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• Rapid (~e-t/τ) dephasing &  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• Boundary entanglement:   
S(L) ~ ξ Ld-1 
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What is the nature of this transition?

• New kind of phase transition: 
Neither classical/thermal nor quantum critical 
Thermodynamics breaks down sharply at a critical point 

• Universal scaling properties?  
• How do thermal transport & dynamics slow down  

to stop at the critical point?
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Cold atoms

Trapped ions (Long-range interactions)
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FIG. 1: An Interacting spin model with random disor-
der (a) Directly measured elements of the spin-spin coupling
matrix J

ij

(Eq. (1)). The long range interactions decay as
J
max

/r1.13. (b) A specific instance of the random disordered
field with a schematic illustration of the long-range interac-
tions and (c) the random values of the disordered field for all
30 instances of disorder for several di↵erent disorder strengths
and for each ion. (d) The level statistics calculated from the
measured spin-spin coupling matrix (a) and applied disorders
(c) are Poisson-distributed (black line is the expected level
spacings for a Poisson distribution), as predicted for a MBL
system.

between 0.95 and 1.81, although for most of the data
↵ ⇡ 1.13. Moreover, we directly measure the complete
spin-spin coupling matrix (Fig. 1a), demonstrating the
long-range interactions required to exhibit MBL.

The site-specific programmable disorder term Di is
sampled from a uniform random distribution with Di 2
[�W,W ]. The disorder is generated by site-dependent
laser-induced Stark shifts (Methods), which also allow
for preparation of the system into any desired product
state. To ensure we observe the general behavior of the
disordered Hamiltonian, we average over 30 distinct ran-
dom instances of disorder (Fig. 1b-c), which leads to a
sampling error that is smaller than the features of interest
in the data.

An important signature of the MBL phase is mani-
fested in the spectral statistics of adjacent energy levels
of the Hamiltonian. In a thermalizing phase, these en-
ergy splittings follow random-matrix level statistics due
to level repulsion. However, in the MBL phase, this
level repulsion is greatly suppressed since eigenstates typ-
ically di↵er by multiple spins flips. As a result, the level
spacing between adjacent energy eigenvalues are Poisson-
distributed [8, 9]. Using our directly measured spin-spin
couplings and applied realizations for the strongest ex-

perimental disorder W = 8Jmax and B = 4Jmax, we cal-
culate the distribution of adjacent energy level splittings
and find them to be Poisson-distributed, as expected for
a MBL state (Fig. 1d).
Before searching for evidence of localization in the sys-

tem’s time evolution, we first find parameters that cause
the measured state to thermalize in the absence of disor-
der. We increase the transverse field B and look for con-
ditions that result in the single-site magnetization along
two orthogonal directions approaching and remaining at
their thermal equilibrium values (Methods).
Figure 2a shows the measured dynamics of h�z

i i for
B = 4Jmax and Di = 0 with the spins initialized in the
Néel ordered state, |"#"#"#"#"#iz along the z-direction.
This configuration has an energy equivalent to an infinite
temperature thermal state, since the expectation value of
the Hamiltonian is zero. At long times, each expectation
value �z

i approaches zero, losing memory of the initial or-
dering. As the transverse field B is increased, the system
appears to thermalize more quickly and the level statis-
tics approach those of random matrices rather than Pois-
sonians, as expected for a generic thermodynamic system
(Methods).
When B � J , the Hamiltonian is e↵ectively an XY

model [18, 19] and conserves
P

i �
z
i , because Ising pro-

cesses that flip spins along the large field are energetically
forbidden. Thus, being in a spin configuration with half
of the spins up and half of the spins down maximizes the
accessible energy states. In addition, the Neél state is
never an eigenstate, even for B � J and W � J , since
the uniform B field at each site still allows spin exchange
in the z -basis.
If a system is thermal, the Eigenstate Thermalization

Hypothesis (ETH) provides a general framework where
observables reach the value predicted by the microcanon-
ical ensemble [20–22]. This allows us to calculate the
expected thermal value of the reduced density matrix
given the Hamiltonian and an initial state (Methods).
To further establish that the system is thermalizing,
we measure the reduced density matrix for each spin,
⇢i =Tr{j 6=i}⇢, without applied disorder and B = 4Jmax

as shown in Fig. 2a. In our experiment, the spins are
initially prepared in a product state with high fidelity.
However at long times, the measured reduced density
matrices show that each of the spins are very close to
the zero magnetization mixed state, implying the system
has locally thermalized.
We apply the random disordered potential, Di 6= 0,

and observe the emergence of MBL as we increase the
strength of disorder. Since the many-body eigenstates
in the MBL phase are not thermal, transport of energy
and spins is suppressed, and ETH fails. Thus, observ-
ables will not relax to their thermal values [9] and there
will be memory of the initial conditions evident in the
single-site magnetization. When starting in the Neél or-
dered state, Fig. 2b-f shows the time evolution of �z

i for
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Transport of Hubbard-Band Quasiparticles in Disordered Optical Lattices

V. W. Scarola1 and B. DeMarco2

1
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA and

2
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Dated: March 26, 2015)

Quantum degenerate gases trapped in optical lattices are ideal testbeds for fundamental physics because
these systems are tunable, well characterized, and isolated from the environment. Controlled disorder can be
introduced to explore suppression of quantum diffusion in the absence of conventional dephasing mechanisms
such as phonons, which are unavoidable in experiments on electronic solids. Recent experiments use transport
of degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015)) to probe a
particularly extreme regime of strong interaction in what can be modeled as an Anderson-Hubbard model. These
experiments find evidence for an intriguing insulating phase where quantum diffusion is completely suppressed
by strong disorder. Quantitative interpretation of these experiments remains an open problem that requires
inclusion of non-zero entropy, strong interaction, and trapping. We argue that the suppression of transport can be
thought of as localization of Hubbard-band quasiparticles. We construct a theory of transport of Hubbard-band
quasiparticles tailored to trapped optical lattice experiments. We compare the theory directly with center-of-
mass transport experiments of Kondov et al. with no fitting parameters. The close agreement between theory
and experiments shows that the suppression of transport is only partly due to finite entropy effects. We argue that
the complete suppression of transport is consistent with Anderson localization of Hubbard-band quasiparticles.
The combination of our theoretical framework and optical lattice experiments offers an important platform for
studying localization in isolated many-body quantum systems.

PACS numbers: 03.75.Ss, 67.85.-d

I. INTRODUCTION

Understanding the motion of a quantum particle in an oth-
erwise isolated lattice under the influence of an applied field
is central to our understanding of conductivity in electronic
solids. The theory of Anderson localization [1, 2] predicts
that quantum diffusion of a single particle can fail in a dis-
ordered lattice. Above a critical disorder strength, for which
the mobility edge encompasses all states participating in trans-
port [3, 4], strong interference forbids quantum diffusion. An-
derson’s mechanism of localization was first discussed in the
context of as a simplified model designed to treat the propa-
gation of highly excited states of nuclear spin systems but is
has since been applied to a wide variety of other systems [2],
including quantum degenerate atomic gases [5–10]. Disorder-
induced localization is also believed to play a key role in
metal-insulator transitions in a wide-range of materials [2–4].

Subsequent theoretical studies of Anderson localization
found that inclusion of realistic effects, specifically inter-
particle interactions and non-zero temperature [2, 11–15],
pose prominent problems. The competition between Ander-
son localization and strong interaction effects have been stud-
ied with a variety of methods, e.g., quantum Monte Carlo [16],
dynamical mean field theory [14, 17, 18], and related quantum
cluster methods [19]. Refs. [14] and [18], for example, found
a correlated Anderson insulator ground state for large disor-
der strengths indicating that Anderson localization persists in
a strongly interacting limit. A more complete understanding
of the interplay of strong inter-particle interactions and disor-
der is urgently needed to enhance our knowledge of strongly
correlated materials such as high-temperature superconduc-
tors.

Related work by Basko et al. [20] has triggered consider-

FIG. 1. (Color online) Schematic showing disordered lattice sites in
a parabolic trapping potential. The site coloring represents a dense
core that gives way to zero density at the edges. The system stud-
ied here can be thought of as a strongly interacting high temperature
paramagnet with a density less than one at the center. An applied
shift of the external trapping potential along the x-direction for a time
⌧ = ⌧P forces center-of-mass motion along the x direction only if
the atoms are mobile. ⌧P is chosen to be short on the time scale of
the inverse trapping frequency.

able interest in the interplay between interactions, tempera-
ture, and Anderson localization. Their work indicates that a
correlated Anderson insulator is stable at non-zero tempera-
tures and corresponds to a many-body localized state. This is
surprising because one might expect that interactions lead to
dephasing effects that mimic the effects of heat and particle
number reservoirs [21] that are known to lead to conduction
via variable range hopping in certain solids [4]. Interactions
would be expected to lead to effective reservoirs even in the
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Resonances (two-particle)

Delocalization happens through highly collective 
many-body resonance…

E

x

�(x) ⇠ V e

�x/x0

�E = �E12 � �E34

1
2

3
4

x

H =
X

↵

"↵c
†
↵c↵+

X

↵���

V↵���c
†
↵c

†
�c�c�



General Considerations
1. Identifying general N-body resonance is hard 

2. Critical point is thermal (entanglement monotonicity) 
• Ignore quantum interference (strong dephasing) 
• Classical model should suffice 

3. Expect (at criticality): 
• Self-similar (Fractal), Hierarchical structure 
• RG-like procedure:  

A. identify strongest resonances,
B. form resonant clusters
C. compute new inter-cluster couplings 
D. then see if they inter-resonate, etc…
E. Keep only coarse grained information  

about clusters

Grover ‘14



Many-body resonances

⇤i ⇡ �rms
p
n

�i ⇡ ⇤i

|H|i ⇠ 2�ni

|Hi| = 2ni

i

Number of DOF:

Bandwidth:

Level Spacing:

Coarse grained information
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FIG. 2. Finite-size scaling for the disorder averaged
localization length ⇠

loc

(defined as the size of the longest
resonant cluster for a given disorder realization). ⇠

loc

L col-
lapse to a universal form (main panel) when plotted against
the scaling variable (W � Wc)L

1/⌫ , with correlation length
exponent ⌫ ⇡ 3.5± 0.3. Insets show the unscaled ⇠

loc

L curves.
Results are averaged over ⇠ 104 disorder realizations.

ical disorder strength W
c

. Moreover, the data for dif-
ferent system sizes collapse to a universal scaling form
⇠
loc

= L ⌅
�
(W � W

c

)L1/⌫

�
, with correlation length ex-

ponent ⌫ = 3.5 ± 0.3, as shown by plotting ⇠

loc

L

against

the scaling variable (W � W
c

)L1/⌫ (Fig. 2). Here ⌅(x)
is a universal scaling function interpolating between one
(x ⌧ 0) and zero (x � 0).

This scaling collapse indicates the existence of a length
scale ⇠ that diverges when the transition is approached
from either side as ⇠ ⇠ |W � W

c

|�⌫ , signaling a sharp
continuous delocalization phase transition. The diverg-
ing length scale ⇠ can be interpreted as the localization
length for W > W

c

, and as we will see below, character-
izes the length of insulating gaps in the transport path
for W < W

c

.

We remark that the value of the scaling function at
criticality: ⌅(0) ⇡ 10�2, is anomalously low compared
to ordinary percolation (for which ⌅(0) would be ⇡ 0.5).
This strong asymmetry indicates that the transition is
driven by rare resonant clusters that are quite sparse and
widely separated (e.g. clusters of size ` are separated by
typical distance ⇡ ⌅(0)�1 ⇥ ` � ` at criticality).

We also performed simulations of a simpler model that
ignores the renormalization of the couplings when merg-
ing clusters. As claimed above, despite the potential sta-
bility issues of the strong disorder phase within that sim-
plified model, we find essentially identical universal per-
colation curves using these simplified rules, compatible
with the same universal exponent ⌫ ⇡ 3.5 within error
bars (see Appendix A).

V. NEAR-CRITICAL DYNAMICS IN THE
DELOCALIZED PHASE

We now turn to the task of computing the near-critical
scaling of transport and entanglement dynamics, in the
delocalized phase (W . W

c

). Our goal will be to un-
derstand the scaling structure underpinning the critical
slowing down of energy transport as W approaches W

c

from below. Since the delocalized phase is thermal and
at high temperature [21], transport occurs via the ther-
mally incoherent transfer of energy among bonds in the
resonant cluster. Hence, we model the spread of excess
energy (initially localized near position x as a function
of time) as a classical random walk across the resonant
cluster, with a timescale ⌧

AB

= 1/J(L
AB

) to transfer
excitations between resonantly coupled bonds A and B
separated by distance L

AB

.
The iterative merging procedure yields detailed infor-

mation about the connectivity structure and the coupling
strengths for each participating link in the resonant clus-
ter. Here, it is important to note that, while all degrees
of freedom are part of the percolating resonant cluster
for W < W

c

, not all spins contribute equally to trans-
port and dynamics. Rather, dynamical properties are
dominated by a subset of e�ciently connected spins that
form the “backbone” of the transport path through the
resonant cluster. Then, using standard Green’s function
methods, we compute the time evolution of an initially
well-localized energy wave packet spreading across the
resonances network via a random walk. Our main re-
sult is that the delocalized phase exhibits a broad regime
of anomalously slow sub-di↵usive equilibration dynam-
ics and energy transport. We observe this subdi↵usive
behavior in our model using both renormalized and non-
renormalized couplings, but find that finite-size e↵ects
are much weaker for the simplified model that ignores
renormalization, thus allowing us to extract much cleaner
data. We will therefore focus on this simplified model in
the following – recall that it reproduces equally well the
critical percolation curves described in the previous sec-
tion [28].

Averaging over initial position x, and over disorder
configurations, we find that the mean-square displace-
ment of an excitation grows as a power law in time
(Fig. 3),

|�x(t)| ⇡ t1/z(W ). (5)

For ordinary classical di↵usion, z = 2. In contrast, we
find that z(W ) diverges in the glassy phase, indicating
an absence of energy transport and a breakdown of ther-
mal equilibration. On the delocalized side of the critical
point, 1/z(W ) increases continuously from zero as a func-
tion of detuning from the critical disorder strength:

z(W ) ⇡ z
0

(W
c

� W )⇣

, (W . W
c

). (6)

Though seemingly a distinct universal exponent, ⇣ is re-
lated by a general scaling relation to the log-dynamical
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, and as we will see below, character-
izes the length of insulating gaps in the transport path
for W < W

c

.

We remark that the value of the scaling function at
criticality: ⌅(0) ⇡ 10�2, is anomalously low compared
to ordinary percolation (for which ⌅(0) would be ⇡ 0.5).
This strong asymmetry indicates that the transition is
driven by rare resonant clusters that are quite sparse and
widely separated (e.g. clusters of size ` are separated by
typical distance ⇡ ⌅(0)�1 ⇥ ` � ` at criticality).

We also performed simulations of a simpler model that
ignores the renormalization of the couplings when merg-
ing clusters. As claimed above, despite the potential sta-
bility issues of the strong disorder phase within that sim-
plified model, we find essentially identical universal per-
colation curves using these simplified rules, compatible
with the same universal exponent ⌫ ⇡ 3.5 within error
bars (see Appendix A).
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We now turn to the task of computing the near-critical
scaling of transport and entanglement dynamics, in the
delocalized phase (W . W
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). Our goal will be to un-
derstand the scaling structure underpinning the critical
slowing down of energy transport as W approaches W
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from below. Since the delocalized phase is thermal and
at high temperature [21], transport occurs via the ther-
mally incoherent transfer of energy among bonds in the
resonant cluster. Hence, we model the spread of excess
energy (initially localized near position x as a function
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cluster, with a timescale ⌧
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) to transfer
excitations between resonantly coupled bonds A and B
separated by distance L

AB

.
The iterative merging procedure yields detailed infor-

mation about the connectivity structure and the coupling
strengths for each participating link in the resonant clus-
ter. Here, it is important to note that, while all degrees
of freedom are part of the percolating resonant cluster
for W < W

c

, not all spins contribute equally to trans-
port and dynamics. Rather, dynamical properties are
dominated by a subset of e�ciently connected spins that
form the “backbone” of the transport path through the
resonant cluster. Then, using standard Green’s function
methods, we compute the time evolution of an initially
well-localized energy wave packet spreading across the
resonances network via a random walk. Our main re-
sult is that the delocalized phase exhibits a broad regime
of anomalously slow sub-di↵usive equilibration dynam-
ics and energy transport. We observe this subdi↵usive
behavior in our model using both renormalized and non-
renormalized couplings, but find that finite-size e↵ects
are much weaker for the simplified model that ignores
renormalization, thus allowing us to extract much cleaner
data. We will therefore focus on this simplified model in
the following – recall that it reproduces equally well the
critical percolation curves described in the previous sec-
tion [28].

Averaging over initial position x, and over disorder
configurations, we find that the mean-square displace-
ment of an excitation grows as a power law in time
(Fig. 3),

|�x(t)| ⇡ t1/z(W ). (5)

For ordinary classical di↵usion, z = 2. In contrast, we
find that z(W ) diverges in the glassy phase, indicating
an absence of energy transport and a breakdown of ther-
mal equilibration. On the delocalized side of the critical
point, 1/z(W ) increases continuously from zero as a func-
tion of detuning from the critical disorder strength:
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This scaling collapse indicates the existence of a length
scale ⇠ that diverges when the transition is approached
from either side as ⇠ ⇠ |W � W

c

|�⌫ , signaling a sharp
continuous delocalization phase transition. The diverg-
ing length scale ⇠ can be interpreted as the localization
length for W > W

c

, and as we will see below, character-
izes the length of insulating gaps in the transport path
for W < W

c

.

We remark that the value of the scaling function at
criticality: ⌅(0) ⇡ 10�2, is anomalously low compared
to ordinary percolation (for which ⌅(0) would be ⇡ 0.5).
This strong asymmetry indicates that the transition is
driven by rare resonant clusters that are quite sparse and
widely separated (e.g. clusters of size ` are separated by
typical distance ⇡ ⌅(0)�1 ⇥ ` � ` at criticality).

We also performed simulations of a simpler model that
ignores the renormalization of the couplings when merg-
ing clusters. As claimed above, despite the potential sta-
bility issues of the strong disorder phase within that sim-
plified model, we find essentially identical universal per-
colation curves using these simplified rules, compatible
with the same universal exponent ⌫ ⇡ 3.5 within error
bars (see Appendix A).

V. NEAR-CRITICAL DYNAMICS IN THE
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We now turn to the task of computing the near-critical
scaling of transport and entanglement dynamics, in the
delocalized phase (W . W
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). Our goal will be to un-
derstand the scaling structure underpinning the critical
slowing down of energy transport as W approaches W
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from below. Since the delocalized phase is thermal and
at high temperature [21], transport occurs via the ther-
mally incoherent transfer of energy among bonds in the
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energy (initially localized near position x as a function
of time) as a classical random walk across the resonant
cluster, with a timescale ⌧

AB
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) to transfer
excitations between resonantly coupled bonds A and B
separated by distance L
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.
The iterative merging procedure yields detailed infor-

mation about the connectivity structure and the coupling
strengths for each participating link in the resonant clus-
ter. Here, it is important to note that, while all degrees
of freedom are part of the percolating resonant cluster
for W < W

c

, not all spins contribute equally to trans-
port and dynamics. Rather, dynamical properties are
dominated by a subset of e�ciently connected spins that
form the “backbone” of the transport path through the
resonant cluster. Then, using standard Green’s function
methods, we compute the time evolution of an initially
well-localized energy wave packet spreading across the
resonances network via a random walk. Our main re-
sult is that the delocalized phase exhibits a broad regime
of anomalously slow sub-di↵usive equilibration dynam-
ics and energy transport. We observe this subdi↵usive
behavior in our model using both renormalized and non-
renormalized couplings, but find that finite-size e↵ects
are much weaker for the simplified model that ignores
renormalization, thus allowing us to extract much cleaner
data. We will therefore focus on this simplified model in
the following – recall that it reproduces equally well the
critical percolation curves described in the previous sec-
tion [28].

Averaging over initial position x, and over disorder
configurations, we find that the mean-square displace-
ment of an excitation grows as a power law in time
(Fig. 3),

|�x(t)| ⇡ t1/z(W ). (5)

For ordinary classical di↵usion, z = 2. In contrast, we
find that z(W ) diverges in the glassy phase, indicating
an absence of energy transport and a breakdown of ther-
mal equilibration. On the delocalized side of the critical
point, 1/z(W ) increases continuously from zero as a func-
tion of detuning from the critical disorder strength:
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sult is that the delocalized phase exhibits a broad regime
of anomalously slow sub-di↵usive equilibration dynam-
ics and energy transport. We observe this subdi↵usive
behavior in our model using both renormalized and non-
renormalized couplings, but find that finite-size e↵ects
are much weaker for the simplified model that ignores
renormalization, thus allowing us to extract much cleaner
data. We will therefore focus on this simplified model in
the following – recall that it reproduces equally well the
critical percolation curves described in the previous sec-
tion [28].

Averaging over initial position x, and over disorder
configurations, we find that the mean-square displace-
ment of an excitation grows as a power law in time
(Fig. 3),

|�x(t)| ⇡ t1/z(W ). (5)

For ordinary classical di↵usion, z = 2. In contrast, we
find that z(W ) diverges in the glassy phase, indicating
an absence of energy transport and a breakdown of ther-
mal equilibration. On the delocalized side of the critical
point, 1/z(W ) increases continuously from zero as a func-
tion of detuning from the critical disorder strength:

z(W ) ⇡ z
0

(W
c

� W )⇣

, (W . W
c

). (6)

Though seemingly a distinct universal exponent, ⇣ is re-
lated by a general scaling relation to the log-dynamical
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resonant cluster for a given disorder realization). ⇠
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lapse to a universal form (main panel) when plotted against
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1/⌫ , with correlation length
exponent ⌫ ⇡ 3.5± 0.3. Insets show the unscaled ⇠
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L curves.
Results are averaged over ⇠ 104 disorder realizations.

ical disorder strength W
c

. Moreover, the data for dif-
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⇠
loc

= L ⌅
�
(W � W

c

)L1/⌫

�
, with correlation length ex-

ponent ⌫ = 3.5 ± 0.3, as shown by plotting ⇠

loc

L

against

the scaling variable (W � W
c

)L1/⌫ (Fig. 2). Here ⌅(x)
is a universal scaling function interpolating between one
(x ⌧ 0) and zero (x � 0).
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c

|�⌫ , signaling a sharp
continuous delocalization phase transition. The diverg-
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c

, and as we will see below, character-
izes the length of insulating gaps in the transport path
for W < W

c

.

We remark that the value of the scaling function at
criticality: ⌅(0) ⇡ 10�2, is anomalously low compared
to ordinary percolation (for which ⌅(0) would be ⇡ 0.5).
This strong asymmetry indicates that the transition is
driven by rare resonant clusters that are quite sparse and
widely separated (e.g. clusters of size ` are separated by
typical distance ⇡ ⌅(0)�1 ⇥ ` � ` at criticality).

We also performed simulations of a simpler model that
ignores the renormalization of the couplings when merg-
ing clusters. As claimed above, despite the potential sta-
bility issues of the strong disorder phase within that sim-
plified model, we find essentially identical universal per-
colation curves using these simplified rules, compatible
with the same universal exponent ⌫ ⇡ 3.5 within error
bars (see Appendix A).
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c
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slowing down of energy transport as W approaches W

c

from below. Since the delocalized phase is thermal and
at high temperature [21], transport occurs via the ther-
mally incoherent transfer of energy among bonds in the
resonant cluster. Hence, we model the spread of excess
energy (initially localized near position x as a function
of time) as a classical random walk across the resonant
cluster, with a timescale ⌧

AB

= 1/J(L
AB

) to transfer
excitations between resonantly coupled bonds A and B
separated by distance L

AB

.
The iterative merging procedure yields detailed infor-
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ter. Here, it is important to note that, while all degrees
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for W < W
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, not all spins contribute equally to trans-
port and dynamics. Rather, dynamical properties are
dominated by a subset of e�ciently connected spins that
form the “backbone” of the transport path through the
resonant cluster. Then, using standard Green’s function
methods, we compute the time evolution of an initially
well-localized energy wave packet spreading across the
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of anomalously slow sub-di↵usive equilibration dynam-
ics and energy transport. We observe this subdi↵usive
behavior in our model using both renormalized and non-
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are much weaker for the simplified model that ignores
renormalization, thus allowing us to extract much cleaner
data. We will therefore focus on this simplified model in
the following – recall that it reproduces equally well the
critical percolation curves described in the previous sec-
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Averaging over initial position x, and over disorder
configurations, we find that the mean-square displace-
ment of an excitation grows as a power law in time
(Fig. 3),
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For ordinary classical di↵usion, z = 2. In contrast, we
find that z(W ) diverges in the glassy phase, indicating
an absence of energy transport and a breakdown of ther-
mal equilibration. On the delocalized side of the critical
point, 1/z(W ) increases continuously from zero as a func-
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FIG. 3. Energy transport near the transition. In the
delocalized phase (W < Wc) excess energy initially localized
near the origin spreads to distance �r ⇠ t1/z in time t (bottom
inset). The dynamical critical exponent z diverges continu-
ously from the delocalized side of the transition, and vanishes
inside the quantum critical glass phase (main panel). The nu-
merical results are consistent with z diverging as |W �Wc|�⇣

with ⇣ = ⌫ (top inset).

exponent  of the localized phase, and the correlation
length exponent ⌫. To see this, note that at the critical
point, transport along the critical resonant chain occurs
by tunneling through arbitrarily long localized regions,
hence energy scales with length as ⇠ e�L at the critical
point, just as in the localized phase. This must cross over
smoothly to the power law scaling of (5) on length scales
L ⇡ ⇠, implying the scaling relation:

⇣ = ⌫. (7)

Using this scaling relation and the definition of the cor-
relation length exponent we may rewrite (6) as z ⇠ ⇠
(ignoring logarithmic corrections and non-universal pref-
actors). Accessing the scaling regime (6) to measure ⇣
numerically is di�cult because of the form of the finite-
size percolation curves (Fig. 2): close to the critical point
with W < W

c

, ⇠
loc

> L even for moderately large sys-
tems. In particular, the small non-zero value of z�1 at
W

c

is a finite size artifact, and upon subtracting the value
of z(W

c

)�1, we find critical behavior compatible with the
expected scaling relation ⇣ = ⌫ (Fig. 3 upper inset).

A. Structure of transport path

Subdi↵usive transport arises from the broad distri-
bution of e↵ective tunneling links, �

ij

, in the resonant
backbone, corresponding to a power-law distribution of

timescales [17, 29], ⌧
ij

⇠ 1/�
ij

:

p(⌧) ⇠ 1

⌧↵

. (8)

with 1 < ↵  2 such that the mean waiting timeR 1
0

⌧p(⌧)d⌧ is divergent. To see the relation between this
power-law distribution and subdi↵usive transport prop-
erties, note that energy transport occurs as a random
walk on a one dimensional chain whose “sites” are two-
spin bonds in the resonant cluster, and whose links are
weighted by a waiting time ⌧ corresponding to the in-
verse e↵ective coupling between “sites” (In principle the
bonds also have variable lengths, ` ⇠ log ⌧ . However,
unlike the waiting-times the bond-lengths have a finite
mean, ¯̀, and in the following we approximate the length
of each step as ¯̀). In N steps, a random walker traverses
⇠ O(

p
N) di↵erent bonds, revisiting each approximatelyp

N times, and moving total distance L ⇡ p
N (in units

of the average step size). For broad distribution of wait-
ing times, the time taken for N steps is dominated by
the longest waiting time, T , encountered. The probabil-
ity of encountering a bond with waiting time of at least
T is P (⌧ � T ) =

R 1
T

p(⌧) ⇡ T 1�↵. We can reasonably
expect to find a link with waiting time ⌧ & T among
L ⇡ p

N di↵erent bonds if LP (⌧ � T ) ⇡ 1, and there-
fore the slowest link in region of size L has waiting time
T (L) ⇡ L

1

↵�1 . Since this weak link is revisited orderp
N ⇡ L times, the total time to move distance L scales

as t
energy

(L) ⇡ L
↵

↵�1 . Comparing to (5), we identify the
dynamical exponent for energy transport as:

z ⌘ z
energy

=
↵

↵� 1
, (9)

implying that ↵ approaches one near the transition as:
↵(W ) � 1 ⇠ |W � W

c

|⇣ .
Note also that the broad distribution of waiting

times (8) corresponds to a probability of encountering
a link of length ` = log ⌧ in the transport path along the
resonant backbone, near the transition, given by

P (`) ⇠ e(1�↵)` ⇠ e�l/z = e�( `

⇠

). (10)

Hence the typical spacing between “vertebrae” in the res-
onant backbone is ⇡ ⇠, corresponding to energy scale e�⇠.
However, in a region of length L � ⇠, it is extremely
unlikely to avoid encountering an atypically long gap of

length `
?

, defined by L

⇠

P (`
?

) ⇠ 1, i.e. `
?

⇠ ⇠
⇣
log L

⇠

⌘
.

Such long rare links involve waiting time ⌧ ⇠ el

? ⇠ L⇠,
which dominates the time required to traverse a segment
of size L.

B. Entanglement dynamics vs. thermal transport

We note that the dynamics of energy transport scale
di↵erently than those of entanglement since energy is a
conserved quantity that can only be transferred among

Instead: Anomalous thermal liquid -

z ⇠ 1

|W �Wc|⇣

continuously evolving 

⇣ = ⌫

(scaling relation)

�x(t) ⇠ t

1/z

z�
1

W �Wc

Gopalakrishnan, Nandkishore



Origin of subdiffusion: Gaps in Transport Path

Probability of “tunneling” gap:

Transport through a long segment of length L dominated by rare bottlenecks:

 See also Hulin et al ‘90, Bar Lev et al ’14; Agarwal et al ’14, Vosk, Huse, Altman ‘15
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Griffiths Effects for Different Observables
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Open questions

A. Energy density tuned transition (many-body mobility edge) 
If exists - expect same exponent  
(single relevant perturbation) 

B. Time-dependent driving (Floquet MBL transition) 
Different universality class? 

C. Long-range interactions  
E.g. power-law interactions, critical analogs of MBL 
Inter-cluster matrix elements may renormalize strongly 

E. Quasi-random potentials?

ED Numerics: see e.g. Luitz, Laflorencie, Alet ’14;   
Model proposals: Y. Huang ’14;   

Doubts on existence: De Roeck et al. ‘15

Abanin, De Roeck, Huveneers ‘15
Khemani, Nandkishore, Sondhi ‘15

Yao et al. PRL ‘13
Vosk Altman; Pekker, et al.; 

ACP Vasseur, Parameswaran
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