

Universal Aspects of Many-body Localization transition & Eigenstate Thermalization Tarun Grover (KITP, Santa Barbara)

TG: arXiv:1405.1471 TG, Jim Garrison: arXiv:1503.00729 TG, Jim Garrison: arXiv:1512.XXXX

MBL Phase diagram?

Basko, Aleiner, Altshuler, 2005; Oganesyan, Huse 2006; Pal, Huse 2010; Reichman et al 2010; Vosk et al 2014; Potter et al 2015; Serbyn et al 2015; de Luca, Scardicchio 2013; Demler et al 2014; Santos et al 2015, and many others.

Nature of Eigenstates <u>at</u> the transition?

Are they ergodic?

Strategy: <u>Analyze scaling of entanglement entropy close</u> <u>to the transition</u>.

<u>Assumption</u>: A <u>diverging length scale</u> on approaching the transition from <u>either</u> side.

Entanglement Scaling Close to MBL Transition

| Unknown C ↑ Known

Critical Entanglement: A Catalog of Scaling Behaviors.

Our toolbox: Strong Subadditivity constraint on Entanglement

 $S(A_1) + S(A_2) - S(A_1 \cup A_2) - S(A_1 \cap A_2) \ge 0$

Lieb, Ruskai 1973

Strong Subadditivity & Entanglement Scaling

 $S(A_1) + S(A_2) - S(A_1 \cup A_2) - S(A_1 \cap A_2) \ge 0$

 $\implies S(\ell) + S(\ell) - S(\ell + \Delta \ell) - S(\ell - \Delta \ell) \ge 0$

Hirata, Takayanagi 2007 cf: Casini, Huerta's proof of c-theorem 2004

Inequality with Disorder?

Ruling out Possibilities via

Not allowed because $s \leq s_{Thermal}$

Follows from positivity of "Relative Entropy"

$$\operatorname{tr}\left(\rho_{1}\log\rho_{1}\right) - \operatorname{tr}\left(\rho_{1}\log\rho_{2}\right) \geq 0 \qquad \forall \rho_{1}, \rho_{2}$$

TG 2014

Answer

Critical Entanglement S = $s_{Thermal} \ell \Rightarrow Ergodic$

entanglement!

Note: $\ell/L << 1$

Approaching Transition from the MBL Side

 $\lim_{\ell \to \infty} \lim_{\xi \to \infty} \frac{\mathsf{s}}{\ell} \neq \lim_{\xi \to \infty} \lim_{\ell \to \infty} \frac{\mathsf{s}}{\ell}$

Transition continuous because area-law coefficient diverges from the MBL side!

Same conclusion. Critical point ergodic.

disorder

 (i) Can a non-ergodic delocalized phase be connected to an ergodic one without a phase transition?
Answer: No

(ii) Restrictions on entanglement
scaling at the critical point between localized
and the non-ergodic delocalized phase?
Answer: EE at transition can't be area law.

Consequences

Eigenstates AT the transition satisfy:

$$\langle \psi | O | \psi \rangle = \frac{\operatorname{tr} \left(O e^{-\beta H} \right)}{\operatorname{tr} \left(e^{-\beta H} \right)}$$

Long time evolution (how long?) of a state with critical energy density should yield a thermal state.

 $\mathrm{tr}_{\overline{\mathsf{A}}} \lim_{t \to \infty} \mathrm{e}^{\mathrm{i}Ht} |\psi_0\rangle \; \langle \psi_0 | \mathrm{e}^{-\mathrm{i}Ht} \propto \mathrm{e}^{-eta H_{\mathsf{A}}}$

Scenario discussed so far...

 $\frac{An Alternative "Rare Region" Scenario:}{\log\langle e^S \rangle} a \text{ correct scaling function and not } \langle S \rangle.$ $Can \langle S \rangle_{critical} \text{ be non-ergodic while the transition} remains continuous?}$

Motivated by work of Ehud Altman and collaborators.

Strong subadditivity again constrains log(e^{s}):

$$\frac{d^2 \log \langle e^{S} \rangle}{d\ell^2} - \text{Variance'}\left(\frac{dS}{d\ell}\right) \leq \mathbf{0}$$

<u>A toy model for this scenario</u>

= probability of finding ergodic region in length ℓ

MBL Phase

Part II

Universal Aspects of Eigenstate Thermalization

Work with Jim Garrison (UCSB).

Summary of ETH

Srednicki 1994

$$\langle \mathsf{E}_{\alpha}|\mathsf{O}|\mathsf{E}_{\beta}\rangle = \mathsf{O}(\mathsf{E})\delta_{\alpha\beta} + \mathrm{e}^{-\mathsf{S}(\mathsf{E})/2}f_{\mathsf{O}}(\mathsf{E},\omega)\mathsf{R}_{\alpha\beta}$$

$$\mathsf{E} = \frac{\mathsf{E}_{\alpha} + \mathsf{E}_{\beta}}{2} \qquad \qquad \omega = \mathsf{E}_{\alpha} - \mathsf{E}_{\beta}$$

O(E) = microcanonical expectation value of O, $f_O(E, \omega)$ smooth function,

R random complex variable with zero mean and unit variance.

Rigol, Dunjko, Olshanii 2008; Khatami, Pupillo, Srednicki, Rigol (2014).

Questions

- Can one calculate properties of a system at <u>all</u> temperatures using a <u>single</u> eigenstate?
- Does thermalization occurs in a region A even when V_A/V is held fixed i.e. <u>subsytem not much</u> <u>smaller than the total system</u>?
- Is the thermalization time for local Vs non-local operators vastly different?

Same conclusion with reduced density matrix of an eigenstate (instead of time evolved state)

 $L=21, L_{A}=4$

Why is this interesting?

If ETH was true only for "few-body" operators, in the $V \rightarrow \infty$ limit, the spectra need to match **only** at the energy density corresponding to the eigenstate.

Physical Content of $\rho_A(|\psi\rangle_\beta) = \rho_{A,th}(\beta)$

$$\rho_A(|\psi\rangle_\beta) = \frac{\operatorname{tr}_{\overline{A}}\left(e^{-\beta H}\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \approx \frac{e^{-\beta H_A}}{\operatorname{tr}_A\left(e^{-\beta H_A}\right)}$$

$$|\psi\rangle_{\beta} = \sum_{i} \sqrt{\lambda_{i}} |u_{i}\rangle \otimes |v_{i}\rangle$$

 $\lambda_i \propto e^{-eta E_{A,i}} ~ \ket{u_i}$ = Approximate Eigenstate of H_A

Rare quantum fluctuations of energy in a subsystem allow one to access properties at <u>all</u> energy densities $as V_A/V \rightarrow 0$.

Consequence #I:

<u>Thermodynamics</u> using a <u>single</u> eigenstate.

$$\rho_A(|\psi\rangle_\beta) = \rho_{A,\mathrm{th}}(\beta)$$

would imply that Renyi entropies encode free energy at various temperatures.

$$S_n(|\psi\rangle_\beta) = \frac{n}{n-1} V_A \beta \left(f(n\beta) - f(\beta)\right)$$

(holds only to leading order due to conical singularity)

Numerical check on the conjecture $\mathbf{H} = \sum_{i} \left(-\sigma_{i}^{\mathbf{z}} \sigma_{i+1}^{\mathbf{z}} + \mathbf{h}_{\mathbf{x}} \sigma_{i}^{\mathbf{x}} + \mathbf{h}_{\mathbf{z}} \sigma_{i}^{\mathbf{z}} \right)$ 0.7 0.7 0.6 0.6 0.5 0.5 S_3/L_A S_2/L_A 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 2.5 0.5 1.0 1.5 2.5 3.0 2.0 0.0 2.0 0.0 0.5 1.0 1.5 3.0 energy density energy density Blue dots \bullet = Renyi Entropy density S_n/L_A of individual eigenstates $= -\frac{1}{n-1} \frac{\log(\operatorname{tr}\rho_{A,th}^{"})}{L_A} = \frac{n}{n-1} \beta(f(n\beta) - f(\beta))$

+ subleading corrections due to conical singularity.

 $=\frac{n}{n-1}\beta(f(n\beta)-f(\beta))$ in a system with open boundary conditions.

Consequence #2:

Expectation value of observables at all temperatures using a single eigenstate.

$$\langle \mathbf{O}(\mathbf{x})\mathbf{O}(\mathbf{y})\rangle_{\mathsf{n}\beta} = \frac{\operatorname{tr}_{A}\left(\rho_{A}^{n}(|\psi\rangle_{\beta})O(x)O(y)\right)}{\operatorname{tr}_{A}\left(\rho_{A}^{n}(|\psi\rangle_{\beta})\right)}$$

+ corrections of order e^{-x/ξ_T} , e^{-y/ξ_T}

Questions

- Can one calculate properties of a system at <u>all</u> temperatures using a <u>single</u> eigenstate?
- Does thermalization occurs in a region A even when V_A/V is held fixed i.e. subsystem not much smaller than the total system?
- Is the thermalization time for local and nonlocal operators vastly different?

For random pure states, entanglement entropy density equals thermal entropy density as long as $V_A/V < I/2$.

Does the above plot holds true for <u>finite energy</u> <u>density eigenstates</u> of an ergodic system?

Scaling of Entanglement Entropy at fixed L_A/L

Entanglement entropy seemingly equals thermal entropy even at fixed $L_A < L/2$ at non-infinite temperatures as well.

Analytical evidence of conjecture from recent work on large central charge CFTs (Hartman et al (2014), Kaplan et al (2014)).

Long-time scaling of trace distance for fixed V_A/V after quantum quench

Questions

- Can one calculate properties of a system at <u>all</u> temperatures using a <u>single</u> eigenstate?
- Does thermalization occurs in a region A even when V_A/V is held fixed i.e. subsytem not much smaller than the total system?
- Is the thermalization time for local and nonlocal operators vastly different?

Time evolution of trace norm distance

"Nothing happens" after time scale t > L^a where a ≈ 2. But non-local operators do thermalize <u>slower</u> than local operators! (cf. quench video)

Summary and Open Questions

- Under reasonable assumptions, strong subadditivity of entanglement implies that eigenstates at a continuous MBL transition ergodic (volume law entanglement with thermal coefficient). Fully ergodic? Off-diagonal matrix elements of operators?
- Single eigenstate enough to extract Hamiltonian properties at arbitrary temperatures!
- Entanglement entropy corresponding to a finite energy density eigenstates equals thermal entropy <u>as</u> <u>long as V_A<V/2. One doesn't need V_A << V.</u>
- Can MBL transition be first-order? Perhaps it is always first-order?
- Analytical results for thermalization of non-local operators?