

n ,n,n1,n1 ⇠ 1/V .
Let us discuss several different initial states. (a) If only one normal mode is ini-

tially excited to norm n, then it follows from (12) that its frequency renormalization
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Average over time, obtain secular normal form = integral approximation Nr 2: 
NO SPREADING! 
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One of the neglected terms: perturbation approach 
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in the regime of weak chaos, or selftrapping. Other initial states allow for another
intermediate regime of strong chaos.

4.2 Beyond the secular normal form

The time-averaged secular norm form (11) keeps the integrability of the nonlinear
wave equation, and therefore also keeps Anderson localization. Any deviation from
Anderson localization is therefore due to the omitted time-dependent oscillating
terms in (9). Let us isolate one of the many terms in the rhs sum in (9)

ċ

n

= b I

n ,nc

⇤
n1

c

n2 c

n3eil

n ,nt . (13)

Assume a solution of the secular normal form equations (11) in the limit of weak
nonlinearity which we coined weak chaos. Consider the solution of (13) as a first
order correction. This correction has an amplitude

|c(1)
n

|= |bh

n1h

n2h

n3 |R
�1
n ,n , R

n ,n ⇠
����
l

n ,n

I

n ,n

���� , (14)

The perturbation approach breaks down, and resonances set in, when |h
n

| < |c(1)
n

|
for at least one triplet n, and for at least one excited reference mode n :

|h
n

|< |h
n1h

n2h

n3 |
b

R

n ,n
. (15)

Let us discuss this result. The eigenfrequencies contribute through the quadruplet
l

n ,n (10). This quantity can be also interpreted as the difference of two eigenvalue
differences. Resonances will be triggered for small quadruplets. However, for this to
hold we do not need to request that two of the participating eigenvalues are close. In
fact, since we consider only participating states from one localization volume, level
repulsion between neighboring eigenvalues will be present anyway, such that the
level spacing of nearest neighbor eigenvalues shows signatures of Wigner-Dyson
distributions characteristic for random matrices (Fig.4 in [31]). This means in par-
ticular, that the probability density function (PDF) and therefore the probability of
finding weakly separated (well beyond d) eigenvalues tends to zero for vanishing
separation. However, the above quadruplet can become small for eigenvalues which
are separated way beyond d. An extreme example is an equidistant spectrum which
allows for exact zeros of quadruplets. In the disordered case with V � 1, for one
reference mode n we consider V states in its localization volume, which allow for
about V

3 quadruplet combinations. It is reasonable to assume that the set of V eigen-
values will show correlations on energy separations of the order of d (level spacing),
but a decay of these correlations at larger energy distances. Therefore, for most of
the V

3 combinations, the participating eigenvalues can be considered to be uncor-
related. With that assumption, the PDF W

l

(l
n ,n), which is a sum of four random
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numbers, can be expected to be close to a normal distribution due to the central limit
theorem, i.e.

W
l

(x)⇡ 1p
2ps

e�
x

2
2s

2 , s

2 =
D

2

12
. (16)

In a recent study of a one-dimensional ladder geometry [33] the closeness of the
normal distribution to W

l

was numerically confirmed. Since we are interested in
small quadruplet values, we stress that the normal distribution has a finite value at
zero argument, i.e.

W
l

(0)⇡
p

3p
2pD

. (17)

Again the predicted value is only a factor of two off the actual numbers computed
in [33].

The second important quantity which enters (15) through the definition of R

n ,n in
(14) are the overlap integrals I

n ,n. Much less is known about these matrix elements
(however see [31]). It is instructive to mention that the same overlap integrals play a
crucial role when estimating the localization length of two interacting particles (e.g.
within a Bose-Hubbard chain) with onsite disorder [34, 19, 35] and are the main
reason for the absence of any consensus on the scaling properties of this localiza-
tion length. This is mainly due to the strong correlations between eigenvectors of
states residing in the same localization volume but having sufficiently well sepa-
rated eigenvalues. Let us ignore those difficulties for the moment, and assume that
we can operate with one characteristic (average) overlap integral hIi. Then the PDF
W

R

of R becomes

W
R

(x) = hIiW
l

(hIix) , W
R

(0) =
p

3hIip
2pD

. (18)

With the additional assumption that all amplitudes h ⇠
p

n (note that this excludes
a systematic consideration of a single normal mode excitation) we arrive at the res-
onance condition

bn < R

n ,n . (19)

For a given set {n ,n} the probability of meeting such a resonance is given by

P
n ,n =

Z
bn

0
W

R

(x)dx , P
n ,n|

bn!0 !
p

3hIip
2pD

bn . (20)

For a given reference mode n there are V

3 combinations of quadruplets. The proba-
bility that at least one of these quadruplets satisfies the resonance condition is equiv-
alent to the probability that the given mode violates perturbation theory:

P
n

= 1�
✓

1�
Z

bn

0
W

R

(x)dx

◆
V

3

, P
n

|
bn!0 !

p
3V

3hIip
2pD

bn . (21)
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Breakdown of perturbation approach = resonance 
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Effective noise theory 

•  at some time t packet contains 1/n modes: 

•  each mode on average has norm 

•  the second moment amounts to   
µ 

ν 

< P 

Simplest assumption: •  some modes in packet interact resonantly 
   and therefore evolve chaotic 
•  Probability of resonance: P(βn) 
•  all phases decohere on some time scale 

exterior mode: 

momentary diffusion rate: 

confirmed by: 
Michaely et al  
 PRE 2012 
Skokos et al 2013 



Main findings (sweeping a lot of stuff under the carpet) 

•  d – mean level spacing in localization volume 

•  Strong chaos: intermediate but potentially long lasting regime 
•  Weak chaos: so far asymptotic 
•  Spread: up to 300ξ, time up to 1010, averaging up to 1000 realizations 
•  Chaotic dynamics, positive Lyapunovs 
•  No signs of slowing down 
•  confirmed for quasiperiodics, disorder, nonlinear quantum kicker rotor, 1d, 2d 
•  Qualitatively similar for Wannier Stark ladder (but exponents nonuniversal) 



Restoring Anderson localization?   A matter of probability and KAM  

Fix the size of a wave packet: 
 
•  the probability P to hit a regular trajectory tends to unity  
    in the limit of zero nonlinearity 
    (Aubry/Johansson, Fishman/Pikovsky, Basko, Ivanchenko/Laptyeva/SF) 
 
 
Fix the norm/energy but vary the size of a wave packet: 
 
•  The probability to hit a regular trajectory tends to unity in the limit 
     of infinite size 
     (Fishman/Pikovsky) 
•  This depends on the particular model, and nonlinearity exponent 
     (Ivanchenko/Laptyeva/SF) 
 
NOTE: spreading wave packets are observed to penetrate this KAM regime ! 



Interacting BEC with quasiperiodic Aubry-Andre potential 



Finite temperature conductivities 



Some questions 

•  Will spreading slow down log-like in a further regime of KAM? 

•  Weak chaos definitely persists into a KAM regime! 

•  Is the weak chaos regime a nonergodic bad metal, with D~(bn)4 ? 

•  If yes, what is then the predicted log-like VeryWeakChaos regime – 
    some kind of classical pseudo-MBL ? 
 
•  If there is VWC, what kind of not-so-bad metal is then weak chaos? 
 
•  Spreading wave packets allow to explore the Arnold web by simply 
    penetrating into it deeper and deeper upon spreading! 
 
•  Or is everything only the physics of roundoff errors? 

•  All this is about penetrating a KAM + Arnold diffusion/web regime 
     for short range mode-mode interactions. 
    Naive quantizing implies a coarse-graining of classical phase space 
    structures. Is that enough to get some kind of MBL ? 



Some questions 

•  With the assumption of chaos the spreading characteristics  
     could be related to equilibrium properties at corresponding  
     densities 
 
•  KAM: for a sufficiently localized wave packet, AL is restored for weak 
     nonlinearities in a probabilistic way (Basko, Ivanchenko et al, Fishman) 

•  Can one perform similar computations in MBL settings? 

•  Experiments (light, cold atoms) so far reach 104-5 in our dimensionless 
     time units, and do observe onset of spreading, but no reliable 
     exponents, not even mentioning the issue of asymptotics, or quantum 
    deviations 
 
•  Is this all about zero density and of no relevance for finite T?  
    Or are the insights from ‘thermalizing’ wave packets connecting 
    nonequilibrium dynamics with expected equilibrium properties? 
 
 



Nonlinear diffusion equations and scaling 

TV Laptyeva et al, Physica D 2013  

Zeldovich, Kompaneets,  
Barenblatt et al, 1950s-1960s 



Density resolved spreading 

H =

NX

l=1

✏l| l|2 � J( l 
⇤
l+1 + cc) +

1

2

�| l|4

S =

NX

l=1

| l|2

scaled densities : y = �H/N , x = �S/N

partition function : Z =

Z
d�e�

1
T (H+µS)

T = 0 line , J = 1 , W  10 :

y0 ⇡ �(2 +W/2)x� x2
ln(x)/2 , x  d

y0 ⇡ �2x+ x2/2 , x � d

T = 1 line , any J,W, lattice dimension :

y1 = x2

Rasmussen et al, PRL 2000 (W=0) 

Courtesy J Bodyfelt 



Density resolved spreading 

wave packets spread along  
straight lines, straight to zero   
 
x < d : weak chaos, observed  
down to x = d/100 ! 
 
crossing the Gibbs-nonGibbs 
line shows no impact on spreading 
 
Ivanchenko et al, Basko:  
x << d is KAM regime for wave packets 
 
spreading wave packets launched outside the KAM regime with x > d 
simply spread into it once x < d 
 
x << d might be a nonergodic regime with nonzero conductivity 
 
work in progress … 

Rasmussen et al, PRL 2000 (W=0) 

PKAM ⇠ (1� x/d)⇠


