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Overview

• MBL in spin chains/interacting fermions

• Perturbation theory for the integrals of 
motion

• Convergence of perturbation theory



Are interactions relevant?

Theoretical discussions are based on non-interacting 
particles
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Would the introduction of interactions change the picture?

Question asked already in Anderson 1958 but recently finally we think 
we have the answer
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Many-body localization
In 2006 Basko,  Aleiner and Altshuler presented

a perturbation theory calculation supporting the idea that,
for sufficiently small        (and short-range interactions), localization survives
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where the critical temperature is determined by Eq. (18)
Z T c

0

dT 1 CV ðT 1Þ ¼ Ec. ð22bÞ

The schematic temperature dependence of the conductivity is summarized on Fig. 1.
Therefore, the temperature dependence of the dissipative coefficient in the system shows
the singularity typical for a phase transition.

To prove Eqs. (22) we use the Gibbs distribution and find

rðT Þ ¼
X

k

P krðEkÞ ¼
R1

0 dEeSðEÞ$E=T rðEÞR1
0 dEeSðEÞ$E=T

;

where the entropy S (E) is proportional to volume, and E is counted from the ground state.
The integral is calculated in the saddle point or in the steepest decent approximations, ex-
act for V !1. The saddle point E (T) is given by

dS
dE

!!!!
E¼EðT Þ

¼ 1

T
.

Taking into account r (E) = 0 for E < Ec we find:

rðT Þ ¼ r EðT Þ½ &; EðT Þ > Ec;

rðT Þ / exp $ Ec $ EðT Þ
T

" #
; EðT Þ < Ec.

As both energies entering the exponential are extensive, EðT Þ; Ec / V, we obtain Eqs. (22).
As we already mentioned, vanishing of the dissipative conductivity at T < Tc means

freezing of all relaxation processes. In particular the microcanonical distribution could
never be established for the closed system. In this respect, the dynamics of the system
resembles the glassy state [19].

To establish the thermal equilibrium in such insulating state requires finite coupling of
the system with the external reservoir (i.e., phonons). The presence of the finite electron–
phonon interaction (as phonons are usually delocalized), smears out the transition, and

Fig. 1. Schematic temperature dependence of the dc conductivity r (T). Below the point of the many-body metal–
insulator transition, T < Tc, r (T) = 0, as shown in Section 6. Temperature interval T > T(in) > Tc corresponds to
the developed metallic phase, where Eq. (17d) is valid. In this regime for the model described in Section 3 r (T) is
given analytically by Eqs. (93)–(99) and plotted on Fig. 10. At T > T(el) the high-temperature metallic
perturbation theory of [15] is valid.
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Many-body localization
In BAA this conclusion is based on an analysis of the 

distribution of         in the spirit of Anderson 58Im⌃
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Fig. 6. Schematic energy dependence of the quasiparticle decay rate Γ(ϵ) for (a)
metallic and (b) insulating phases. The corresponding distribution functions are
sketched on panels (c), (d). The characteristic functions are plotted on panels
(e), (f).

tively different in both cases. In the metallic case the averaging is performed
with respect to the smooth positive functions, whereas in the insulating regime
the fluctuations are determined by the squares of the separated delta-peaks
and thus diverge as the width of the delta peaks goes to zero. Thus, we have
the criterion

lim
b(ω)→0

lim
V→∞

⟨[δΓ(ϵ)]2⟩
⟨Γ(ϵ)⟩2 =

⎧
⎪⎨

⎪⎩

finite; metal

∞; insulator.
. (64)

Another way to address the same problem is to investigate the distribution
function P (Γ), see Fig. 6(c-d). One finds by simple inspection of Fig. 6(a-b)

lim
b(ω)→0

lim
V→∞

P (Γ > 0) =

⎧
⎪⎨

⎪⎩

> 0; metal

0; insulator.
(65)
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This was achieved by a 
diagrammatic analysis of the 

Green’s function (Keldysh)



MBL in spin chains
Soon after BAA some authors (Huse, Oganesyan, Pal, Abanin and others) 

have proposed that the same phenomenon should be observed in 
spin chains, even at infinite temperature
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MBL in spin chains

3

L as L is increased. If the eigenstates are thermal then
adjacent eigenstates represent temperatures that differ
only by this exponentially small amount, so the expecta-
tion value of Ŝz

i should be the same in these two states
for L → ∞. From Fig. 1, one can see that the differ-
ences do indeed appear to be decreasing exponentially
with increasing L in the ergodic phase at small h, as
expected. [Here and throughout this paper, when we
use logarithms, they are base e (“natural”).] In the lo-
calized phase at large h, on the other hand, the differ-
ences between adjacent eigenstates remain large as L is
increased, confirming that these many-body eigenstates
are not thermal.
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FIG. 1: (Color online) The logarithm of the mean difference
between the local magnetizations in adjacent eigenstates (see
text). The values of the random field h are indicated in the
legend. In the ergodic phase (small h) where the eigenstates
are thermal these differences vanish exponentially in L as L
is increased, while they remain large in the localized phase
(large h).

Thermalization requires the transport of energy. In the
present model with conserved total Ŝz, it also requires
the transport of spin. To study spin transport on the
scale of the sample size L, we consider the relaxation of
an initially inhomogeneous spin density:

M̂1 =
∑

j

Ŝz
j exp (i2πj/L) (3)

is the longest wavelength Fourier mode of the spin den-
sity. Consider an initial condition that is at infinite
temperature, but with a small modulation of the spin
density in this mode, so the initial density matrix is
ρ0 = (1 + ϵM̂ †

1 )/Z, where ϵ is infinitesimal, and Z is
the partition function. The initial spin polarization of
this mode is then

⟨M̂1⟩0 =
∑

n

⟨n|ρ0M̂1|n⟩ =
ϵ

Z

∑

n

⟨n|M̂ †
1M̂1|n⟩ . (4)

If we consider a time average over long times, then
the long-time averaged density matrix ρ∞ is diagonal in
the basis of the eigenstates of the Hamiltonian, since a

generic finite-size system has no degeneracies and the off-
diagonal matrix elements of ρ each time-average to zero.
As a result, the long-time average of the spin polarization
in this mode is

⟨M̂1⟩∞ =
ϵ

Z

∑

n

⟨n|M̂ †
1 |n⟩⟨n|M̂1|n⟩ . (5)

Thus for each many-body eigenstate in each sample we
can quantify how much it contributes to the initial and
to the long-time averaged polarization. We then define
the fraction of the contribution to the initial polarization
that is dynamic and thus decays away (on average) at
long time, as

f (n)
α = 1−

⟨n|M̂ †
1 |n⟩⟨n|M̂1|n⟩

⟨n|M̂ †
1M̂1|n⟩

. (6)

In the ergodic phase, the system does thermalize, so the

initial polarization does relax away and f (n)
α → 1 for L →

∞. In the localized phase, on the other hand, there is

no long-distance spin transport, so f (n)
α → 0 for L → ∞.

In Fig. 2 we show the mean values of f for each L vs.
h. They show the expected behavior in the two phases
(trending with increasing L towards either 1 or 0), and
the phase transition is indicated by the crossover between
large and small f that occurs more and more abruptly
as L is increased.
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FIG. 2: (Color online) The fraction of the initial spin po-
larization that is dynamic (see text). The sample size L is
indicated in the legend. In the ergodic phase (small h) the
polarization decays substantially under the dynamics, while
in the localized phase (large h) the decay is small, and this
distinction gets sharper as L increases.

A qualitatively similar finite-size scaling plot also in-
dicating the phase transition is obtained by examin-
ing the many-body eigenenergy spacings as was done
in Ref. [4], and is shown as Fig. 3. We consider

the level spacings δ(n)α = |E(n)
α − E(n−1)

α |, where E(n)
α

is the many-body eigenenergy of eigenstate n in sam-
ple α. Then we obtain the ratio of adjacent gaps as

r(n)α = min{δ(n)α , δ(n+1)
α }/max{δ(n)α , δ(n+1)

α }, and average

M(t) = Tr(⇢(t)M)

M(1) = lim
T!1

1

T

Z T

0
dtM(t)

f = 1� M(1)

M(0)

M(1) = 0 if ergodic

“ergodicity measure”

ergodic MBL



4

this ratio over states and samples at each h and L. In
the ergodic phase, the energy spectrum has GOE (Gaus-
sian orthogonal ensemble) level statistics and the average
value of r converges to [r] ∼= 0.53 for L → ∞, while in
the localized phase the level statistics are Poisson and
[r] →∼= 0.39. Note that our model is integrable at h = 0,
so will not show GOE level statistics in that limit, and
this effect is showing up for our smallest L and lowest h
in Fig. 3.
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FIG. 3: (Color online) The ratio of adjacent energy gaps (de-
fined in the text). The sample size L is indicated in the legend.
In the ergodic phase, the system has GOE level statistics,
while in the localized phase the level statistics are Poisson.

The crossings of the curves for different values of L
in Figs. 2 and 3 give estimates of the location hc of
the phase transition. Both plots show these estimates
“drifting” towards larger h as L is increased, with the
crossings at the largest L being slightly above h = 3. In
both cases this “drifting” is also towards the localized
phase, suggesting the behavior at the phase transition is,
by these measures, more like the localized phase than it
is like the ergodic phase.

IV. SPATIAL CORRELATIONS

To further explore the finite-size scaling properties of
the many-body localization transition in our model, we
next look at spin correlations on length scales of order
the length L of our samples. One of the simplest correla-
tion functions within a many-body eigenstate |n⟩ of the
Hamiltonian of sample α is

Czz
nα(i, j) = ⟨n|Ŝz

i Ŝ
z
j |n⟩α − ⟨n|Ŝz

i |n⟩α⟨n|Ŝz
j |n⟩α . (7)

In Fig. 4 we show the mean value [log |Czz
nα(i, i+ d)|]

as a function of the distance d for representative values of
h in the two phases and near the phase transition. Data
are presented for various L. This correlation function
behaves very differently in the two phases:
In the ergodic phase, for large L this correlation func-

tion should approach its thermal equilibrium value. For
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FIG. 4: (Color online) The spin-spin correlations in the many-
body eigenstates as a function of the distance d. The sample
size L is indicated in the legend. The correlations decay ex-
ponentially with d in the localized phase (h = 6.0), while they
are independent of d at large d in the ergodic phase (h = 0.6).
Intermediate behavior at h = 3.6, which is near the localiza-
tion transition, is also shown.

the states with zero total Ŝz that we look at, ⟨n|Ŝz
i |n⟩ ∼= 0

in the thermal eigenstates of the ergodic phase. However,
the conservation of total Ŝz does result in anticorrela-
tions so that Czz

nα(i, j) ≈ −1/(4(L−1)) for well-separated
spins. These distant spins at sites i and j are entangled
and correlated: if spin i is flipped, that quantum of spin
is delocalized and may instead be at any of the other
sites, including the most distant one. These long-range
correlations are apparent in Fig. 4 for h = 0.6, which
is in the ergodic phase. Note that at large distance the
correlations in the ergodic phase become essentially in-
dependent of d = |i−j| at large L and d, confirming that
the spin flips are indeed delocalized. Although we only
plot the absolute value of the correlations, in fact these
correlations are almost all negative, as expected, in this
large L ergodic regime.
In the localized phase, on the other hand, the eigen-

states are not thermal and ⟨n|Ŝz
i |n⟩ remains nonzero for

L → ∞. If spin i is flipped, within a single eigenstate
that quantum of spin remains localized near site i, with
its amplitude for being at site j falling off exponentially
with the distance: Czz

nα(i, j) ∼ exp (−|i− j|/ξ), with ξ
the localization length. In the localized phase the typ-
ical correlation and entanglement between two spins i
and j thus fall off exponentially with the distance |i− j|
(except for |i − j| near L/2, due to the periodic bound-
ary conditions). This behavior is apparent in Fig. 4 for
h = 6.0, which is in the localized phase and has a local-
ization length that is less than one lattice spacing. We
note that in the localized phase, as well as near the phase
transition, the long distance spin correlations Czz are of
apparently random sign.
The data of Figs. 1-4 show the existence of and some of

the differences between the ergodic and localized phases.
We have also looked at entanglement spectra [23] of the

r =

⌧
min(dEi, dEi+1)

max(dEi, dEi+1)

�

i

Spectral signatures
WD

Poisson

Increasing disorder the level statistics goes from Wigner-
Dyson to Poisson, and level repulsion disappears

MBL in spin chains



A. De Luca and A. Scardicchio

0.01 0.1 1 10 100 1000 104

10 11

10 9

10 7

10 5

0.001

0.1

10

x

16

14

12

10

8

0.01 0.1 1 10 100 1000 104

10 10

10 8

10 6

10 4

0.01

1

x

16

14

12

10

8

Fig. 3: (Colour on-line) The distribution φ of scaled wave
function amplitudes x=N| ⟨a|E⟩ |2 for different values of h.
Upper panel: h= 1.2 in the middle of the ergodic phase where
the scaling is perfectly verified; lower panel: h= 4.2 in the
many-body localized phase. In each panel the different curves
correspond to different values of N , from 8 to 16. Each curve is
obtained by binning of not less than 3 106 squared amplitudes.

α= 1/2 and the large-x behavior is exponential [22] remi-
niscent of the Porter-Thomas distribution of RMT [23].
Comparing the power-law tail with the exponential one
of the delocalized phase in the Anderson problem, we
conclude that already deep in the delocalized region, there
are sign of pre-localization. The almost perfect collapse of
the curves in the upper panel of fig. 3 allows a much better
finite-size scaling analysis than any of its moments.
As h approaches hc ≃ 2.6 the elbow smoothens and α→1

so that we can identify hc as the point at which α= 1,
the distribution stops being summable and necessarily the
independence on N ceases3. This occurs at hc = 2.55±
0.05 as it can be seen in fig. 4. An explicit N -dependence
of φ means that the scaling of all the IPRs and of the
diagonal entropy with N change abruptly and ergodicity
is broken.
The exponent β governs the scaling of the various

IPRq’s. For 0< q < β− 1 the integral in (8) is finite and
IPRq ∼N 1−q. If instead β− 1< q, since the integral in (8)
is divergent the average of IPRq over the initial states |a⟩
does not exist, but the typical value for a state should

3As ⟨x⟩= 1 is fixed by normalization the divergence of ⟨1⟩ implies
a divergence of the first moment as well. In fact, β = 2 occurs at the
same value of hc.

0.5 1.0 1.5 2.0 2.5 3.0
0.5

1.0

1.5

2.0

2.5

1.5

2.0

2.5

3.0

3.5

h

α β

Fig. 4: (Colour on-line) The value of the exponent α (blue
squares) and β (pink circles) in eq. (9) for N = 16 (these
exponents are independent of N within the symbol size). The
exponent α crosses the value 1 required by summability, which
occurs at h≃ 2.55± 0.05, precisely where (within errors) β
crosses the value 2, required for the existence of the first
moment (normalization of the wave function).

be found by looking at the sum of N -independent and
identically distributed variables xqa. One then finds the
probability density for

∑
a≤N x

q
a ≡ Y (by computing and

then inverting its Laplace transform, provided β > 2) as

P (Y )∝ Y −
3−γ
4−2γ exp

⎛

⎝−C
(
N

1
γ−1

Y

) γ−1
2−γ
⎞

⎠ , (10)

where γ = 1+ (β− 1)/q, (1< γ < 2) and C is a constant
of O (1). This distribution has a power-law tail but the
typical value of the sum is set by the exponential as Y ∼
N 1/(γ−1)≫N . This implies typical values of the IPRq of
a state, when q > β− 1:

IPR(N)q ∼N−q+
q
β−1 . (11)

The different IPRq’s define different “critical points” hq
solutions of β(hq) = q+1. The real transition, signaled by
an explicitN -dependence of full distribution φ can then be
identified by the diagonal entropy (6), or the limit as q→ 1
of IPRq, therefore when β = 2. What is the possible origin
of the power-law tail at large x?4. This can be linked with
the existence of a many-body mobility edge at some energy
E∗(h), where eigenstates occupy O (N ) sites above E∗ and
O (N a) (a(h)< 1) below E∗ and to a competition between
the canonical entropy (the logarithm of the number of
states between energy E and E+dE) and the diagonal
entropy multiplied by q. This phenomenon deserves better
investigation in a future work.
Summarizing, the coincident divergence of ⟨1⟩ (a

non-summability of φ(x) at small x), and of ⟨x⟩ (non-
summability of xφ(x) at large x) signal the beginning
of the localized region. This implies an accumulation of
wave function amplitudes towards small values typical
of localized states [21]. We expect then that the scaling

4We thank V. Oghanesyan for discussions on this point.

37003-p4

Distribution of the 
wave function 
coefficients

Non-ergodic

(diagonal entropy)

Ergodic

Ergodicity implies that | (a)|2 ⇠ 1/V

x = V | (a)|2

�N (x) ! �(x)

volume of the Hilbert space

Then

More precisely:

MBL in spin chains



Entanglement growth

Far away regions of our 
system cannot exchange 

energy or spin but they can 
get entangled

(Bardarson et al. 2014)

Entanglement between two half-chains

logarithmic growth

A B

S = �TrA(⇢A ln ⇢A)



Ergodicity breaking
What is the phenomenology of the MBL phase?

• Energy and charge transport is suppressed

• Some memory of the initial state is conserved 
forever in local quantities

• Eigenstates close in energy have different 
“footprints” of local observables

• Eigenstates have area law entanglement (even at 
high T)*

• Entanglement of an initial product state grows 
slowly, but to an extensive value



Local IOM
A unifying phenomenology 
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Local IOM

Which are local

This LIOMs constrain the dynamics of the system in such a 
way that ergodicity cannot be achieved

This conjecture was proven for one particular spin chain by Imbrie (arXiv:1403.7837)
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Local IOM
We constructed explicitly the LIOM for 

H = �t
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connecting the formulation in terms of LIOM to the 
perturbation theory of BAA

The LIOMs are number operators dressed with strings of 
excitations

I1 ' n1 +A2c
+
2 n1c0 +A3c

+
3 n2n1c0 + ...

Ros, Mueller, AS, Nucl Phys B 2015



Local IOM

H =
X

↵

✏↵c
†
↵c↵ + �

X

↵,�,�,�

u↵,�,�,�c
†
↵c

†
�c�c�

|↵i single particle 
localized states

First of all we diagonalize the quadratic part

we coarse grain the system into “quantum dots” of 
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Local IOM

the amplitudes are random numbers

lim
r!1

P (|Ar| < e�r/⇠) = 1

|Ar| = max

i
|Ar,i|

In the localized regime we expect 
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the number of terms at 

distance r   

so that the operators are (quasi-)local



Local IOM
One could use perturbation theory to construct the 

conserved operator, removing non-commuting terms order 
by order (a la Poincaré)

Instead, to make analytic progress, we focused on the tail of 
the operators and estimated 

(Chandran et al, Rademaker)

Ar = �rc0(r) + �r+1c1(r) + ...

to lowest order in perturbation theory

c0(r) ' qr



Perturbation theory
Hopping in operator space

Lowest order: shortest paths from a short to a long 
operator (forward approximation)

This should give a lower bound for the critical interaction

(a) (b)

Figure 1: Structure of the operator lattice before (a) and after (b) making
the forward approximation. Vertices correspond to Fock indices (I, J); links
are drawn between index pairs, which are connected by the interaction U ,
that is, if the pairs appear simultaneously in at least one of the Eqs. (39).

for index sets I, J of length N are coupled only to amplitudes with index sets
of equal or shorter length. Therefore, the sites can be organized into gener-
ations, according to the length of their index sets. Hopping is possible only
within the same generation (second term in equation p39q) or between con-
secutive ones (third term in equation p39q). In the latter case, the hopping
is unidirectional, and thus the hopping problem is non-Hermitian.

The connectivity of the lattice is determined by the restrictions in energy,
Eq. (6), and space (particles need to be in the same or in an adjacent local-
ization volume) of the matrix elements U↵�,��. Hoppings from a site pI, Jq

in generation N to a site pI1, J1
q in generation N ` 1 requires a particle (or

hole) in a state ↵ to scatter to the closest energy level � above or below
↵, while another particle-hole pair of adjacent levels p�, �q is created. The
particle � can be chosen in N

loc

ways with N
loc

given in (3), and there are
two choices for � and �, respectively. Therefore, the number of Fock states
(I1, J1) accessible from (I, J) via the decay of a given quasiparticle ↵ is:

K “ 4

W

�⇠
“ 4N

loc

. (40)

In contrast, hoppings from pI, Jq to a site of the same generation correspond
to processes where each member of a pair of particles (or holes) scatter to
one of the two closest energy levels: there are 4 possible final states to which
a given pair can decay.
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Perturbation theory
Forward 

approximation
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Y

i2p

t

✏0 � ✏i

Resonances 
are less 

important in 
the exact 

solution than 
in the fwd 

approx

This is equivalent to the ImSCBA in BAA’s perturbation 
theory (see also Abou-Chacra, Anderson, Thouless 1973)

e�r/⇠



Perturbation theory
We only include terms in the n-th order operator which 
look like this:

Diagrammatic for the IOM

This means that we are considering diagrams like

and, for example:
at 3-rd order

a

a

na to 0-th order

Thursday 15 May 14

Diagrammatic for the IOM

This means that we are considering diagrams like

and, for example:
at 3-rd order

a

a

na to 0-th order

Thursday 15 May 14

or

Consider the two branching trees

4 c†, 4 c�3�0



Perturbation theory
These are the same diagram that are considered in the 

ImSCBA by BAA

�E1 = (✏a � ✏b + ✏c � ✏d)
(1)�E1

�E2

�E3

�E4

A =
��⇠

E + �E1

��⇠
E + �E1 + �E2

��⇠
E + �E1 + �E2 + �E3

��⇠
E + �E1 + �E2 + �E3 + �E4

Diagrammatic for the IOM

Thursday 15 May 14

These are the same diagram that are considered in the 
ImSCBA by BAA

�E1 = (✏a � ✏b + ✏c � ✏d)
(1)�E1

�E2

�E3

�E4

A =
��⇠

E + �E1

��⇠
E + �E1 + �E2

��⇠
E + �E1 + �E2 + �E3

��⇠
E + �E1 + �E2 + �E3 + �E4

Diagrammatic for the IOM

Thursday 15 May 14

One sub-tree generates an amplitude:

c†

c†
c†

c†

c†

c
c

c
c

c†



Correlated denominators
The many-body amplitude

is different from the single-particle one

A =
Y

a=1,...,n

��⇠
E + �Ea

A =
Y

a=1,...,n

��⇠
E +

Pa
i=1 �Ei

We need to find         and we cannot use the 
techniques used for single particle AL

P (A)



Probability distribution of A

The series converges if there is a z<1 
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single particlemany body

P [ max

(27K/4)Nextractions

(��
⇠

)

NeY < zN ] ! 1

Thursday 15 May 14

Very different probability distributions...

Correlated denominators

Consider Y = � ln |A|



Probability distribution of A

GN (k) = E[e�kY ]

P (Y ) =

Z

B

dk

2⇡i
ekY GN (k)

We can compute the Laplace transform

and eventually invert it to get

we anticipate that we are going to do a saddle point 
calculation with 

Y ⇠ N

Thursday 15 May 14

Correlated denominators



Correlated denominatorsProbability distribution of A

GN (k) =

 
�2k⇠
2⇡

!N/2

h 0|HN | i.

Hn,m =
�( 1+k

2 +m+ n)
p

�(1 + 2m)
p

�(1 + 2n)

We find that

So we need to find the largest eigenvalue of H

Thursday 15 May 14

We cast the Laplace transform in a transfer matrix 
calculation



Correlated denominators
This can be done (for large Y ) and we find that 

P (Y ) =

Z

B

dk

2⇡i
ekY GN (k)

Probability distribution of A

P (Y ) =

Z
dk

2⇡i
eN(y+log(µ)) '

✓
Y

y
0

N

◆N

e�Y/y0(1��/(2(Y/N)

2
)

P (Y < Yc)
(27K/4)N ' exp

�
�(27K/4)NP (Y > Yc)

�

MBL criterion is:

1

0

Thursday 15 May 14

We now need to find how many terms are there in the sum

I(n)↵ =
X

|I|=|J |=n

AI,JOI,J

of the order n correction to I



Counting diagrams
Diagrammatic for the IOM

How many diagrams?

Topology

, , ,

, etc.

Thursday 15 May 14

Topology + assignment of indices ↵,�, �, �

Classic combinatorics problem (generalized Catalan numbers)

Topology:

Tn =
X

m1,m2,m3,
P

i mi=n

Tm1Tm2Tm3

Tn =
1

2n+ 1

✓
3n

n

◆
⇠

✓
27

4

◆n



Counting diagrams
Diagrammatic for the IOM

Assignments of a,b,c,d indices

� � � � �

�

K =

Z J

�J

d✏c
�⇠

Z J

�J

d✏b
�⇠

Z J

�J

d✏d
�⇠

⇥(�⇠ � |✏a � ✏b|)⇥(�⇠ � |✏c � ✏d|) '
J

�⇠

K3 K2(K � 1)l = 3⇠
l = ⇠

Ballistic particles go further and have also more phase space
Thursday 15 May 14

Assignment of indices defines the spatial structure of the 
excitations

e.g. ballistic excitation

It is convenient to consider the picture of a particle which 
hops from volume to volume leaving a trail of excitations

K = ⇠/a



Local IOM

K ⇠ T/�⇠ K ⇠ W/�⇠T ⌧ W T � W ::

The important processes are those in which an excitation can travel 
staying (almost) in resonance

�E = (E1 � E2) + (E3 � E4) + (E5 � E6) . �⇠

�3

�⇠

We need to estimate the probability that a resonance occurs far away
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Counting diagrams
Assigning indices: describing the trail of excitations

factor. For each pair, one can choose how to assign the two levels to particle
and hole, respectively. This yields the factor 2

m
i .

As we will see below, the relevant mi are of order Op1q ! K. We therefore
approximate: ˆ

K{4 ´ mi

mi

˙
«

pK{4q

m
i

mi!
. (74)

Note that the necklace structure will in general fold back and forth in real
space, such that several groups will get to lie in the same volume. Neverthe-
less, the above approximation remains good as long as the total number of
pairs created in a given localization volume is significantly smaller than K.

Combining Eqs. (72-74), the total number of necklace diagrams is:

NN « Ppdq

ÿ

tm
i

u| ∞
i

m
i

“N

1

2

nπ

i“1

r2Km
imiTm

i

s , (75)

where the average number of effective paths per diagram, Ppdq, scales sub-
exponentially with N . The factors of 2 arise due to freedom of each group
to scatter to the left or the right of the preceding group as long as there is
still significant phase space in the corresponding localization volumina. The
correction due to the finiteness of K " 1 is small and was thus neglected.

We now determine the distribution of group sizes tmiu which dominates
the sum (75), writing

NN “

1

2

ÿ

tm
i

u| ∞
i

m
i

“N

π

i

2Km
imiTm

i

“

KN

2

ÿ

tm
i

u| ∞
i

m
i

“N

π

i

2miTm
i

“

KN

2

ÿ

tn
m

u| ∞
m

mn
m

“N

ˆ ∞
m nm

n
1

, n
2

, ..., nm

˙ π

m

p2mTmq

n
m , (76)

where nm “

∞
i �m,m

i

is the number of groups i with m pairs. For the relevant
m’s, nm „ N " 1; therefore, at large N the sum (76) is dominated by the
saddle point over the nm. Imposing the constraint

∞
m mnm “ N with a

Lagrange multiplier µ yields the saddle point equations:

µm “ ´ logpnmq ` logp

ÿ

m

nmq ` logp2mTmq, (77)

and thus
nm∞
m1 nm1

“ 2mTme
´µm. (78)
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In every box i there is m excitations

We need to maximize this number over the m’s
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Figure 6: The plot (a) shows the distribution of the number nm{N of groups
of m particle-hole pairs in necklace diagrams dominating NN . The plot (b)
shows the probability mnm{N that a given pair belongs to a group containing
m pairs.

The Lagrange multiplier µ is fixed by the constraint:

1 “

ÿ

m

2mTme
´µm

“ ´2

d

dµ
rTpx “ e´µ

qs, (79)

with Tpxq “

∞
m Tmxm. As discussed in Appendix E, Tpxq “ rT pxqs

2,
where T pxq is the generating function of 3-branched trees satisfying T pxq “

1 ` xT 3

pxq. The solution of Eq. (79) is:

e´µ
“ 0.0941. (80)

The saddle point solution can thus be written as
nm

N
“ AmTme

´µm, (81)

where 1{A “ d2{dµ2

rT px “ e´µ
q

2

s “ 1{0.778, as follows from the constraint∞
m mnm “ N . The resulting values for nm{N are shown in Fig. 6a. The

probability that a given pair is created in a scattering process involving a
total of m pairs in the same localization volume is plotted in Fig. 6b. We see
that most pairs are created together with a few more pairs within the same
localization volume.

Plugging (81) into the saddle point for NN , we find the number of dia-
grams to grow like (dropping pre-exponential factors)

NN « pKeµq

N
« p10.6Kq

N . (82)
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Counting diagrams
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2

s “ 1{0.778, as follows from the constraint∞
m mnm “ N . The resulting values for nm{N are shown in Fig. 6a. The

probability that a given pair is created in a scattering process involving a
total of m pairs in the same localization volume is plotted in Fig. 6b. We see
that most pairs are created together with a few more pairs within the same
localization volume.

Plugging (81) into the saddle point for NN , we find the number of dia-
grams to grow like (dropping pre-exponential factors)
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Recapitulate

• 1) Distribution of amplitudes of a single 
diagram giving a long operator

• 2) Count the number of diagrams

• 3) Count the number of spatial processes 
pertaining to a given assignment of 
indices



Result
for 

we can find operators I↵
[H, I↵] = 0

(one per site) I↵ = 0, 1

|Emi = |0, 1, 0, 0, 0..., 1i

Then the eigenstates can be written as bit strings 

each bit is the eigenvalue of a local operator

Tr(I↵c
†
rcr) ⇠ e�d(↵,r)/`

� < �c =

p
2⇡

⌫(1� ⌫)2eC

1

K lnK

18.97 < C < 36.25

K ⇠ T/�⇠

K ⇠ W/�⇠



Convergence of p.t. for LIOMs
We found that the IOM are local for

� < �c =

p
2⇡

⌫(1� ⌫)2eC

1

K lnK

For           there are several different scenarios 

a) All LIOMs die, becoming non-local
b) Some LIOMs “die,” some don’t (a la KAM) 

This problem is open

� > �c



Conclusions

• MBL phenomenology can be recovered 
by conjecturing the existence of local 
IOMs

• We can show, under the same 
approximations of BAA, that LIOMs exist 
for weak interactions/strong disorder

• We can find the radius of convergence of 
the perturbation theory


