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=(-]j» When does MBL exist?

Known: Genuine MBL at all energies exists (almost rigorous proof by J.
Imbrie) in a 1d spin chain. This example combines certain ingredients:

* |attice model <> continuous space
 quenched disorder <> disorder-free localization

« finite local Hilbert space 7 < unbounded local Hilbert space
e d=17 — d>1

« discrete or no symmetry <> Continuous symmetry

probably necessary
Are these ingredients crucial?

Can there be mobility edges separating loc/delocalized states?
More generally: can one have localization transitions controlled by
thermodynamic parameters: T, y, B?
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== Generalization of Mott‘s argument to MBL?

Mott’s argument (single particles)

Generically, loc/deloc states cannot coexist at the same energy!
(except in fine-tuned Hamiltonians)  Mmott, 1975 (?)

Reason: infinitesimal perturbation hybridizes localized and delocalized
states (if they are space-filling and non-fractal):

»  Matrix elements: M ~1/JVol
* Level spacing of delocalized states: o~1/Vol

— M>d

—> Use Fermi Golden rule to get decay of localized state!
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o= Many-body Localization

Basko, Aleiner Altshuler, 2006: RPredicted:
All orders in perturbation theory: MIT at finite T!
Approximation: retaining the most
abundant diagrams at given order / r

<> Mobility edge as function of T (or total E)

Historic evolution of the notion of MBL:

Huse, Nandkishore, Oganesyan ‘13; Serbyn, Papic, Abanin ’13;
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(5 Integrals of Motion

How to construct IOM's?
J. Imbrie (2014)

Approach (1): Abstract construction of quasilocal unitary
conjugation, which block diagonalizes H

$'=UtU"" integrals of motion!

U =exp[- 4], A quasilocal anti-Hermitian
J, ~exp|- |i- j|/x], quasilocal




== Integrals of Motion

How to construct IOM's?
V. Ros, MM,

_ , A. Scardicchio
Approach (2): Direct local construction (Nucl. Phys. B 2015)

MBL as localization of a hopping problem in operator space
 Estimate domain of existence of MBL in the BAA model

» Connection to Keldysh Green’s function approach
of Basko et al. (Ann. Phys. 2006)?

 Both constructions raise questions about mobility edges




== Integrals of Motion

BAAmodel H =8 en, +/ Q uy, bibib,b,

(disordered 2 a.b.0.d V-Ros, MM,
electrons) —H +/H A. Scardicchio
oo (Nucl. Phys. B 2015)
Perturbative ansatz for integrals
— I,=n,+Q /"l [H,Ia]io
n3l
gHO’]gm adHo( n+l) er X
Explicit solution: 1) = ¢ lim h dte Mot | [(M]e~iHot

n—0Jo

For large coordination number K: retain only diagrams that create one
more particle-hole pair at each successive vertex (likeBAA):
Parametrically justified “forward approximation”




== Integrals of Motion

In “forward approximation”:

Can show:
 Convergence for small interaction strength A
« Estimate of radius of convergence

BUT: Loose control about potential contributions ~ 1/K* to conductivity!
Note: Convergent construction of LIOM implies MBL at ALL temperatures.

What happens to LIOM if there were a finite T transition?

a) LIOM are operator series that weakly converge only on low T states
(this happens in forward approximation)

b) MBL exists only ifitexists atall T ——

?

Analogous question for disorder-free systems, as function of p.
Since p<<1is always deloc — (b) rules out genuine MBL without disorder
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(25 Delocalization through rare energy configurations

Main idea:

Sponataneous local fluctuations (“ergodic bubbles”) are mobile
and delocalize the whole system

Word of caution:

Absence of a genuine mobility edge:
—> putative transition — sharp crossover

BUT: the extremely badly conducting phase is nevertheless very
interesting and behaves localized on parametrically long time scales!
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Strongly assisted hopping on cubic lattice (d>2)

—t Z clcy +h.c.) Z €xNy (1)

(z,y)

_tzz Z Z :1:-{—3& Cm+353+h0)

r s,8/'=%1<a<p<d

t1<<W:\/@<<t2




RRRRRRRRRRRRRRRRRRRR

Strongly assisted hopping on cubic lattice (d>2)
= —tlz cley +h.c.) -I—Zemnm (1)

(z,y)

_tzz Z Z :I:+SE Cm+sﬁﬁ+h0)

r s,8/'=%1<a<p<d

t1<<W:\/@<<t2

1) analyze 2-particle problem: delocalization through rare events
2) finite but low density




=1} Instructive toy problem

Strongly assisted hopping on cubic lattice (d>2)
= —1; Z(c Cy+hC)+ZEmnm (1)

(z,y)

) Z Z Z m-l—se Cr+s’ E,{j + h C. )

r s8,8'=*% 1<a<f<d

First: 2-particle problem: |

Two types of eigenstates: -log(IPR)

(i) States with 2 particles at distance [> log(L)] are trivially localized.

(i) States with a close pair are delocalized: Interaction-induced delocalization!
Particles diffuse together: Separating they localize, get back together and
move on.
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(I-{m Instructive toy problem

Strongly assisted hopping on cubic lattice (d>2)
—t1 Z(c cy—l-hc)-{-ZEmnm (1)

(z,y)

r s,8/'=%1<a<p<d

—t2 Z Z Z :c+se: Ca+ts'ép T hC)

Low but finite density problem:

T logPR)
Finite density of delocalized pairs form a bath and scatter single particles
—> All states at finite density should be fully delocalized and ergodic
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(I-{m Instructive toy problem

Strongly assisted hopping on cubic lattice (d>2)

—tlz Cy+hC)+ZEmnm (1)

(z,y)

—19 Z Z Z :c-{—.se Cx+ts'és T hC)

r s,8/'=%1<a<p<d

]I

Logical steps of the argument:

(i) Construct a resonant, delocalized subgraph in configuration space (close
pairs) — expect delocalized eigenstates

(if) Argue that coupling to configurations outside the subgraph do not
reinstate localization

(ii) Argue that (rare, but finite density) pairs delocalize everything
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(I-{jm Instructive toy problem

Strongly assisted hopping on cubic lattice (d>2)

—t Z clcy +h.c.) Z €xNy (1)

(z,y)

_tzz Z Z :t:-{—se Cm+sﬁﬁ+h(})

r s,8/'=%1<a<p<d

Now repeat these logical steps for MBL!

(i) Construct a resonant, delocalized subgraph in configuration space (close
pairs) — expect delocalized eigenstates

(if) Argue that coupling to configurations outside the subgraph do not
reinstate localization

(ii) Argue that (rare, but finite density) pairs delocalize everything
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(-I-{}» Rare events in MBL problems

Assumption: At high T there is delocalization/ergodicity
<> Large systems at high T are ergodic and satisfy ETH

Aim: Show that this implies delocalization at any T > 0!
Analogy:

Assisted hoppingatlowp <« MBLatlow T

Rare pairs <> Rare high energy bubbles

Pairs dissociate <> Bubbles spread their energy
Pairs get back together <> Bubbles reshape
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= -{j» Resonant delocalization of ergodic spots?

(i) Constructing a resonant graph of “ergodic spots”:
Disordered case: regions of high energy density

Disorder free case: low density spots W. de Roeck and F. Huveneers (2014)

W. de Roeck, F. Huveneers, MM, M. Schiulaz (2015)

Resonant, delocalized subgraph in
configuration space




= Resonant delocalization of ergodic spots?

(if) Bubbles do not get localized by diluting themselves:

Assume that there is no energy transport

— the extra energy cannot diffuse away

— the bubble can and will reshape and moves on resonantly
This takes long, but the time is independent of system size

— very slow, but finite diffusion via bubble configurations!

Note about dynamics: Bubbles cannot disappear completely.
At any given time there must be a finite density of bubbles

in a typical state at energy E, due to time-invariance of the
thermal ensemble.




= Resonant delocalization of ergodic spots?

(ili) Mobile bubbles delocalize the whole system
Mobile bubbles form a good bath with continuous spectrum

Level spacing of translation modes: d~1/Vol
Coupling to any other degrees of freedom: M ~1/v/Vol

Conclusion:
Existence of an ergodic phase at high T implies delocalization at
any finite T.

Remark aside: The same type of reasoning seems to rule out delocalized non-ergodic
phases (except for spontaneous sym. breaking)
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e

Potential divergences in operator expansion for IOM

How did bubbles hide in the BAA analysis,

and in the construction of LIOMs ?
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(5 Potential divergences in operator expansion for |IOM

a) LIOM are operator series that weakly converge only on low T states
(which happens in forward approximation)
b) MBL exists only if it exists at all T

Divergence of Type I:
Forward approximation
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(5 Potential divergences in operator expansion for |IOM

a) LIOM are operator series that weakly converge only on low T states
(which happens in forward approximation)
b) MBL exists only if it exists at all T

Divergence of Type I:
Forward approximation

Can potentially be killed by application to low T states
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== Potential divergences in operator expansion for IOM

a) LIOM are operator series that weakly converge only on low T states
(which happens in forward approximation)
b) MBL exists only if it exists at all T

Divergence of Type .
Beyond forward approximation
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=(--]j=» Potential divergences in operator expansion for IOM

a) LIOM are operator series that weakly converge only on low T states
(which happens in forward approximation)
b) MBL exists only if it exists at all T

Divergence of Type Il
Q Beyond forward approximation

Cannot be made to converge by application to low T states
But: Type | divergence suggests presence of Type |l subsequence, too!
— b) MBL exists only if it exists at all T




{j» Further caveats for expert discussions

» Weak localization of bubbles in d<3?

* Localization in d=1 due to very bad disorder regions?

 Unidentified sources that kill the resonances on the subgraph
[like in Lifshitz model, quantum percolation]

or: that drive the dynamic time scales to infinity?
(via Anderson orthogonality, as in spin-boson localization)

We just can't see this work in MBL.
The situation is not so different from diffusion in 3d Anderson...
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(== Consequences

Disordered case:

Genuine MBL either atall Toronlyat T=0 -
only strong crossover as a function of T:

Ta Basko, Aleiner, Altshuler

Finite transport MBL diagrammatics within “forward
approximation”

o Ros, Miiller, Scardicchio

 Forward scattering construction
of LIOMs, weakly converging on

4ow T states

0 Disorder
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«(-J» Consequences

Disordered case:

Genuine MBL either atall Toronlyat T=0 -
only strong crossover as a function of T:

Ta
Finite transport

Phase diagram predicted with bubbles

Hot delocalizing bubbles:

* no finite T transition!

-— No mobility edges in
thermodyn. variables (T,u):
Strong version of Mott non-

coexisfgnce

MBL

Disorder

* Genuine MBL in the continuum is impossible:
At high energy: infinitesimal interaction will delocalize, as ¢ — .
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«HJ=» Consequences

Disorder-free localization (on configurational disorder)?

Only asymptotic localization
Finite transport due to rare low-density bubbles
BUT: highly suppressed: non-perturbative in the hopping t

(for models with power law interactions)
Schiulaz, Miiller, Silva PRB (2015)




m» Numerics and finite size effects

RS

Why are mobility edges seen in numerics then?

L
H = - [(J + 6Ji)0i20i2+1 + JzO'iZO'iZ+2 + thiZ + hXo-ix]
=1

1

MBL ——

para- y

magnetic

p—— MBL ]
spin-glass |

2/3

1/3

1 1
6 8

—
§J
Kjéll, Bardarson, and Pollmann, PRL 113, 107204 (2014).

Also: Luitz, Laflorencie, Alet PRB 2015;
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=(—{» Numerics and finite size effects

Why are mobility edges seen in numerics then?

H

L
[(J + 8Ji) 0707, ; + J207 07, , + h,0 + hx(jix]
=1

A: Small ergodic systems are not ideal baths! Bubbles must be large to move!
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=(-=1}» Numerics and finite size effects

How good a bath is an ‘ergodic’ finite size system?
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— Too small bubbles are often bad baths and get stuck.

* The critical bubble size is substantial!
— Finite size effects are strong even far from MBL transition (dJ~3J).




[F={J=» Aren’t there known exceptions??

 Fine-tuned Hamiltonians may have mobility edges
(Y. Huang, 2015) — no robustness to perturbations of H

 Quantum Random Energy Model (mean field system)

Warzel/Aizenmann: coexistence of deloc/loc states
Laumann/Pal/Scardicchio: computation of a mobility edge

Crucial ingredient: energy is a completely non-local function of spins
— There is no notion of bubbles!
— Localization is rather abstract




(=)= Conclusion

Genuine MBL is rather restrictive: It's all or none!

* |attice model <> continuous space
 quenched disorder <> disorder-free localization

« finite local Hilbert space 7 < unbounded local Hilbert space
e d=17 — d>1

« discrete or no symmetry < Continuous symmetry

probably necessary

BUT:

strong ‘asymptotic localization’ remains interesting and useful to
explore!

 Disorder free case

* T-or p-tuned crossovers




