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Figure 3: Two qualitatively different scenarios for a finite
energy density localization-delocalization transition in 1D,
and the corresponding two schematic phase diagrams in the
disorder-energy density (= e) plane. In (a), the transition is
approached from the localized side and the delocalized phase
satisfies ETH. In (b), the transition is instead approached
from a non-ergodic delocalized phase. In (b), S is sub-volume
law for l ⌧ ⇠, and volume-law for l � ⇠. � is deter-
mined by demanding continuity of S and @S

@l (for example,
if S(l ⌧ ⇠) ⇠ log(l), then � = 1).

The answer to the first question is in the negative:
the function f(e) = S(e) � sthermal(e) vanishes in the
ergodic phase and is non-zero in the non-ergodic phase
as one tunes e across the ergodic to non-ergodic tran-
sition. Therefore, f(e) must have a singularity at an
intermediate energy density46. Of course, as before, we
do assume that the eigenstates that belong to ergodic (or
non-ergodic) phase are contiguous in energy so that the

notion of phase is well-defined.
Regarding the question (ii), the results are summa-

rized in Table I. Essentially, the only constraint as one
approaches from the delocalized side is that S(l, ec) can-
not be a strict area-law since it will violate concavity.

Finally, we note that at a putative continuous transi-
tion between the non-ergodic delocalized phase and the
ergodic phase (Fig.3(b)), the EE will satisfy ETH, via
the same reasoning as in Sec.III A.

C. Generalization to Higher Dimensions

Since the inequality in Eq.9 was derived in general di-
mensions, all results discussed in Sections III A and III B
for 1D continue to hold in higher dimensions with the
replacement S ! S/Ld�1

? . In particular, at an MBL to
ergodic transition, the system must again be thermalized
even at the critical point and the critical entanglement
entropy for a subregion of volume V equals

S = sthermal(ec)V (15)

IV. DISCUSSION

In this paper, we employed the strong subadditivity
(SSA) inequality of quantum entanglement to put strong
constraints on the nature of a continuous localization-
delocalization transition at finite energy densities. In
particular, we showed that at a transition between an
MBL phase and an ergodic phase, the critical eigenstates
satisfy ETH in all dimensions (Fig.3(a)). The constraints
due to SSA also lead us to explore a completely different
kind of localization-delocalization transition where the
delocalized phase does not satisfy ETH (Fig.3(b)). In
fact, if one naively considers the coefficient of volume law
term in the delocalized phase as the order-parameter for
the localization-delocalization transition, then one would
reach the erroneous conclusion that a continuous transi-
tion out of MBL always falls under the latter scenario.
Which of these two scenarios is realized in a physical
system, such as the model Hamiltonians studied numer-
ically in Refs.6–20? As of now the only tool available to
investigate MBL transition is exact diagonalization (ED)
which is limited to very small sizes (L . 20). Such
small systems make it difficult to access the true na-
ture of the critical point. However, Refs.6,10, based on
ED numerics suggested that the behavior at the critical
point may be more like a localized phase than like an
ergodic phase. They in fact suggested that it might be
an infinite-randomness fixed point. If the localizing char-
acter of the critical eigenstates seen in dynamics carries
over to the scaling of entanglement as well, then it fol-
lows from our discussion that the delocalized phase is
non-ergodic. However, the ability of thermalize does not
imply that the system is necessarily conducting since the
thermalization time scales will typically be much larger
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continuous?
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energy density or disorder strength

Volume law coefficient “jumps” across the 
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Nature of Eigenstates at the transition?

Are they ergodic?

Strategy: Analyze scaling of entanglement entropy close 
to the transition.

Assumption: A diverging length scale on approaching
the transition from either side.



Entanglement Scaling Close to

MBL Transition

subsystem size l

“universal entanglement”
 of critical point

Entanglement of
ergodic phase

A l

= delocalization length⇠

S

l

S

l

1
s

thermal

1

ξ

ξ

ξ-1

e

disorder

disorder

non-ergodic
metal

ergodic
metal MBL

ergodic localized

(b)

en
er

gy
 d

en
si

ty

Unknown Known



Critical Entanglement: 
A Catalog of Scaling Behaviors. 

Critical Ergodic Critical

Critical Critical

Ergodic
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Our toolbox: Strong Subadditivity 
constraint on Entanglement

A1 A2

S(A1) + S(A2)� S(A1 [A2)� S(A1 \A2) � 0

Lieb, Ruskai 1973



Strong Subadditivity & 
Entanglement Scaling

Hirata, Takayanagi 2007

l

lΔl

A1

A2

S(A1) + S(A2)� S(A1 [A2)� S(A1 \A2) � 0

⇒
⇒

S(`) + S(`)� S(`+�`)� S(`��`) � 0

@2S(`)
@`2  0

cf: Casini, Huerta’s proof of
c-theorem 2004



Inequality with Disorder?

e
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Ruling out Possibilities via 
               @2S(`)

@`2  0



Not allowed because s ≤ sThermal

Follows from positivity of “Relative Entropy”

7

me interpreted as ✏/d ! 0 where d = minimum(l, ⇠), while
✏ & a.

39 For specific Hamiltonians, see e.g. Ref.21, the area law
could be violated by multiplicative logarithms. This does
not modify any of our conclusions and for simplicity, we
will assume that MBL eigenstates satisfy a strict area law.

40 G. Refael, J. E. Moore, Phys. Rev. Lett. 93, 260602 (2004).
41 In the non-interacting case, as argued by Mott42, there

cannot exist localized and delocalized states at the same
energy density, which rules out the possibility of a first-
order transition.

42 N. F. Mott, Metal Insulator Transitions, Taylor and Fran-
cis, London (1974).

43 We recall a first-order transition in equilibrium statisti-
cal mechanics occurs when @2s

@e2
changes its sign, while the

function s(e) remains continuous.
44 As a rather special case, a volume law entanglement at

the criticality is also allowed, as long as it does not satisfy
ETH (see third column, Table I).

45 The possibility of a “non-ergodic metal” was suggested in
the context of MBL physics in Ref.3 though our defini-
tion of ergodicity (⌘ ETH) is distinct from that used in
Ref.3 which is defined in terms of the fraction of sites oc-
cupied by a wavefunction on an Anderson lattice. Further-
more, in contrast to our case, it was suggested in Ref.3
that there may not be a sharp distinction between a “non-
ergodic metal” and a “ergodic metal”.

46 For example, a time-evolved product state will resemble
a thermal state (from the standpoint of ETH), only after
time-scale of order inverse many-body level spacing which
scales as eL

d

. The time to diffuse across the system on the
other hand scales only as L2.

47 I thank David Huse for a discussion on the finite size scaling
effects close to the MBL transition.

48 M. A. Nielsen, I. L. Chuang, Quantum Computation and

Quantum Information, Cambridge University Press (2011).
49 V.I. Arnold, Mathematical Methods of Classical Mechan-

ics. Springer-Verlag, New York, 1978.
50 David A. Huse, Vadim Oganesyan, arXiv:1305.4915.
51 Lea F. Santos, Marcos Rigol, Phys. Rev. E 81, 036206

(2010).

Appendix A: Upper bound on EE: s  sthermal

Let us consider a Hamiltonian H with eigenstates
{ (e)}, and thermal entropy density sthermal(e) where
e is the energy density corresponding to  . Here we
show that for a given bipartition of the total system into
subregions A and A, the entanglement entropy density
corresponding to an eigenstate with entropy density e is
bounded from above by sthermal(e).

Denoting the projection of H onto region A as HA,
consider an auxiliary density matrix �(�) with support
on A defined as:

�(�) =
e��HA

tr e��HA
(A1)

where � is a free parameter. We will employ the following
inequality48 that holds for two arbitrary density matrices
⇢1, ⇢2:

tr (⇢1 log ⇢1)� tr (⇢1 log ⇢2) � 0 (A2)

where the equality holds if and only if ⇢1 = ⇢2. Taking
⇢1 as the reduced density matrix corresponding to  (e)
for the bipartition A,A and ⇢2 = �, the above inequality
implies

S(⇢1) = �tr (⇢1 log ⇢1)  bSthermal(�) (A3)

where bSthermal(�) = �(E � F (�)), E = tr (⇢H) = eVA

and �F = � log(tr e��HA
). Note that E is independent

of � and VA is the volume of region A. Chosing � such
that tr (�(�)HA) = E, Eq.A3 implies

S(⇢1)  sthermal(�)VA = sthermal(e)VA (A4)

where we have used the equality between thermal en-
tropies in the canonical and microcanonical ensemble.
Furthermore, one may show that sthermal(�)VA is the best
upper bound implied by Eq.A3 on S(⇢1). This follows by
minimizing bSthermal(�) with respect to �:

dbSthermal(�) = (E � E(�)) d� (A5)

where E(�) = tr (�(�)HA). Thus bSthermal(�) is extrem-
ized when � satisfies E = E(�). It is easy to see this
corresponds to global minima by evaluating bSthermal(�)
at the endpoints � = 0,1. When � ! 0, bSthermal(�) !
sthermal(� = 0)VA, which is the global maximum of
sthermal(� = 0)VA, while as � ! 1, bSthermal(�) diverges.

Generalization to Disordered Systems: By disorder av-
eraging both sides of the inequality in Eq.A4 via the def-
inition in Eq.8, one obtains S  VAsthermal.

∀ρ�, ρ�

TG 2014
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Critical Entanglement S = sThermal l  ⇒   Ergodic 
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Approaching Transition from the MBL Side

Transition continuous because area-law coefficient
diverges from the MBL side!
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Generalization to Higher 
Dimensions
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Figure 3: Two qualitatively different scenarios for a finite
energy density localization-delocalization transition in 1D,
and the corresponding two schematic phase diagrams in the
disorder-energy density (= e) plane. In (a), the transition is
approached from the localized side and the delocalized phase
satisfies ETH. In (b), the transition is instead approached
from a non-ergodic delocalized phase. In (b), S is sub-volume
law for l ⌧ ⇠, and volume-law for l � ⇠. � is deter-
mined by demanding continuity of S and @S

@l (for example,
if S(l ⌧ ⇠) ⇠ log(l), then � = 1).

The answer to the first question is in the negative:
the function f(e) = S(e) � sthermal(e) vanishes in the
ergodic phase and is non-zero in the non-ergodic phase
as one tunes e across the ergodic to non-ergodic tran-
sition. Therefore, f(e) must have a singularity at an
intermediate energy density46. Of course, as before, we
do assume that the eigenstates that belong to ergodic (or
non-ergodic) phase are contiguous in energy so that the

notion of phase is well-defined.
Regarding the question (ii), the results are summa-

rized in Table I. Essentially, the only constraint as one
approaches from the delocalized side is that S(l, ec) can-
not be a strict area-law since it will violate concavity.

Finally, we note that at a putative continuous transi-
tion between the non-ergodic delocalized phase and the
ergodic phase (Fig.3(b)), the EE will satisfy ETH, via
the same reasoning as in Sec.III A.

C. Generalization to Higher Dimensions

Since the inequality in Eq.9 was derived in general di-
mensions, all results discussed in Sections III A and III B
for 1D continue to hold in higher dimensions with the
replacement S ! S/Ld�1

? . In particular, at an MBL to
ergodic transition, the system must again be thermalized
even at the critical point and the critical entanglement
entropy for a subregion of volume V equals

S = sthermal(ec)V (15)

IV. DISCUSSION

In this paper, we employed the strong subadditivity
(SSA) inequality of quantum entanglement to put strong
constraints on the nature of a continuous localization-
delocalization transition at finite energy densities. In
particular, we showed that at a transition between an
MBL phase and an ergodic phase, the critical eigenstates
satisfy ETH in all dimensions (Fig.3(a)). The constraints
due to SSA also lead us to explore a completely different
kind of localization-delocalization transition where the
delocalized phase does not satisfy ETH (Fig.3(b)). In
fact, if one naively considers the coefficient of volume law
term in the delocalized phase as the order-parameter for
the localization-delocalization transition, then one would
reach the erroneous conclusion that a continuous transi-
tion out of MBL always falls under the latter scenario.
Which of these two scenarios is realized in a physical
system, such as the model Hamiltonians studied numer-
ically in Refs.6–20? As of now the only tool available to
investigate MBL transition is exact diagonalization (ED)
which is limited to very small sizes (L . 20). Such
small systems make it difficult to access the true na-
ture of the critical point. However, Refs.6,10, based on
ED numerics suggested that the behavior at the critical
point may be more like a localized phase than like an
ergodic phase. They in fact suggested that it might be
an infinite-randomness fixed point. If the localizing char-
acter of the critical eigenstates seen in dynamics carries
over to the scaling of entanglement as well, then it fol-
lows from our discussion that the delocalized phase is
non-ergodic. However, the ability of thermalize does not
imply that the system is necessarily conducting since the
thermalization time scales will typically be much larger
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(i) Can a non-ergodic delocalized phase be connected

to an ergodic one without a phase transition?
Answer: No

(ii) Restrictions on entanglement
scaling at the critical point between localized

and the non-ergodic delocalized phase?
Answer: EE at transition can’t be area law.



Consequences

Eigenstates AT the transition satisfy:

h |O| i = tr(Oe��H)
tr( e��H)

Long time evolution (how long?) of a state with 
critical energy density should yield a thermal 

state.

trA limt�� eiHt|�0� ��0|e�iHt � e��HA



Ergodic

MBL S ~ l d-1

S = sThermal l d

Transition
energy density

bracket

〈S〉 progressively exhibits ergodicity on 
approaching transition.

Scenario discussed so far…



An Alternative “Rare Region” Scenario:
log〈eS〉 a correct scaling function and not 〈S〉.

Can 〈S〉critical be non-ergodic while the transition
remains continuous?

Motivated by work of Ehud Altman and collaborators.

Strong subadditivity again constrains log〈eS〉: 

d2 log�eS�
d�2 � Variance'

�
dS
d�

�
� 0

= probability of finding ergodic region in length l

= probability of finding localized region in length leaL�
d

eaE�d+eaL�d

eaE�d

eaE�d+eaL�d

A toy model for this scenario



MBL Phase

Ergodic Phase

:  aL > aE� � � � � � :  aL = aE

�S� � �d�1 �S� = sthermal�d/2

log�eS� � (sthermal) �d

+ non ergodic subleading terms

:  aE > aL� � � � � � :  aL = aE

�S� = log�eS� = sthermal�d

log�eS� = c �d

(c < sthermal)

�S� = sthermal�d/2

log�eS� � (sthermal) �d

+ non ergodic subleading terms

Not allowed because 〈S〉critical < sthermall  violates SSA. 



Universal Aspects of Eigenstate 
Thermalization 

Work with Jim Garrison (UCSB).

Part II



Summary of ETH

� = E� � E�

O(E) = microcanonical expectation value of O,

fO(E,ω) smooth function,

R random complex variable with zero mean and unit variance.

�E�|O|E�� = O(E)��� + e�S(E)/2fO(E, �)R��

E = E�+E�

2

Srednicki 1994

Rigol, Dunjko, Olshanii 2008; Khatami, Pupillo, Srednicki, Rigol (2014).



Questions

• Can one calculate properties of a system at all 
temperatures using a single eigenstate?

• Does thermalization occurs in a region A even 
when VA/V is held fixed i.e. subsytem not much 
smaller than the total system?     

• Is the thermalization time for local Vs non-local 
operators vastly different?               



Entanglement Scaling: 
Ground State Vs Excited States

Sn ~  L

Sn ~ constant
“Area Law”
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Fig. 4 shows the comparison of S
1

, S
2

, S
3

, and S
4

cal-
culated for each individual eigenstate for a subsystem size
LA = 4 in a L = 21 system, with their ETH predicted
canonical counterparts, Eqns. 31 and 3. We use two dif-
ferent canonical counterparts corresponding to Eqns. 2a
and 2b, the latter version being susceptible to bound-
ary errors, which nevertheless are expected to vanish as
VA, VA ! 1. The agreement for each entropy is remark-
able. It is worth re-iterating that the Renyi entropies
for an eigenstate | i� encode the free energy densities
at temperatures different than ��1 (Eqn. 3), and these
results provide an instance of non-local Class II opera-
tors satisfying ETH. The condition (18) does not come
into play while calculating S↵ because the energy den-
sity corresponding to temperature (↵�)�1 is lower than
the critical energy density (Eqn. 17), up to which the en-
tanglement spectrum matches the actual spectrum of the
Hamiltonian. We will discuss this in detail in the next
section. Also note that as ↵ becomes larger, finite size
effects become more pronounced because S↵ probes the
system at lower temperatures (↵�)�1.

We also studied finite-size scaling of the von Neumann
entropy and Renyi entropies by keeping LA constant
and varying the total system size. The top panel of
Fig. 5 shows the deviation �S

1

LA
=

S
1

(| i�)
LA

� s
th

(�) for
eigenstates in a range of temperatures. The difference
�S

1

/LA seemingly goes to zero faster than any inverse
power of L, and is consistent with an exponential depen-
dence �S

1

/LA ⇠ e�L, or at the very least, a power-law
decay �S

1

/LA ⇠ 1/Lx with x � 1. The bottom panel
shows a similar plot for the deviation of Renyi entropy
S
2

from its ETH predicted value, Eqn. 3. The finite size
scaling of �S

2

is difficult for two reasons: (a) the sign of
�S

2

can be either positive or negative, unlike �S
1

, which
is always positive due to strong subadditivity; and, (b)
S
2

shows oscillations as a function of LA, (see e.g.24,39),
which again makes the finite size scaling difficult. Despite
this, �S

2

is less than a few percent of S
2

itself, again in
agreement with ETH.

Fig. 6 plots the entropy deviation �S
1

/LA for con-
stant ratio LA/L at all available system sizes. Although
it is difficult to do a detailed scaling analysis with so
few points, the data strongly suggests that �S

1

/LA van-
ishes in the thermodynamic limit. A further, and perhaps
more robust indication of this result follows from the dis-
cussion in the next section where we provide evidence
that the energy constraint in Eqs.17 and 18 is sufficient
for the satisfaction of Eq.2a. We also substantiate this
conclusion by utilizing the notion of trace norm distance
in Sec.VII.

VI. ENTANGLEMENT HAMILTONIAN VS
ACTUAL HAMILTONIAN

We now probe in detail the entanglement spectra of in-
dividual eigenstates as well as the corresponding Schmidt
states. As discussed in Sec. II C 2, a necessary condition

for full agreement between the entanglement spectrum of
the reduced density matrix ⇢A(| i�) of a single eigenstate

and the thermal density matrix ( e��HA

tr(e��HA)
or trA(e

��H)
tr(e��H

)

)
is the constraint in Eqn. 18 on the energy density of the
state | i� . Remarkably, we find that not only is this
condition necessary but sufficient as well. Furthermore,
when this condition is not satisfied, the entanglement
spectra still matches with the actual spectra up to the
critical energy density e⇤ = e/f in Eqn. 17, where e is
the energy density of the state | i� and f = VA/V . This
is the reason that the Renyi entropies discussed in the
previous section show an agreement with their canonical
counterparts.

Specifically, we compare four different quantities, as
shown in Fig. 7. The agreement of the spectra of
⇢A(| i�) with those of the actual Hamiltonian shows that
the Schmidt eigenvalues �i satisfy �i / e��Ei where Ei

are the eigenvalues of the actual Hamiltonian. Similarly,
the agreement with the expectation value hui|HA|uii/LA

shows that the Schmidt eigenvectors have the same char-
acter as the eigenvectors of the thermal density matrix.

To probe the Schmidt eigenvectors further, we directly

Figure 7: Energy density for each eigenstate of an LA = 4

subsystem at L = 21 and � = 0.3. Here, cA ⌘ 1
�
logZA =

1
�
log trA(e��HA

) is a shift to HA so the energy densities will
be on the same scale as those calculated directly from the
reduced and canonical density matrices. The blue markers
show the energy eigenvalues taken from the canonical density
matrix; the grey markers show the eigenvalues of HA; the red
diamond markers are the eigenvalues taken from ⇢A(| i�) of
a single eigenstate; and the orange markers represent the ex-
pectation value of HA with respect to each eigenvector |uii of
⇢A(| i�). In each case, the eigenvalues/eigenvectors are or-
dered from smallest to largest energy density. The horizontal
lines plot the energy density e (dashed, gray) and the critical
energy density e⇤ =

eL
LA

(solid, brown) of the original eigen-
state | i� , with respect to the ground state energy density of
HA + cA (dotted, black).

Same conclusion with reduced density matrix of an 
eigenstate (instead of time evolved state)

L=21, LA = 4

Ground state 
energy density

Energy density of 
state |𝜓⟩𝛽  ≣ e



Why is this interesting?
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Fig. 4 shows the comparison of S
1

, S
2

, S
3

, and S
4

cal-
culated for each individual eigenstate for a subsystem size
LA = 4 in a L = 21 system, with their ETH predicted
canonical counterparts, Eqns. 31 and 3. We use two dif-
ferent canonical counterparts corresponding to Eqns. 2a
and 2b, the latter version being susceptible to bound-
ary errors, which nevertheless are expected to vanish as
VA, VA ! 1. The agreement for each entropy is remark-
able. It is worth re-iterating that the Renyi entropies
for an eigenstate | i� encode the free energy densities
at temperatures different than ��1 (Eqn. 3), and these
results provide an instance of non-local Class II opera-
tors satisfying ETH. The condition (18) does not come
into play while calculating S↵ because the energy den-
sity corresponding to temperature (↵�)�1 is lower than
the critical energy density (Eqn. 17), up to which the en-
tanglement spectrum matches the actual spectrum of the
Hamiltonian. We will discuss this in detail in the next
section. Also note that as ↵ becomes larger, finite size
effects become more pronounced because S↵ probes the
system at lower temperatures (↵�)�1.

We also studied finite-size scaling of the von Neumann
entropy and Renyi entropies by keeping LA constant
and varying the total system size. The top panel of
Fig. 5 shows the deviation �S

1

LA
=

S
1

(| i�)
LA

� s
th

(�) for
eigenstates in a range of temperatures. The difference
�S

1

/LA seemingly goes to zero faster than any inverse
power of L, and is consistent with an exponential depen-
dence �S

1

/LA ⇠ e�L, or at the very least, a power-law
decay �S

1

/LA ⇠ 1/Lx with x � 1. The bottom panel
shows a similar plot for the deviation of Renyi entropy
S
2

from its ETH predicted value, Eqn. 3. The finite size
scaling of �S

2

is difficult for two reasons: (a) the sign of
�S

2

can be either positive or negative, unlike �S
1

, which
is always positive due to strong subadditivity; and, (b)
S
2

shows oscillations as a function of LA, (see e.g.24,39),
which again makes the finite size scaling difficult. Despite
this, �S

2

is less than a few percent of S
2

itself, again in
agreement with ETH.

Fig. 6 plots the entropy deviation �S
1

/LA for con-
stant ratio LA/L at all available system sizes. Although
it is difficult to do a detailed scaling analysis with so
few points, the data strongly suggests that �S

1

/LA van-
ishes in the thermodynamic limit. A further, and perhaps
more robust indication of this result follows from the dis-
cussion in the next section where we provide evidence
that the energy constraint in Eqs.17 and 18 is sufficient
for the satisfaction of Eq.2a. We also substantiate this
conclusion by utilizing the notion of trace norm distance
in Sec.VII.

VI. ENTANGLEMENT HAMILTONIAN VS
ACTUAL HAMILTONIAN

We now probe in detail the entanglement spectra of in-
dividual eigenstates as well as the corresponding Schmidt
states. As discussed in Sec. II C 2, a necessary condition

for full agreement between the entanglement spectrum of
the reduced density matrix ⇢A(| i�) of a single eigenstate

and the thermal density matrix ( e��HA

tr(e��HA)
or trA(e

��H)
tr(e��H

)

)
is the constraint in Eqn. 18 on the energy density of the
state | i� . Remarkably, we find that not only is this
condition necessary but sufficient as well. Furthermore,
when this condition is not satisfied, the entanglement
spectra still matches with the actual spectra up to the
critical energy density e⇤ = e/f in Eqn. 17, where e is
the energy density of the state | i� and f = VA/V . This
is the reason that the Renyi entropies discussed in the
previous section show an agreement with their canonical
counterparts.

Specifically, we compare four different quantities, as
shown in Fig. 7. The agreement of the spectra of
⇢A(| i�) with those of the actual Hamiltonian shows that
the Schmidt eigenvalues �i satisfy �i / e��Ei where Ei

are the eigenvalues of the actual Hamiltonian. Similarly,
the agreement with the expectation value hui|HA|uii/LA

shows that the Schmidt eigenvectors have the same char-
acter as the eigenvectors of the thermal density matrix.

To probe the Schmidt eigenvectors further, we directly

Figure 7: Energy density for each eigenstate of an LA = 4

subsystem at L = 21 and � = 0.3. Here, cA ⌘ 1
�
logZA =

1
�
log trA(e��HA

) is a shift to HA so the energy densities will
be on the same scale as those calculated directly from the
reduced and canonical density matrices. The blue markers
show the energy eigenvalues taken from the canonical density
matrix; the grey markers show the eigenvalues of HA; the red
diamond markers are the eigenvalues taken from ⇢A(| i�) of
a single eigenstate; and the orange markers represent the ex-
pectation value of HA with respect to each eigenvector |uii of
⇢A(| i�). In each case, the eigenvalues/eigenvectors are or-
dered from smallest to largest energy density. The horizontal
lines plot the energy density e (dashed, gray) and the critical
energy density e⇤ =

eL
LA

(solid, brown) of the original eigen-
state | i� , with respect to the ground state energy density of
HA + cA (dotted, black).

L=21, LA = 4

Ground state 
energy density

Energy density of 
state |𝜓⟩𝛽  ≣ e

If  ETH was true only for “few-body” operators, in the 
V →∞ limit, the spectra need to match only at the 

energy density corresponding to the eigenstate.
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where n ⌘ N/V is the overall particle density and f ⌘
VA/V . Thus, a necessary condition for the wavefunction
in Eqn. 7 to encode properties of the system at all fillings
is

f  min [n, 1� n] (10)

The above discussion, with some modifications, carries
to systems with (only) energy conservation, at an arbi-
trary temperature. The Schmidt decomposition of an
eigenstate | i� with eigenvalue E may now be written
as:

| i� =
X

i

p
�i|uii ⌦ |vii (11)

The physical content of ETH, as approximated in Eqn.
2b, is that �i / e��EA,i where EA,i is the i’th energy
eigenvalue of HA (the projection of the Hamiltonian to
subsystem A) while |uii is the corresponding eigenstate
of HA. Denoting the ground state energy to be zero,
one naively expects that hui|HA|uii  E 8 |uii since the
energy density in the subsystem A cannot be less than
the ground state energy density. However, this argument
has a loophole since in contrast to the particle number
operator N̂ , the total Hamiltonian is not separable into
subsystems A and A: H = HA + HA + HAA, which
actually allows hui|HA|uii to exceed E as we will see in
Sec. VI in the context of the model Hamiltonian in Eqn.
27 below. To understand the constraint on hui|HA|uii
precisely, let us derive an expression which encapsulates
the classical notion that the sum of energies in subsystem
A and A equals E.

We first note:

hui0|⌦ hvi0|H| i� = E hui0|⌦ hvi0| i� (12)

= E
p
�i0 (13)

The above expression can be re-evaluated using the
decomposition H = HA +HA +HAA:

hui0|⌦ hvi0|H| i� (14)
= hui0|⌦ hvi0|HA +HA +HAA| i�
=

p
�i0hui0|HA|ui0i+

p
�i0hvi0|HA|vi0i+X

j

p
�jhui0|⌦ hvi0|HAA|uji ⌦ |vji (15)

Equating the two ways to calculate the same expres-
sion, one finds:

hvi0|HA|vi0i+
X

j

r
�j
�i0

hui0|⌦ hvi0|HAA|uji ⌦ |vji

= E � hui0|HA|ui0i (16)

Due to the variational principle for the ground state,
hvi0|HA|vi0i � �cLd�1 where c is a constant (recall
that in our convention, the ground state energy for the
full Hamiltonian is set to zero). Since both E and
hui0|HA|ui0i scale as Ld, the only way for hui0|HA|ui0i to
exceed E is that the second term on the left hand side of
Eqn. 16, viz. E

boundary

def

=
P

j

q
�j

�i0
hui0|⌦hvi0|HAA|uji⌦

|vji, is negative and scales as Ld. When that hap-
pens, ETH no longer holds, as we now argue on general
grounds, and will also demonstrate numerically for a lat-
tice Hamiltonian in Sec. VI. To see this, we reiterate that
ETH requires that (i) |uii’s are approximate eigenstates
of HA, and (ii) �i / e��hui|HA|uii = e��EA,i . Firstly,
when hui0|HA|ui0i < E so that ETH could in principle
hold, the E

boundary

term can be neglected because the
‘diagonal term’ in E

boundary

(i.e. the term corresponding
to j = i0) scales as the boundary (/ Ld�1) and is thus
subleading, while the off diagonal terms scale as e�Ld

and thus vanish in the thermodynamic limit (recall that
VA > VA). On the other hand, when hui0|HA|ui0i > E,
the |vi0i’s now correspond to states of zero energy den-
sity, and the aforementioned argument for neglecting off-
diagonal terms is no longer valid. So, let us assume that
hui0|HA|ui0i > E and each |ui0i continues to be an eigen-
state of HA. Thus, one requires that

Z
de0

s
�(e0)
�(e)

M(e, e0)eS(e0) / g(e)/Ld�1, (17)

where we have taken the continuum limit and �(e)
denotes the Schmidt eigenvalue corresponding to an
eigenvector |ui at energy density e, while M(e, e0) =
hu(e)| ⌦ hv(e)|HAA|u(e0)i ⌦ |v(e0)i and g(e) = e �
hu(e)|HA|u(e)i/Ld. It is obvious from Eqn. 17 that
�(e) / e��EA = e��efLd

is no longer the solution.
In fact, the only way for the integral on the left hand
side of Eqn. 17 not to have any exponential depen-
dence on L (as required by the right hand side) is that
the integrand itself does not have such dependence, i.e.q

�(e0)
�(e) / 1

M(e,e0)e
�S(e0). This implies a breakdown of

ETH when hui0|HA|ui0i > E.
The above discussion implies that for a given wave-

function and bipartition, the maximum energy density
that is potentially accessible in a subsystem A, such that
the corresponding Schmidt weight satisfies ETH is,

e⇤ = min(E/VA, emax

) = min(e/f, e
max

) (18)

where e = E/V is the energy density corresponding to
the wavefunction and e

max

is the maximum energy den-
sity for the Hamiltonian H (recall that e

max

can be finite
for lattice-regularized quantum systems, e.g. for models
of fermions or spins/hardcore bosons). Above, we have
assumed that e < e

max

/2. In the case when e > e
max

/2,
the range of available energies is instead bounded from
below by max [0, e

max

(1� 1/f)� e/f ]. If our goal is to
capture the fluctuations in the system for all energy den-

Physical Content of 

2

Typically, there always exist eigenstates with energy E
just above the ground state which continue to satisfy
an area law of entanglement. These are the eigenstates
which have a zero energy density, i.e. limV!1 E�E

0

V = 0
where E

0

is the ground state energy and V is the total
volume of the system. These eigenstates can often be in-
terpreted as the action of a sum of local operators acting
on the ground state; for example, in a system with spon-
taneous symmetry breaking one can construct an eigen-
state consisting of a few magnons by a superposition of
spin-flips acting on the ground state. Furthermore, the
level spacing between two contiguous low-lying excita-
tions scales as �E ⇠ 1/L↵ where ↵ > 0 depends on
dimensionality and the phase of matter under consider-
ation. In this paper, we will instead be concerned with
excited eigenstates that have a finite energy density, i.e.
limV!1 E�E

0

V 6= 0. For notational convenience, we will
set E

0

= 0 for the remainder of this paper.
As argued by Srednicki13, a typical finite energy den-

sity state (i.e. a typical state in the Hilbert space that
satisfies h |H| i = V e where e is the energy density)
when time-evolved with the Hamiltonian H for suffi-
cient time is expected to lead to predictions dictated by
the basic tenets of equilibrium statistical mechanics, if
the system thermalizes. Such an expectation leads to
the “Eigenstate Thermalization Hypothesis” (ETH)13–15,
which stipulates that the thermalization occurs at the
level of each individual eigenstate. An alternative ap-
proach by Deutsch14, which is based on perturbing an
integrable system by a small integrability breaking term,
leads to the same suggestion. If ETH holds true, then in
the thermodynamic limit the equal-time correlators of an
operator with respect to a finite energy density eigenstate
| i are precisely equal to those derived from a thermal
ensemble, i.e.

h |O| i = tr
�
Oe��H

�

tr ( e��H)
(1)

where � is chosen such that the Eqn. 1 holds true when
O = H, the Hamiltonian. Henceforth we will use the no-
tation | i� to denote an eigenstate whose energy density
corresponds to temperature ��1. A notable exception
to ETH is a many-body localized system in the context
of strongly disordered interacting quantum systems,16–22
which fails to thermalize and does not satisfy Eqn. 1. The
possibility23–29, or impossibility30–33, of the violation of
ETH without disorder has also been discussed recently.

In this paper, we restrict ourselves to systems where
ETH, as defined by Eqn. 1, holds. However, Eqn. 1 alone
is incomplete unless one also specifies the class of opera-
tors for which it holds. For example, one simple non-local
operator for which Eqn. 1 breaks down is the projection
operator | ih | onto the eigenstate | i that enters Eqn.
1; the left hand side of Eqn. 1 yields unity for this op-
erator, while the right hand side is exponentially small
in the volume, a clear disagreement. On that note, it is
often mentioned that in systems where Eqn. 1 does hold,

it does so only for “few body” operators34–36 where, to
our knowledge, the precise meaning of few-body opera-
tor has not been clarified. In this paper, we conjecture
and provide numerical evidence that Eqn. 1 holds for all
operators within a subsystem A, where the volume VA of
subsystem A can be arbitrarily large as long as it satis-
fies VA < f⇤V , where f⇤ 6= 0 (< 1/2) is an O(1) number,
to be defined later. In fact, we will make the case that
for a large class of non-local operators, as well as all lo-
cal operators (which we define as the operators whose
support does not scale with the subsystem size VA), the
condition VA < V/2 suffices. On that note, we should
mention that the questions such as which Hamiltonians
(and which operators) satisfy ETH is now entering the
realm of experimental physics (see e.g. Ref.37) due to ad-
vances in high resolution imaging techniques38.

The satisfaction of Eqn. 1 for all operators in a sub-
system A is equivalent to the statement that the reduced
density matrix ⇢A(| i�) = trA| i��h | corresponding to
an eigenstate | i� is given by

⇢A(| i�) = ⇢A,th(�) (2a)

where

⇢A,th(�) =
trA

�
e��H

�

tr (e��H)
,

A being the complement of A. Note that the trace in the
denominator is over the whole Hilbert space. When VA

is held constant, the equality in Eqn. 2a means the den-
sity matrices become elementwise equal in any basis as
V ! 1. When the ratio VA/V is held constant, however,
the number of matrix elements increases exponentially as
V ! 1. In this case we consider the validity of Eqn. 2a
in terms of the trace norm distance of the density matri-
ces on either side raised to any power—a point which is
further explained in Sec. VII.

One immediate consequence of Eqn. 2a is that the ther-
modynamical properties of a system at arbitrary tem-
peratures can be calculated using a single eigenstate.
For example, Eqn. 2a implies that to the leading or-
der, the Renyi entropies S↵ (= � 1

↵�1

log [trA(⇢↵A)]) for
an eigenstate | i� corresponding to a subsystem A with
VA < V/2 are given by

S↵ =
↵

↵� 1
VA� (f(↵�)� f(�)) , (3)

where f(�) is the free energy density at temperature
��1. The result for VA > V/2 follows from the con-
straint SA = SA. The above equation allows one to ac-
cess the free energy density f at an arbitrary temperature
by varying ↵. Note that Eqn. 3 holds only to the lead-
ing order because Renyi entropies S↵ receive additional
subleading contributions due to the conical singularity
induced at the boundary of subsystem A3–5. In the limit
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↵ ! 1, one recovers the equality between the von Neu-
mann entanglement entropy S

1

and the thermal entropy
S
th

= VAsth(�) where s
th

(�) is the thermal entropy den-
sity at temperature ��1, a result which was argued to
hold in Ref.39 for the special case of two weakly coupled
ergodic systems. We emphasize that these results can-
not be derived from Eqn. 1 alone were it to hold only
for local operators, since entanglement entropies do not
correspond to the expectation value of any local opera-
tor. We also note that Refs.40,41 simulated the thermal
Renyi entropy S↵ (starting with the expression on the
right hand side of Eqn. 2a) using Quantum Monte Carlo
to access the properties of the system at temperature
(↵�)�1. Of course, Quantum Monte Carlo methods are
not well suited to verifying ETH since they cannot ac-
cess properties of a single eigenstate (the left hand side
of Eqn. 2a).

We will also discuss an approximate, but more intuitive
form of ETH, given by

⇢A(| i�) ⇡ e��HA

trA (e��HA)
(2b)

where HA is the projection of the original Hamiltonian
onto subsystem A. This form is approximate compared
to Eqn. 2a because generically, it does not capture the
correlations near the boundary correctly due to the some-
what arbitrary truncation scheme used to obtain HA.
Nevertheless, equations 2a and 2b both yield the same
results for all bulk quantities such as the Renyi entropy
densities, as well as correlation functions of operators
that have support only far from the boundary.

A central task of this paper is to check the validity of
Eqns. 2a and 2b and their consequences for model non-
integrable systems. As already mentioned, we will argue
that ETH allows one to calculate thermodynamical quan-
tities as well as correlators at all temperatures/energy
densities using only a single eigenstate. We will demon-
strate this explicitly by studying a quantum 1D model
numerically.

As mentioned above, we find evidence that Eqn. 2a
holds even when VA/V is held constant with VA/V less
than some number f⇤ > 0. In particular, as we dis-
cuss later, our results strongly indicate that f < 1/2
is sufficient to guarantee equivalence between the von
Neumann entropy density of a pure eigenstate, and the
thermal entropy density at the corresponding tempera-
ture. This is in contrast to Ref.42 where it was argued
that such an equivalence holds only in the limit f⇤ ! 0.
Recently43,44, the requirement f⇤ ! 0 was substantiated
using analytical and large scale numerical calculations for
free fermions, an integrable system. Our results indicate
that the f⇤ ! 0 requirement is likely a consequence of
the integrable nature of the models in Refs.43,44.

The paper is organized as follows. Sec. II discusses
general considerations for the validity of ETH, and in-
troduces a division of all operators in a given subsystem
into two distinct classes, which have different require-
ments for ETH to hold. Sec. III illustrates some general

features of ETH by studying the entanglement entropies
of a hardcore boson model with global particle number
conservation for infinite temperature eigenstates. Sec. IV
introduces the model we study in the remainder of the
paper, the transverse field Ising model with longitudinal
field. Sec. V focuses on the entanglement entropies at
finite temperature. Sec. VI provides a close look into the
entanglement Hamiltonian, focusing on its spectrum and
Schmidt vectors. Sec. VII studies the validity of Eqn.
2a in the thermodynamic limit by considering the trace
norm distance of both sides. Sec. VIII provides an ap-
plication, by using the reduced density matrix from a
single eigenstate to predict correlators at all (finite) tem-
peratures. Sec. IX summarizes our results and provides
thoughts for future discussion.

II. GENERAL CONSIDERATIONS

A. Determining Hamiltonian from Microstates in
Classical Statistical Mechanics

Suppose, for an isolated system described by classical
statistical mechanics in a total volume V , we are given
access to all classical microstates in a small energy win-
dow [E,E + �E], where �E ⇠ p

V is on the order of
the energy fluctuations in the total system were the sys-
tem coupled to a thermal bath, and thus all microstates
correspond to the same energy density. We pose the ques-
tion: does this information suffice to determine the un-
derlying Hamiltonian, assuming that the Hamiltonian is
local? The answer is indeed yes, following the standard
procedure of obtaining canonical ensemble from a micro-
canonical ensemble. In particular, let us make a fictitious
division of the system into A and A such that VA ⌧ VA,
and count the number of times a particular configura-
tion CA appears in subsystem A. This determines the
probability distribution for finding a given configuration,
P (CA). If all microstates are equally likely, then45

P (CA) =
e��E(CA)

P
{CA} e��E(CA)

(4)

where E(CA) is the energy in subsystem A. One may
now invert this equation to obtain the energy E(CA) =
� 1

� log(P (CA)), up to an irrelevant constant shift of en-
ergy. In a classical statistical mechanical system E(CA)
is the Hamiltonian for subsystem A. In particular, know-
ing E(CA), one may now calculate any thermodynamic
property at any temperature. Here it is crucial to note
that Eqn. 4 does not assume that the energy density
E(CA)/VA equals the energy density E/V of the mi-
crostates being sampled.

As discussed in the introduction, we will provide evi-
dence that the quantum mechanical analog of Eqn. 4 is
given by Eqns. 2a,2b. We now proceed to discuss the
conditions under which Eqns. 2a,2b are valid.
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where n ⌘ N/V is the overall particle density and f ⌘
VA/V . Thus, a necessary condition for the wavefunction
in Eqn. 7 to encode properties of the system at all fillings
is

f  min [n, 1� n] (10)

The above discussion, with some modifications, carries
to systems with (only) energy conservation, at an arbi-
trary temperature. The Schmidt decomposition of an
eigenstate | i� with eigenvalue E may now be written
as:

| i� =
X

i

p
�i|uii ⌦ |vii (11)

The physical content of ETH, as approximated in Eqn.
2b, is that �i / e��EA,i where EA,i is the i’th energy
eigenvalue of HA (the projection of the Hamiltonian to
subsystem A) while |uii is the corresponding eigenstate
of HA. Denoting the ground state energy to be zero,
one naively expects that hui|HA|uii  E 8 |uii since the
energy density in the subsystem A cannot be less than
the ground state energy density. However, this argument
has a loophole since in contrast to the particle number
operator N̂ , the total Hamiltonian is not separable into
subsystems A and A: H = HA + HA + HAA, which
actually allows hui|HA|uii to exceed E as we will see in
Sec. VI in the context of the model Hamiltonian in Eqn.
27 below. To understand the constraint on hui|HA|uii
precisely, let us derive an expression which encapsulates
the classical notion that the sum of energies in subsystem
A and A equals E.

We first note:

hui0|⌦ hvi0|H| i� = E hui0|⌦ hvi0| i� (12)

= E
p
�i0 (13)

The above expression can be re-evaluated using the
decomposition H = HA +HA +HAA:

hui0|⌦ hvi0|H| i� (14)
= hui0|⌦ hvi0|HA +HA +HAA| i�
=

p
�i0hui0|HA|ui0i+

p
�i0hvi0|HA|vi0i+X

j

p
�jhui0|⌦ hvi0|HAA|uji ⌦ |vji (15)

Equating the two ways to calculate the same expres-
sion, one finds:

hvi0|HA|vi0i+
X

j

r
�j
�i0

hui0|⌦ hvi0|HAA|uji ⌦ |vji

= E � hui0|HA|ui0i (16)

Due to the variational principle for the ground state,
hvi0|HA|vi0i � �cLd�1 where c is a constant (recall
that in our convention, the ground state energy for the
full Hamiltonian is set to zero). Since both E and
hui0|HA|ui0i scale as Ld, the only way for hui0|HA|ui0i to
exceed E is that the second term on the left hand side of
Eqn. 16, viz. E

boundary

def

=
P

j

q
�j

�i0
hui0|⌦hvi0|HAA|uji⌦

|vji, is negative and scales as Ld. When that hap-
pens, ETH no longer holds, as we now argue on general
grounds, and will also demonstrate numerically for a lat-
tice Hamiltonian in Sec. VI. To see this, we reiterate that
ETH requires that (i) |uii’s are approximate eigenstates
of HA, and (ii) �i / e��hui|HA|uii = e��EA,i . Firstly,
when hui0|HA|ui0i < E so that ETH could in principle
hold, the E

boundary

term can be neglected because the
‘diagonal term’ in E

boundary

(i.e. the term corresponding
to j = i0) scales as the boundary (/ Ld�1) and is thus
subleading, while the off diagonal terms scale as e�Ld

and thus vanish in the thermodynamic limit (recall that
VA > VA). On the other hand, when hui0|HA|ui0i > E,
the |vi0i’s now correspond to states of zero energy den-
sity, and the aforementioned argument for neglecting off-
diagonal terms is no longer valid. So, let us assume that
hui0|HA|ui0i > E and each |ui0i continues to be an eigen-
state of HA. Thus, one requires that

Z
de0

s
�(e0)
�(e)

M(e, e0)eS(e0) / g(e)/Ld�1, (17)

where we have taken the continuum limit and �(e)
denotes the Schmidt eigenvalue corresponding to an
eigenvector |ui at energy density e, while M(e, e0) =
hu(e)| ⌦ hv(e)|HAA|u(e0)i ⌦ |v(e0)i and g(e) = e �
hu(e)|HA|u(e)i/Ld. It is obvious from Eqn. 17 that
�(e) / e��EA = e��efLd

is no longer the solution.
In fact, the only way for the integral on the left hand
side of Eqn. 17 not to have any exponential depen-
dence on L (as required by the right hand side) is that
the integrand itself does not have such dependence, i.e.q

�(e0)
�(e) / 1

M(e,e0)e
�S(e0). This implies a breakdown of

ETH when hui0|HA|ui0i > E.
The above discussion implies that for a given wave-

function and bipartition, the maximum energy density
that is potentially accessible in a subsystem A, such that
the corresponding Schmidt weight satisfies ETH is,

e⇤ = min(E/VA, emax

) = min(e/f, e
max

) (18)

where e = E/V is the energy density corresponding to
the wavefunction and e

max

is the maximum energy den-
sity for the Hamiltonian H (recall that e

max

can be finite
for lattice-regularized quantum systems, e.g. for models
of fermions or spins/hardcore bosons). Above, we have
assumed that e < e

max

/2. In the case when e > e
max

/2,
the range of available energies is instead bounded from
below by max [0, e

max

(1� 1/f)� e/f ]. If our goal is to
capture the fluctuations in the system for all energy den-
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where n ⌘ N/V is the overall particle density and f ⌘
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f  min [n, 1� n] (10)
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X

i

p
�i|uii ⌦ |vii (11)
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j
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�j
�i0
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is the maximum energy den-
sity for the Hamiltonian H (recall that e

max

can be finite
for lattice-regularized quantum systems, e.g. for models
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assumed that e < e

max

/2. In the case when e > e
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erator for which Eqn. 1 breaks down is the projection
operator | ih | onto the eigenstate | i that enters Eqn.
1—the left hand side of Eqn. 1 yields unity for this oper-
ator, while the right hand side is exponentially small in
the volume, a clear disagreement. On that note, it is of-
ten mentioned that in systems where Eqn. 1 does hold, it
does so only for “few body” operators12,22 where, to our
knowledge, the precise meaning of few-body operator has
not been fully clarified.In this paper, we conjecture and
provide numerical evidence that Eqn. 1 holds for all op-
erators within a subregion A, where the volume VA of
subregion A can be arbitrarily large as long as it satisfies
VA < f⇤V , where f⇤ 6= 0 (< 1/2) is an O(1) number, to
be defined later. In fact, we will make the case that for a
large class of non-local operators, as well as all local op-
erators (which we define as the operators whose support
does not scale with the subsystem size VA), the condition
VA < V/2 suffices.

The satisfaction of Eqn. 1 for all operators in a region
A is equivalent to the statement that the reduced den-
sity matrix ⇢A(| i�) = trA| i��h | corresponding to an
eigenstate | i� is given by

⇢A(| i�) = ⇢A,th(�) (2a)

where

⇢A,th(�) =
trA

�
e��H

�

tr (e��H)
,

A being the complement of A. Note that the trace in the
denominator is over the whole Hilbert space. |When VA

is held constant, the equality in Eqn. 2a means the den-
sity matrices become elementwise equal in any basis as
V ! 1. When the ratio VA/V is held constant, however,
the number of matrix elements increases exponentially as
V ! 1. In this case we consider the validity of Eqn. 2a
in terms of the trace norm distance of the density matri-
ces on either side raised to any power—a point which is
further explained in Sec. VII.

One immediate consequence of Eqn.2a is that the ther-
modynamical properties of a system at arbitrary temper-
atures can be calculated using a single eigenstate. For
example, Eq. 2a implies that to the leading order, the
Renyi entropies S↵ (= � 1

↵�1

log [trA(⇢↵A)]) for an eigen-
state | i� corresponding to a subregion A are given by

S↵ =
↵

↵� 1
VA� (f(↵�)� f(�)) , (3)

where f(�) is the free energy density at a temperature
��1. This allows one to access f at an arbitrary tem-
perarure by varying ↵. Note that Eq.3 holds only to the
leading order because Renyi entropies S↵ receive addi-
tional subleading contributions due to the conical singu-
larity induced at the boundary of region A1,2,4. In the
limit ↵ ! 1, one recovers the eqaulity between the von

Neumann entanglement entropy S
1

and the thermal en-
tropy Sth = VAsth(�) where sth(�) is the thermal entropy
density at a temperature ��1, a result which was argued
to hold in Ref.23 for the special case of two weakly cou-
pled ergodic systems. We emphasize that these results
cannot be derived from Eqn. 1 alone were it to hold for
only for local operators, since entanglement entropies do
not correspond to the expectation value of a local oper-
ator. We also note that Refs.24,25 simulated the thermal
Renyi entropy S↵ (starting with the expression on the
right hand side of Eqn. 2a) using Quantum Monte Carlo
to access the properties of the system at temperature
(↵�)�1. Of course, Quantum Monte Carlo methods are
not well suited to verifying ETH since they cannot ac-
cess properties of a single eigenstate (the left hand side
of Eqn. 2a).

We will also discuss an approximate, but more intuitive
form of ETH, given by

⇢A(| i�) ⇡ e��HA

trA (e��HA)
(2b)

where HA is the projection of the original Hamiltonian
onto region A. This form is approximate compared to
Eqn. 2a because generically, it does not capture the corre-
lations near the boundary correctly due to the somewhat
arbitrary truncation scheme used to obtain HA. Never-
theless, equations 2a and 2b both yield the same results
for all bulk quantities such as the Renyi entropy den-
sities, as well as correlation functions of operators that
have support only away from the boundary.

A central task of this paper is to check the validity of
Eqns. 2a and 2b and their consequences for model non-
integrable systems. As already advertised, we will argue
that ETH allows one to calculate thermodynamical quan-
tities as well as correlators at all temperatures/energy
densities using only a single eigenstate. We will demon-
strate this explicitly by studying a quantum 1D model
numerically.

As mentioned above, we find evidence that Eq.2a holds
even when VA/V is held constant with VA/V less than
some number f⇤ 6= 0. In particular, as we discuss later,
our results strongly indicate that f < 1/2 is sufficient
to gaurantee the equivalence between the von Neumann
entropy density of a pure eigenstate, and the thermal
entropy density at the corresponding temperature. This
is in contrast to Ref.34 where it was argued that such an
equivalence holds only in the limit f⇤ ! 0. Recently35,36,
the requirement f⇤ ! was substantiated using analytical
and large scale numerical calculations for free fermions,
an integrable system. Our results indicate that f⇤ !
0 requirement is likely a consequence of the integrable
nature of the models in Ref.35,36.

The paper is organized as follows. |Sec. II discusses
general considerations for the validity of ETH, and the
division of all operators in a given subregion into two dis-
tinct classes, which have different requirements for ETH
to hold. Sec. III illustrates some general features of ETH
by studying the entanglement entropies of a hardcore bo-
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erator for which Eqn. 1 breaks down is the projection
operator | ih | onto the eigenstate | i that enters Eqn.
1—the left hand side of Eqn. 1 yields unity for this oper-
ator, while the right hand side is exponentially small in
the volume, a clear disagreement. On that note, it is of-
ten mentioned that in systems where Eqn. 1 does hold, it
does so only for “few body” operators12,22 where, to our
knowledge, the precise meaning of few-body operator has
not been fully clarified.In this paper, we conjecture and
provide numerical evidence that Eqn. 1 holds for all op-
erators within a subregion A, where the volume VA of
subregion A can be arbitrarily large as long as it satisfies
VA < f⇤V , where f⇤ 6= 0 (< 1/2) is an O(1) number, to
be defined later. In fact, we will make the case that for a
large class of non-local operators, as well as all local op-
erators (which we define as the operators whose support
does not scale with the subsystem size VA), the condition
VA < V/2 suffices.

The satisfaction of Eqn. 1 for all operators in a region
A is equivalent to the statement that the reduced den-
sity matrix ⇢A(| i�) = trA| i��h | corresponding to an
eigenstate | i� is given by

⇢A(| i�) = ⇢A,th(�) (2a)

where

⇢A,th(�) =
trA
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e��H
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tr (e��H)
,

A being the complement of A. Note that the trace in the
denominator is over the whole Hilbert space. |When VA

is held constant, the equality in Eqn. 2a means the den-
sity matrices become elementwise equal in any basis as
V ! 1. When the ratio VA/V is held constant, however,
the number of matrix elements increases exponentially as
V ! 1. In this case we consider the validity of Eqn. 2a
in terms of the trace norm distance of the density matri-
ces on either side raised to any power—a point which is
further explained in Sec. VII.

One immediate consequence of Eqn.2a is that the ther-
modynamical properties of a system at arbitrary temper-
atures can be calculated using a single eigenstate. For
example, Eq. 2a implies that to the leading order, the
Renyi entropies S↵ (= � 1

↵�1

log [trA(⇢↵A)]) for an eigen-
state | i� corresponding to a subregion A are given by

S↵ =
↵

↵� 1
VA� (f(↵�)� f(�)) , (3)

where f(�) is the free energy density at a temperature
��1. This allows one to access f at an arbitrary tem-
perarure by varying ↵. Note that Eq.3 holds only to the
leading order because Renyi entropies S↵ receive addi-
tional subleading contributions due to the conical singu-
larity induced at the boundary of region A1,2,4. In the
limit ↵ ! 1, one recovers the eqaulity between the von

Neumann entanglement entropy S
1

and the thermal en-
tropy Sth = VAsth(�) where sth(�) is the thermal entropy
density at a temperature ��1, a result which was argued
to hold in Ref.23 for the special case of two weakly cou-
pled ergodic systems. We emphasize that these results
cannot be derived from Eqn. 1 alone were it to hold for
only for local operators, since entanglement entropies do
not correspond to the expectation value of a local oper-
ator. We also note that Refs.24,25 simulated the thermal
Renyi entropy S↵ (starting with the expression on the
right hand side of Eqn. 2a) using Quantum Monte Carlo
to access the properties of the system at temperature
(↵�)�1. Of course, Quantum Monte Carlo methods are
not well suited to verifying ETH since they cannot ac-
cess properties of a single eigenstate (the left hand side
of Eqn. 2a).

We will also discuss an approximate, but more intuitive
form of ETH, given by

⇢A(| i�) ⇡ e��HA

trA (e��HA)
(2b)

where HA is the projection of the original Hamiltonian
onto region A. This form is approximate compared to
Eqn. 2a because generically, it does not capture the corre-
lations near the boundary correctly due to the somewhat
arbitrary truncation scheme used to obtain HA. Never-
theless, equations 2a and 2b both yield the same results
for all bulk quantities such as the Renyi entropy den-
sities, as well as correlation functions of operators that
have support only away from the boundary.

A central task of this paper is to check the validity of
Eqns. 2a and 2b and their consequences for model non-
integrable systems. As already advertised, we will argue
that ETH allows one to calculate thermodynamical quan-
tities as well as correlators at all temperatures/energy
densities using only a single eigenstate. We will demon-
strate this explicitly by studying a quantum 1D model
numerically.

As mentioned above, we find evidence that Eq.2a holds
even when VA/V is held constant with VA/V less than
some number f⇤ 6= 0. In particular, as we discuss later,
our results strongly indicate that f < 1/2 is sufficient
to gaurantee the equivalence between the von Neumann
entropy density of a pure eigenstate, and the thermal
entropy density at the corresponding temperature. This
is in contrast to Ref.34 where it was argued that such an
equivalence holds only in the limit f⇤ ! 0. Recently35,36,
the requirement f⇤ ! was substantiated using analytical
and large scale numerical calculations for free fermions,
an integrable system. Our results indicate that f⇤ !
0 requirement is likely a consequence of the integrable
nature of the models in Ref.35,36.

The paper is organized as follows. |Sec. II discusses
general considerations for the validity of ETH, and the
division of all operators in a given subregion into two dis-
tinct classes, which have different requirements for ETH
to hold. Sec. III illustrates some general features of ETH
by studying the entanglement entropies of a hardcore bo-

would imply that Renyi entropies encode
free energy at various temperatures. 
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Figure 5: Scaling of the entropy deviation �Sn ⌘
Sn(⇢A,th(�)) � Sn(⇢A(| i�)) with 1/L for constant LA av-
eraged over all eigenstates in the range 0.28 < � < 0.32, for
S1 (top panel) and S2 (bottom panel). The error bars rep-
resent one standard deviation away from the mean. For S1

this deviation is strictly non-negative, but for higher Renyi
entropies it can oscillate and become negative before tending
to zero as L ! 1.

Sn = � 1

n� 1
ln

✓
Z(A, n,�)

Z(1,�)n

◆
(27)

where Z(A, n,�) is the partition function of the system
on a n-sheeted Reimann surface, such that the region A
has an effective temperature n� while the region A has an
effective temperature �. Z(1,�) is the regular partition
function of the system. Therefore, keeping terms only to
the leading order in the system and subsystem size, the
above expression becomes

Sn = � 1

n� 1
ln

✓
e�VA�f(n�)�nVA�f(�)

e�nVA�f(�)�nVA�f(�)

◆
(28)

=
n

n� 1
VA� (f(n�)� f(�)) (29)

where f is the free energy density. Therefore, the wave-
function at temperature � can be used to calculate the
free energy at temperature n�. Indeed, the same result
also follows using the approximate form in Eq.2b. Tak-
ing the limit n ! 1 leads to the conclusion that von
Neumann entanglement entropy S

1

satisfies

S
1

= VAsth(�) (30)

where s
th

(�) is the thermal entropy density at tempera-
ture ��1.

B. Numerical Results for von Neumann and Renyi
Entropies

Fig.3 shows the scaling of von Neumann entropy S
1

as
a function of subsystem size LA for the eigenstates | i�
of our model (Eq.25). As discussed in Sec.II C 1, since S

1

is the expectation value of a Class I operator in our no-
tation, we expect Eqn.30 to hold as long as VA  VA, in
the limit VA, VA ! 1. This implies, that in the thermo-
dynamic limit, the function S

1

(VA) is expected to form
an inverted triangle shape, similar to the behavior of a
random pure state (Eq.5). However, in a finite total sys-
tem at any non-infinite temperature, S

1

is an analytic

Figure 6: Scaling of the entropy deviation �S1 with 1/L for
constant ratio LA/L averaged over all eigenstates in the range
0.28 < � < 0.32. As in Fig.5, the error bars represent one
standard deviation away from the mean. Even though this
plot considers the case where the subsystem size LA becomes
infinite as L ! 1, the entropy deviations are going to zero
rapidly as L becomes larger.

Sn(|���)

(holds only to leading order due to conical singularity)
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Figure 4: The von Neumann entropy S1 and Renyi entropies S2, S3, and S4 for the system given in Eqn.25 with L = 21 and
LA = 4. Here, ZA = trA(e��HA

). The entropies of the reduced density matrix at each energy density agree remarkably with
the the entropies calculated from the canonical ensemble, given by Eqns.2a and 2b.

IV. MODEL HAMILTONIAN WITH ONLY
ENERGY CONSERVATION

To develop some understanding of the questions posed
in the introduction, we study a finite 1D quantum spin-
1/2 chain with the following Hamiltonian:

H =
LX

i=1

�
�z
i �

z
i+1

+ hx�
x
i + hz�

z
i

�
(25)

We set hx = 0.9045 and hz = 0.8090 such that the model
is far away from any integrable point, and is expected to
satisfy ETH in the sense of Eqn.1 as shown in Ref.? . We
use periodic boundary conditions throughout.

We diagonalized the Hamiltonian in Eqn.25 for system
sizes up to L = 21, obtaining all the eigenvalues and
eigenstates. As hinted earlier, to each eigenstate we as-
signed a temperature ��1 by finding the value � for which

the energy expectation value in the canonical ensemble
matches the energy of the eigenstate:

h |H| i
h | i =

tr
�
He��H

�

tr (e��H)
. (26)

By definition, � = +1 for the ground state and � = �1
for the highest excited state.

V. VON NEUMANN AND RENYI ENTROPY
OF EIGENSTATES AT FINITE T

A. ETH Prediction for von Neumann and Renyi
Entropy

Let us consider the Renyi Entropy Sn =
� 1

n�1

ln(tr ⇢nA(| i�)) corresponding to an eigenstate at
temperature | i� . Assuming that ETH, as encoded in
Eq.2a, holds, Sn may be reexpressed as:
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We set hx = 0.9045 and hz = 0.8090 such that the model
is far away from any integrable point, and is expected to
satisfy ETH in the sense of Eqn.1 as shown in Ref.? . We
use periodic boundary conditions throughout.

We diagonalized the Hamiltonian in Eqn.25 for system
sizes up to L = 21, obtaining all the eigenvalues and
eigenstates. As hinted earlier, to each eigenstate we as-
signed a temperature ��1 by finding the value � for which
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A. ETH Prediction for von Neumann and Renyi
Entropy

Let us consider the Renyi Entropy Sn =
� 1

n�1

ln(tr ⇢nA(| i�)) corresponding to an eigenstate at
temperature | i� . Assuming that ETH, as encoded in
Eq.2a, holds, Sn may be reexpressed as:

= n
n�1� (f(n�) � f(�))

 Numerical check on the conjecture

Blue dots • = Renyi Entropy density Sn/LA of individual eigenstates 

= � 1
n�1

log(tr�n
A,th)

LA
= n

n�1�(f(n�) � f(�))

+ subleading corrections due to conical singularity.

in a system with open boundary conditions.
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Expectation value of observables at all temperatures using 
a single eigenstate.
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Figure 14: Equal time correlators for an L = 21 system plotted against inverse temperature �. The blue dots denote the
expectation value with respect to each eigenstate, the dashed cyan curve plots the expectation value in the canonical ensemble,
and the red curve plots the expectation value predicted from a single eigenstate at �0 = 0.3 (yellow dot) by raising the LA = 4

density matrix to the power �/�0 and rescaling it to have unit trace.

where E⇤ = E/f . The above equation implies that a
single eigenstate of a given Hamiltonian encodes within
itself information about the Hamiltonian up to an energy
density e⇤ = E⇤/V . In particular, when e⇤ exceeds the
maximum energy density of a lattice model, which can be
ensured for any eigenstate by taking a sufficiently small
f , then a single eigenstate encodes the full Hamiltonian!

We also introduced the notion of “equithermal” (Class
I) and “non-equithermal” (Class II) operators. In a
canonical ensemble at temperature T , Class I operators
receive contributions only from eigenstates at tempera-
ture T , while the same is not true for Class II operators.
Eq.35 implies that all Class I operators, local or non-
local, satisfy Eqn.1 as long as VA < V/2. On the other
hand, all Class II operators, local or non-local, satisfy
Eqn.1 as long as the energy densities they receive contri-
bution from is less than e⇤.
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Figure 14: Equal time correlators for an L = 21 system plotted against inverse temperature �. The blue dots denote the
expectation value with respect to each eigenstate, the dashed cyan curve plots the expectation value in the canonical ensemble,
and the red curve plots the expectation value predicted from a single eigenstate at �0 = 0.3 (yellow dot) by raising the LA = 4
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Figure 12: Trace norm distance between the canonical density
matrix and reduced density matrix for constant ratio LA/L
and 0.28 < � < 0.32. As in Fig. 11, the error bars represent
one standard deviation away from the mean. The grey lines
indicate linear fits for each ratio LA/L. The fit is done by per-
forming a linear regression analysis on the data set ({x}, {y})
where {y} is the set consisting of the trace norm distances
||⇢A(| i�) � ⇢A,th(�)||1 within 0.28 < � < 0.32 for a fixed
LA/L, while x value corresponding to a given data point y
equals 1/L.

||⇢̃(n)A (| i�)� ⇢̃(n)
A,th(�)||1 (35)

where ⇢̃(n)A ⌘ ⇢nA/trA(⇢nA). Raising a thermal density
matrix to the nth power adjusts its saddle point so that
it is dominated by properties at temperature (n�)�1—
and thus if this trace norm distance vanishes as L ! 1,
Eqn. 2a holds for properties at temperature (n�)�1. (For
n = 1, this comparison reduces to the case discussed in
the paragraph above.) In Fig. 13, we plot the trace norm
distance between these density matrices for n = 1/2 (left
panels) and n = 3/2 (right panels). For these values of
n, the energy density corresponding to the shifted saddle
point lies within the window given by Eqn. 18. Remark-
ably, as L increases, the trace norm distance decreases,
both when holding LA fixed (top panels) and when keep-
ing the ratio LA/L fixed (bottom panels). For n 6= 1,
⇢̃(n)A,th(�) corresponds to a thermal density matrix with
a conical singularity.5 In line with the reasoning behind
Eqn. 2b, we expect that ⇢A,th(�) ⇠ e��HA , from which it
follows that ⇢̃(n)A,th(�) ⇡ ⇢A,th(n�); by this we mean that
all correlators with support away from the boundary are
equal to each other for these density matrices. The Renyi
entropies will also be correct. Together with the results
in Sec. VI, this builds the case that the reduced density
matrix taken from a single eigenstate can predict equal
time correlators at all energy densities that lie within the
window given by Eqn. 18. We study this point further in

the next section.

VIII. AN APPLICATION: EQUAL-TIME
CORRELATORS AS A FUNCTION OF

TEMPERATURE FROM A SINGLE
EIGENSTATE

In the previous sections we provided evidence that a
single eigenstate encodes the full Hamiltonian as long as
the constraints in Eqn. 19 are satisfied. As an applica-
tion of this result, we now calculate correlation functions
at arbitrary temperatures using a single eigenstate | i� .
The basic idea is similar to the relation between the Renyi
entropies and the free energy densities (Eqn. 3).

In particular, consider the correlation function,

hO(x)O(y)i�,n =
trA (⇢nA(| i�)O(x)O(y))

trA (⇢nA(| i�))
(36)

where x, y are located in subsystem A, away from the
boundary. Using Eqns. 2a, 2b to the leading order in
the subsystem size, hO(x)O(y)i�,n equals the expectation
value of the operator O(x)O(y) at a temperature (n�)�1.

Fig. 14 shows the expectation values of local operators
within subsystem A as a function of �, as predicted from
a single eigenstate at inverse temperature �

0

(indicated
by a yellow dot on the red curve). We choose operators
that are as far away from the subsystem boundary as
possible, and choose the bipartition size and �

0

so that
the energy constraint Eqn. 19 is satisfied for | i�

0

. Even
though the agreement with the canonical ensemble is not
perfect, the qualitative trends and the numerical values
match incredibly well, given the modest total system sizes
to which we are restricted. These predicted correlators
also undoubtedly suffer from corrections expected due to
the conical singularity at the boundary of A in Eqn. 36.

IX. SUMMARY AND DISCUSSION

In this paper, we analyzed the structure of reduced
density matrices corresponding to the eigenstates of
generic, non-integrable quantum systems. We argued
that given an eigenstate | i� with energy density e and
a corresponding temperature ��1, the reduced density
matrix for a subsystem A is given by

⇢A(| i�) = ⇢A,th(�)

where

⇢A,th(�) =
trA

�
e��H

�

tr (e��H)

if the condition f  min
h

e
e
max

, 1� e
e
max

i
is satisfied,

where e
max

is the maximum energy density for the given

�O(x)O(y)�n�

+ corrections of order e�x/�T , e�y/�T



Questions

• Can one calculate properties of a system at all 
temperatures using a single eigenstate?

• Does thermalization occurs in a region A even 
when VA/V is held fixed i.e. subsystem not much 
smaller than the total system?     

• Is the thermalization time for local and non-
local operators vastly different?               



S

VA/V0 1

For random pure states, entanglement entropy density 
equals thermal entropy density as long as VA/V < 1/2.

Sthermal

Lubkin1978; Lloyd, Pagels 1988; 
Page 1993



S

VA/V0 1

Sthermal

Lubkin1978; Lloyd, Pagels 1988; 
Page 1993

Does the above plot holds true for finite energy
density eigenstates of an ergodic system?
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Figure 5: Scaling of the entropy deviation �S↵ ⌘
S↵(⇢A,th(�)) � S↵(⇢A(| i�)) with 1/L for constant LA av-
eraged over all eigenstates in the range 0.28 < � < 0.32, for
S1 (top panel) and S2 (bottom panel). The error bars rep-
resent one standard deviation away from the mean. For S1

this deviation is strictly non-negative, but for higher Renyi
entropies it can oscillate and become negative before tending
to zero as L ! 1.

where s
th

(�) = S
1

(⇢A,th(�))/LA is the thermal entropy
density at temperature ��1.

B. Numerical Results for von Neumann and Renyi
Entropies

Fig. 3 shows the scaling of von Neumann entropy S
1

as a function of subsystem size LA for the eigenstates
| i� of our model (Eqn. 27). As discussed in Sec. II C 1,
since S

1

is the expectation value of a Class I operator in
our nomenclature, we expect Eqn. 32 to hold as long as
VA < VA, in the limit VA, VA ! 1. This implies that
in the thermodynamic limit, the function S

1

(VA) is ex-

Figure 6: Scaling of the von Neumann entropy deviation �S1

with 1/L for constant ratio LA/L averaged over all eigenstates
in the range 0.28 < � < 0.32. As in Fig. 5, the error bars
represent one standard deviation away from the mean. Even
though this plot considers the case where the subsystem size
LA becomes infinite as L ! 1, the entropy deviations are
going to zero rapidly as L becomes larger.

pected to form an inverted triangle shape, similar to the
behavior of a random pure state (Eqn. 6). However, in
a finite total system at any non-infinite temperature, S

1

is an analytic function of the ratio VA/V with a negative
sign for d2S

1

dV 2

A
, as shown in Fig. 3 (note that the sign of the

curvature is fixed by the strong subadditivity of entan-
glement). However, even in finite system, the volume law
does hold to a good accuracy when VA . V/2, and the
finite size scaling, discussed below, indicates that the in-
verted triangle shape is recovered in the thermodynamic
limit.

Fig. 4 shows the comparison of S
1

, S
2

, S
3

, and S
4

cal-
culated for each individual eigenstate for a subsystem size
LA = 4 in a L = 21 system, with their ETH predicted
canonical counterparts, Eqns. 32 and 3. We use two dif-
ferent canonical counterparts corresponding to Eqns. 2a
and 2b, the latter version being susceptible to bound-
ary errors, which nevertheless are expected to vanish as
VA, VA ! 1. The agreement for each entropy is remark-
able. It is worth re-iterating that the Renyi entropies
for an eigenstate | i� encode the free energy densities
at temperatures different than ��1 (Eqn. 3), and these
results provide an instance of non-local Class II opera-
tors satisfying ETH. The condition (19) does not come
into play while calculating S↵ because the energy den-
sity corresponding to temperature (↵�)�1 is lower than
the critical energy density (Eqn. 18), up to which the en-
tanglement spectrum matches the actual spectrum of the
Hamiltonian. We will discuss this in detail in the next
section. Also note that as ↵ becomes larger, finite size
effects become more pronounced because S↵ probes the
system at lower temperatures (↵�)�1.

Scaling of Entanglement Entropy at fixed LA/L

Entanglement entropy seemingly equals thermal entropy even at fixed 
LA< L/2 at non-infinite temperatures as well.

Analytical evidence of conjecture from recent work on large central 
charge CFTs (Hartman et al (2014), Kaplan et al (2014)).



Long-time scaling of trace distance for fixed VA/V 
after quantum quench

Similar result obtained by Hosur.
Jim Garrison, TG (2015).



Questions

• Can one calculate properties of a system at all 
temperatures using a single eigenstate?

• Does thermalization occurs in a region A even 
when VA/V is held fixed i.e. subsytem not much 
smaller than the total system?     

• Is the thermalization time for local and non-
local operators vastly different?               



Time evolution of trace norm distance

“Nothing happens” after time scale t > La  where a ≈ 2.

But non-local operators do thermalize slower than
local operators! (cf. quench video)



Entanglement Scaling: 
Ground State Vs Excited States

Sn ~  L

Sn ~ constant
“Area Law”
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Summary and Open Questions
• Under reasonable assumptions, strong subadditivity 

of entanglement implies that eigenstates at a 
continuous MBL transition ergodic (volume law 
entanglement with thermal coefficient). Fully ergodic? 
Off-diagonal matrix elements of operators? 

• Single eigenstate enough to extract Hamiltonian 
properties at arbitrary temperatures!

• Entanglement entropy corresponding to a finite 
energy density eigenstates equals thermal entropy as 
long as VA<V/2. One doesn’t need VA << V.

• Can MBL transition be first-order? Perhaps it is 
always first-order?

• Analytical results for thermalization of non-local 
operators?


