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When does MBL exist?
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Known: Genuine MBL at all energies exists (almost rigorous proof by J. 

Imbrie) in a 1d spin chain. This example combines certain ingredients:

• lattice model ↔  continuous space

• quenched disorder ↔  disorder-free localization

• finite local Hilbert space ? ↔  unbounded local Hilbert space  

• d = 1 ? ↔  d > 1

• discrete or no symmetry ↔  Continuous symmetry 

probably necessary

Are these ingredients crucial?

Can there be mobility edges separating loc/delocalized states?

More generally: can one have localization transitions controlled by 

thermodynamic parameters: T, μ, B?



Generalization of Mott‘s argument to MBL?
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Mott‟s argument (single particles)

Generically, loc/deloc states cannot coexist at the same energy!

(except in fine-tuned Hamiltonians)    Mott, 1975 (?)

Reason: infinitesimal perturbation hybridizes localized and delocalized 

states (if they are space-filling and non-fractal):

• Matrix elements:

• Level spacing of delocalized states:

M ~1 Vol

d ~1 Vol
M >> d

Use Fermi Golden rule to get decay of localized state!



Many-body Localization
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Basko, Aleiner Altshuler, 2006:

All orders in perturbation theory:

Approximation: retaining the most

abundant diagrams at given order

s T < Tc( ) = 0

Predicted:

MBL = absence of any transport AND equilibration

Those are implied by the existence of a complete set 

of quasi-local integrals of motion! [LIOM]

Is existence of  

LIOMs the best 

definition of MBL?
(Huse+Nandkishore 2014)

MIT at finite T!

Mobility edge as function of T (or total E)

Huse, Nandkishore, Oganesyan „13; Serbyn, Papic, Abanin ‟13;  

Historic evolution of the notion of MBL:



How to construct IOM„s?

J. Imbrie (2014)

Approach (1): Abstract construction of quasilocal unitary 

conjugation, which block diagonalizes H

U = exp[-A],    A quasilocal anti-Hermitian

Jij ~ exp - | i - j | /x[ ],     quasilocal

Integrals of Motion



How to construct IOM„s?
V. Ros, MM,

A. Scardicchio

(Nucl. Phys. B 2015)Approach (2): Direct local construction

• MBL as localization of a hopping problem in operator space

• Estimate domain of existence of MBL in the BAA model 

• Connection to Keldysh Green‟s function approach 

of Basko et al. (Ann. Phys. 2006)?

• Both constructions raise questions about mobility edges

Integrals of Motion
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For large coordination number K: retain only diagrams that create one 

more particle-hole pair at each successive vertex (likeBAA): 

Parametrically justified “forward approximation” 

Integrals of Motion

V. Ros, MM,

A. Scardicchio

(Nucl. Phys. B 2015)

BAA model

(disordered 

electrons)

Explicit solution:



In “forward approximation”:

Can show: 

• Convergence for small interaction strength λ

• Estimate of radius of convergence

BUT: Loose control about potential contributions ~ 1/Kx to conductivity!

Note: Convergent construction of LIOM implies MBL at ALL temperatures.

What happens to LIOM if there were a finite T transition? 

a)  LIOM are operator series that weakly converge only on low T states

(this happens in forward approximation)

b) MBL exists only if it exists at all T

Analogous question for disorder-free systems, as function of ρ.

Since ρ<<1 is always deloc → (b) rules out genuine MBL without disorder

Integrals of Motion

?



Delocalization through rare energy configurations

Main idea:

Sponataneous local fluctuations (“ergodic bubbles”) are mobile 

and delocalize the whole system

Word of caution:

Absence of a genuine mobility edge: 

putative transition → sharp crossover

BUT: the extremely badly conducting phase is nevertheless very 

interesting and behaves localized on parametrically long time scales!



t1 <<W = e 2 << t2

Strongly assisted hopping on cubic lattice (d>2)

Instructive toy problem

4

Transit ions are now only possible from a fract ion dh / Dh

of all states. Onecan also view this as follows: For a large

bubblecloseto crit icality (with st ructurecci i i i i i i i i cc) the

’act ive’ configurat ions of the type cccchhhhcccc manifest

themselves as large deviat ions and they occur with ex-

ponent ial rarity. Yet , as shown above, they do lead to

hybridizat ion of eigenstates, and hence to delocalizat ion.

A SSI ST ED H OPPI N G M OD EL I N d = 2

Here we describe our numerical analysis for an assisted

hopping model. The main aim is to show that delocal-

izat ion on a resonant subgraph remains robust to adding

addit ional terms that connect that subgraph to localized

states. We also show coexistence of localized and de-

localized states, a failure of Mott ’s argument , which is,

however, a part icularity of the zero density limit of the

considered model.

D escr ipt ion of t he m odel .

To reach the largest possible system sizes, we consider

a Hamiltonian in d = 2 with spin-orbit coupling, which

gives rise to weak ant i-localizat ion and thus allows for a

genuine delocalized phase. To the best of our knowledge,

this is the smallest system where delocalizat ion can be

expected, and is thus best suited for a numerical analysis.

Here, ’smallest ’ means that the dimension of the Hilbert

space grows at the slowest possible rate with growing

linear size L .

Let H be the Hamiltonian of two indist inguishable

hard-core bosons (with posit ions q1,2) having a single

spin 1
2

degree of freedom, s, at tached to them. We con-

sider points q = (x, y) on the lat t ice (Z/ L )2 and we im-

pose periodic boundary condit ions. The full Hamiltonian

is

H = H0 + h1H1 + h2H2, (S15)

where H0 is the uniformly dist ributed on-site potent ial

H0 =
q

ϵqa+
q aq, − W ≤ ϵq ≤ W. (S16)

H1 is the single-part icle hopping Hamiltonian

H1 =

q∼ q′

(a+
q aq′ + aqa+

q′ ), (S17)

(q∼ q′ denot ing nearest neighbors) and H2 is theassisted

hopping, including a spin-orbit interact ion. We describe

H2 by its matrix elements. Let

S = { q1 = (x1, y1), q2 = (x2, y2) : q1 ̸= q2,

max{ |x1 − x2|, |y1 − y2|} ≤ 1} (S18)

be the set of pairs of spat ially neighboring points. We

then define ⟨q′
1, q′

2, s′ |H2|q1, q2, s⟩ to be

IS (q′
1, q′

2)IS (q1, q2) ⟨q′
1, q′

2, s′ |HSO |q1, q2, s⟩, (S19)

where the characterist ic funct ions IS ensure that the ini-

t ial and final pair configurat ion belong to S. Further,

HSO = H 1
SO + H 2

SO with

H 1
SO = − i ζ(x ) Ty1

− ζ(y ) Tx 1
(S20)

− i
(ζ(x ) − ζ(y ) )

2
Tx 1

Ty1
−

(ζ(x ) + ζ(y ) )

2
Tx 1

T †
y1

+ h.c.

Here ζ(x ,y ) are Pauli matrices act ing on the spin degrees

of freedom, while the translat ion operators are defined

by Tx 1
(x1, y1), (x2, y2), s = (x1 + 1, y1), (x2, y2), s and

similarly for Ty1
. H 2

SO is defined analogously.

TheHamiltonian H 1
SO is a lat t iceversion of theRashba

Hamiltonian ζ(x ) py1
− ζ(y ) px 1

. We not ice that rest rict -

ing the definit ion of H 1
SO to the first term − i { ζ(x )Ty1

−

ζ(y ) Tx 1
} would lead to a degeneracy due to the lat t ice

structure. This would prevent H from being a generic

GSE Hamiltonian for any value of h2.

FIG. S1: Hopping for the Hamiltonian H . Left panel:

single-part icle hopping. Right panel: assisted hoppings of
the left part icle, allowed by the presence of the right part icle.

N um er ical r esul t s.

In all the simulat ions, we take L = 9 and W = 1. The

analysis is divided into two parts.

(i) Delocalization via assisted hopping - First we take

h1 = 0 and h2 > 0 (only assisted hopping). Since the

majority of states (all configurat ions outside S) are now

trivially localized, we rest rict ourselves to the subspace

H S spanned by all the classical states in S (see (S18)),

each coming with spin up/ down. We aim at finding h2

such that H0 + h2H2 can be considered a “ typical” GSE

matrix with t ruly delocalized eigenstates. For this, we

evaluate numerically the parameter r defined as

r =
1

dim(H S ) − 2

dim(H S )− 1

n = 2

min{ ∆ En , ∆ En− 1}

max{ ∆ En , ∆ En− 1}
,

(S21)

t1 t2



1) analyze 2-particle problem: delocalization through rare events

2) finite but low density

t1 <<W = e 2 << t2

Strongly assisted hopping on cubic lattice (d>2)

Instructive toy problem



Strongly assisted hopping on cubic lattice (d>2)

Instructive toy problem

Two types of eigenstates:

(i) States with 2 particles at distance [> log(L)] are trivially localized.

(ii) States with a close pair are delocalized: Interaction-induced delocalization! 

Particles diffuse together: Separating they localize, get back together and 

move on. 

First: 2-particle problem:
-log(IPR)



Strongly assisted hopping on cubic lattice (d>2)

Instructive toy problem

Finite density of delocalized pairs form a bath and scatter single particles

All states at finite density should be fully delocalized and ergodic

Low but finite density problem:
-log(IPR)



Strongly assisted hopping on cubic lattice (d>2)

Instructive toy problem

Logical steps of the argument:

(i) Construct a resonant, delocalized subgraph in configuration space (close 

pairs) → expect delocalized eigenstates 

(ii) Argue that coupling to configurations outside the subgraph do not

reinstate localization

(iii) Argue that (rare, but finite density) pairs delocalize everything



Strongly assisted hopping on cubic lattice (d>2)

Instructive toy problem

Now repeat these logical steps for MBL!

(i) Construct a resonant, delocalized subgraph in configuration space (close 

pairs) → expect delocalized eigenstates 

(ii) Argue that coupling to configurations outside the subgraph do not

reinstate localization

(iii) Argue that (rare, but finite density) pairs delocalize everything



Rare events in MBL problems

Assumption: At high T there is delocalization/ergodicity

Large systems at high T are ergodic and satisfy ETH

Aim: Show that this implies delocalization at any T > 0!

Analogy:

Assisted hopping at low ρ MBL at low T

Rare pairs Rare high energy bubbles

Pairs dissociate Bubbles spread their energy

Pairs get back together Bubbles reshape



Resonant delocalization of ergodic spots?

(i) Constructing a resonant graph of “ergodic spots”:
Disordered case: regions of high energy density

Disorder free case: low density spots

Displacement of ergodic spot

Matrix element for bubble 

displacement 

Internal level spacing

→ Resonant transition!

M ~ 1 dim Hbubble[ ]

d ~1/ dim Hbubble[ ] <<M

W. de Roeck and F. Huveneers (2014)

W. de Roeck, F. Huveneers, MM, M. Schiulaz (2015)

Resonant, delocalized subgraph in 

configuration space



Resonant delocalization of ergodic spots?

(ii) Bubbles do not get localized by diluting themselves:

Assume that there is no energy transport

→ the extra energy cannot diffuse away

→ the bubble can and will reshape and moves on resonantly

This takes long, but the time is independent of system size

→ very slow, but finite diffusion via bubble configurations!

Note about dynamics: Bubbles cannot disappear completely.

At any given time there must be a finite density of bubbles

in a typical state at energy E, due to time-invariance of the 

thermal ensemble.



Resonant delocalization of ergodic spots?

(iii) Mobile bubbles delocalize the whole system

Mobile bubbles form a good bath with continuous spectrum

Level spacing of translation modes:

Coupling to any other degrees of freedom: 

Conclusion:

Existence of an ergodic phase at high T implies delocalization at 

any finite T. 

Remark aside: The same type of reasoning seems to rule out delocalized non-ergodic 

phases (except for spontaneous sym. breaking)

M ~1 Vol

d ~1 Vol



How did bubbles hide in the BAA analysis,

and in the construction of LIOMs ?

Potential divergences in operator expansion for IOM



Divergence of Type I: 

Forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type I: 

Forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type I: 

Forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type I: 

Forward approximation

Potential divergences in operator expansion for IOM

Can potentially be killed by application to low T states

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type II: 

Beyond forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type II: 

Beyond forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type II: 

Beyond forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type II: 

Beyond forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type II: 

Beyond forward approximation

Potential divergences in operator expansion for IOM

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Divergence of Type II: 

Beyond forward approximation

Potential divergences in operator expansion for IOM

Cannot be made to converge by application to low T states

But: Type I divergence suggests presence of Type II subsequence, too!

→  b) MBL exists only if it exists at all T

a)  LIOM are operator series that weakly converge only on low T states

(which happens in forward approximation)

b) MBL exists only if it exists at all T
?



Further caveats for expert discussions

• Weak localization of bubbles in d<3?

• Localization in d=1 due to very bad disorder regions? 

• Unidentified sources that kill the resonances on the subgraph

[like in Lifshitz model, quantum percolation]

or: that drive the dynamic time scales to infinity?

(via Anderson orthogonality, as in spin-boson localization)

We just can‟t see this work in MBL.

The situation is not so different from diffusion in 3d Anderson...



Consequences

Disordered case:

Genuine MBL either at all T or only at T = 0 -

only strong crossover as a function of T:

Disorder

T

0

Finite transport

Basko, Aleiner, Altshuler
diagrammatics within “forward 

approximation”

Ros, Müller, Scardicchio
Forward scattering construction 

of LIOMs, weakly converging on 

low T states

MBL

Phase diagram predicted without bubbles



Consequences

Disordered case:

Genuine MBL either at all T or only at T = 0 -

only strong crossover as a function of T:

Disorder

T

MBLFinite transport
Hot delocalizing bubbles:

• no finite T transition!

• No mobility edges in 

thermodyn. variables (T,μ): 

Strong version of Mott non-

coexistence
0

• Genuine MBL in the continuum is impossible:

At high energy: infinitesimal interaction will delocalize, as ξ → ∞.

Phase diagram predicted with bubbles



Disorder-free localization (on configurational disorder)?

Only asymptotic localization

Finite transport due to rare low-density bubbles

BUT: highly suppressed: non-perturbative in the hopping t

s £ exp -
const

ta
é

ëê
ù

ûú

Schiulaz, Müller, Silva PRB (2015)

Consequences

(for models with power law interactions)



Why are mobility edges seen in numerics then?

Numerics and finite size effects

3

Though we show that entropic effects alone do not suf-

fice to make bubbles disappear, it st ill remains to check

that their mobility is not suppressed when all the diluted

states of a bubble are taken into account, as a result of

quantum mechanical effects. To this end, we first not ice

that, as the spreading of the bubble ends up in local-

ized configurat ions, only finitely many degreesof freedom

are affected, say ℓh around a fixed hot bubble posit ion.

Suppose then that the spreading mixes the original hot

bubble states with states of a larger local Hilbert space

of finite dimension Dh ≫ dh . [30] We also suppose that

the resonant coupling between hot regions centered in

different posit ions remains restricted to the original dh

configurat ions (because the spread-out bubbles may have

lost their ability to translate direct ly). Assuming ergod-

icity within the larger space, the matrix elements get

reduced by a factor Dh . However, the minimal denomi-

nators decrease by essent ially the same factor to W/ Dh ,

except that now a slight ly larger energy range W inter-

venes. Since the rat io W/ W grows at best linearly with

ℓh , which itself cannot grow faster than linearly with

the length of the bubble because of local energy con-

servat ion, it cannot offset the exponent ial in (S6), and

thus, the resonant ly hybridizing subgraph persists. This

contrasts with single part icle problems where sufficient ly

strong coupling to a bath may induce localizat ion due to

a significant increase of the effect ive bandwidth, as dis-

cussed in [21]. These considerat ions are formulated more

precisely in the Supplementary Material [19]. Similarly

as in theassisted hopping model, theadmixtureof config-

urat ions that arenot part of the resonant network cannot

prevent hybridizat ion, but it does increase the timescale

for t ransit ions between different posit ions of the bubble

by a factor Dh / dh .

So far we have reasoned that the construct ion of a res-

onant subgraph essent ially implies delocalizat ion. While

we believe that in the present context this conclusion

is correct , we nevertheless caut ion that this condit ion is

not alwayssufficient , like in single-part icle localizat ion in

weak disorder in low dimension, or in hopping problems

without potent ial disorder on structurally disordered lat-

t ices close to classical percolat ion. However, in these

cases localizat ion is restored by specific mechanisms,

which are not present in our many-body case: the pro-

liferat ing amplitude of return to the origin in d ≤ 2, and

the generat ion of random self-energies from the struc-

tural disorder along barely percolat ing paths [24, 25].

Non-ergodic behavior is also known to occur in many-

body systems due to orthogonality catast rophes, like in

spin-boson systems at T = 0 and related spin problems

at finite T. However, a closer examinat ion [19] of the

bubble situat ion suggests that such effects at best renor-

malize t ime scales, but do not fully suppress the mot ion

of bubbles.

Bubbles are rare objects, as they correspond to large

deviat ions from the averageenergy density. As discussed

FIG. 1: Left: Disorder averaged energy per link εi at t = 0

(red) and averaged over t ime (green) for L = 12. Init ially a

cold region of length L c = L / 2 is prepared. The disorder
st rength is δJ = 3J . Right: Same protocol, but for δJ = J
and very short cold intervals (L c = 2), at various L . The

memory effects diminish with increasing L , but the hot
region fails to thermalize the system well, even at the largest

sizes. Results were averaged over 5000 disorder realizat ions.

in Ref. [4], such effects are neglected in the analysis of

Refs. [4–6], which focus on the set of the most numerous

decay paths at a given order of perturbat ion theory. This

set does not capture mobile high energy bubbles.

Numerical studies - Our theoret ical argumentscontra-

dict recent numerical data in favor of mobility edges[7–9].

The inconsistency is, however, only apparent. Indeed, we

find that numerically accessible system sizes are not suf-

ficient ly large to host bubbles that are ergodic enough to

bemobile. Therefore, delocalizat ion by bubblescould not

have been seen in numerics up to now. In other words,

the numerical results do not contradict delocalizat ion by

rare bubbles, but rather confirm that available sizes are

not large enough.

We study the disordered Ising chain with next-to-

nearest neighbor interact ion considered in Ref. [7],

H = −

L

i = 1

(J + δJi ) ζ
z
i ζ

z
i + 1 + J2ζ

z
i ζ

z
i + 2 + hzζ

z
i + hxζ

x
i ,

where δJ i ∈ − δJ
2

, δJ
2

are independent random vari-

ables, and periodic boundary condit ions are taken. We

choose parameters J = 1, J2 = 0.3 and hx = 0.6 as in

Ref. [7], but add a finite hz = 0.1 to remove the Ising

symmetry and the associated degeneracies. The phase

diagram in Ref. [7] predicts a mobility edge in the ther-

modynamic limit at disorder st rength δJ = 3. To test

our ideas, we prepare the system at δJ = 3 in a product

state of the form |ψ(0)⟩L = |φc⟩L c
⊗|χh ⟩L − L c

, where |φc⟩
is the ground state of an interval of L c sites, while |χh ⟩
is an eigenstate of the complement close to the middle of

thespectrum (a hot bubble). WechooseL− L c as largeas

possible but such that the result ing global energy density

is below the putat ive mobility edge. We then compute

the t ime-evolving energy density on link (i , i + 1),

εi (t) ≡ − (J + δJ i ) ⟨ψ(t)| ζz
i ζ

z
i + 1 |ψ (t)⟩ . (3)

Our theory of mobilebubbles would predict that theεi (t)

profile becomes approximately flat as t → ∞ . Via ex-

Kjäll, Bardarson, and Pollmann, PRL 113, 107204 (2014).

Also: Luitz, Laflorencie, Alet PRB 2015; 



Numerics and finite size effects
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Though we show that entropic effects alone do not suf-

fice to make bubbles disappear, it st ill remains to check

that their mobility is not suppressed when all the diluted

states of a bubble are taken into account , as a result of

quantum mechanical effects. To this end, we first not ice

that , as the spreading of the bubble ends up in local-

ized configurat ions, only finitely many degreesof freedom

are affected, say ℓh around a fixed hot bubble posit ion.

Suppose then that the spreading mixes the original hot

bubble states with states of a larger local Hilbert space

of finite dimension Dh ≫ dh . [30] We also suppose that

the resonant coupling between hot regions centered in

different posit ions remains restricted to the original dh

configurat ions (because the spread-out bubbles may have

lost their ability to t ranslate direct ly). Assuming ergod-

icity within the larger space, the matrix elements get

reduced by a factor Dh . However, the minimal denomi-

nators decrease by essent ially the same factor to W/ D h ,

except that now a slight ly larger energy range W inter-

venes. Since the rat io W/ W grows at best linearly with

ℓh , which itself cannot grow faster than linearly with

the length of the bubble because of local energy con-

servat ion, it cannot offset the exponent ial in (S6), and

thus, the resonant ly hybridizing subgraph persists. This

contrasts with single part icle problems where sufficient ly

st rong coupling to a bath may induce localizat ion due to

a significant increase of the effect ive bandwidth, as dis-

cussed in [21]. These considerat ions are formulated more

precisely in the Supplementary Material [19]. Similarly

as in theassisted hopping model, theadmixtureof config-

urat ions that arenot part of the resonant network cannot

prevent hybridizat ion, but it does increase the timescale

for t ransit ions between different posit ions of the bubble

by a factor Dh / dh .

So far we have reasoned that the const ruct ion of a res-

onant subgraph essent ially implies delocalizat ion. While

we believe that in the present context this conclusion

is correct , we nevertheless caut ion that this condit ion is

not always sufficient , like in single-part icle localizat ion in

weak disorder in low dimension, or in hopping problems

without potent ial disorder on structurally disordered lat -

t ices close to classical percolat ion. However, in these

cases localizat ion is restored by specific mechanisms,

which are not present in our many-body case: the pro-

liferat ing amplitude of return to the origin in d ≤ 2, and

the generat ion of random self-energies from the struc-

tural disorder along barely percolat ing paths [24, 25].

Non-ergodic behavior is also known to occur in many-

body systems due to orthogonality catastrophes, like in

spin-boson systems at T = 0 and related spin problems

at finite T . However, a closer examinat ion [19] of the

bubble situat ion suggests that such effects at best renor-

malize t ime scales, but do not fully suppress the mot ion

of bubbles.

Bubbles are rare objects, as they correspond to large

deviat ions from the average energy density. As discussed

FIG. 1: Left: Disorder averaged energy per link εi at t = 0

(red) and averaged over t ime (green) for L = 12. Init ially a
cold region of length L c = L / 2 is prepared. The disorder

st rength is δJ = 3J . Right: Same protocol, but for δJ = J
and very short cold intervals (L c = 2), at various L . The

memory effects diminish with increasing L , but the hot

region fails to thermalize the system well, even at the largest

sizes. Result s were averaged over 5000 disorder realizat ions.

in Ref. [4], such effects are neglected in the analysis of

Refs. [4–6], which focus on the set of the most numerous

decay paths at a given order of perturbat ion theory. This

set does not capture mobile high energy bubbles.

Numerical studies - Our theoret ical arguments contra-

dict recent numerical data in favor of mobility edges[7–9].

The inconsistency is, however, only apparent . Indeed, we

find that numerically accessible system sizes are not suf-

ficient ly large to host bubbles that are ergodic enough to

bemobile. Therefore, delocalizat ion by bubblescould not

have been seen in numerics up to now. In other words,

the numerical results do not cont radict delocalizat ion by

rare bubbles, but rather confirm that available sizes are

not large enough.

We study the disordered Ising chain with next-to-

nearest neighbor interact ion considered in Ref. [7],
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where δJ i ∈ − δJ
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, δJ
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are independent random vari-

ables, and periodic boundary condit ions are taken. We

choose parameters J = 1, J2 = 0.3 and hx = 0.6 as in

Ref. [7], but add a finite hz = 0.1 to remove the Ising

symmetry and the associated degeneracies. The phase

diagram in Ref. [7] predicts a mobility edge in the ther-

modynamic limit at disorder st rength δJ = 3. To test

our ideas, we prepare the system at δJ = 3 in a product

state of the form |ψ(0)⟩L = |φc⟩L c
⊗|χh ⟩L − L c

, where |φc⟩
is the ground state of an interval of L c sites, while |χh ⟩
is an eigenstate of the complement close to the middle of

thespectrum (a hot bubble). WechooseL− L c as largeas

possible but such that the result ing global energy density

is below the putat ive mobility edge. We then compute

the t ime-evolving energy density on link (i , i + 1),

εi (t) ≡ − (J + δJ i ) ⟨ψ(t)| ζz
i ζ

z
i + 1 |ψ (t)⟩ . (3)

Our theory of mobile bubbles would predict that the εi (t)

profile becomes approximately flat as t → ∞ . Via ex-

δJ=3J δJ=J

A: Small ergodic systems are not ideal baths! Bubbles must be large to move!

Why are mobility edges seen in numerics then?

3

Though we show that entropic effects alone do not suf-

fice to make bubbles disappear, it st ill remains to check

that their mobility is not suppressed when all the diluted

states of a bubble are taken into account, as a result of

quantum mechanical effects. To this end, we first not ice

that, as the spreading of the bubble ends up in local-

ized configurat ions, only finitely many degreesof freedom

are affected, say ℓh around a fixed hot bubble posit ion.

Suppose then that the spreading mixes the original hot

bubble states with states of a larger local Hilbert space

of finite dimension Dh ≫ dh . [30] We also suppose that

the resonant coupling between hot regions centered in

different posit ions remains restricted to the original dh

configurat ions (because the spread-out bubbles may have

lost their ability to translate direct ly). Assuming ergod-

icity within the larger space, the matrix elements get

reduced by a factor Dh . However, the minimal denomi-

nators decrease by essent ially the same factor to W/ Dh ,

except that now a slight ly larger energy range W inter-

venes. Since the rat io W/ W grows at best linearly with

ℓh , which itself cannot grow faster than linearly with

the length of the bubble because of local energy con-

servat ion, it cannot offset the exponent ial in (S6), and

thus, the resonant ly hybridizing subgraph persists. This

contrasts with single part icle problems where sufficient ly

strong coupling to a bath may induce localizat ion due to

a significant increase of the effect ive bandwidth, as dis-

cussed in [21]. These considerat ions are formulated more

precisely in the Supplementary Material [19]. Similarly

as in theassisted hopping model, theadmixtureof config-

urat ions that arenot part of the resonant network cannot

prevent hybridizat ion, but it does increase the timescale

for t ransit ions between different posit ions of the bubble

by a factor Dh / dh .

So far we have reasoned that the construct ion of a res-

onant subgraph essent ially implies delocalizat ion. While

we believe that in the present context this conclusion

is correct , we nevertheless caut ion that this condit ion is

not alwayssufficient , like in single-part icle localizat ion in

weak disorder in low dimension, or in hopping problems

without potent ial disorder on structurally disordered lat-

t ices close to classical percolat ion. However, in these

cases localizat ion is restored by specific mechanisms,

which are not present in our many-body case: the pro-

liferat ing amplitude of return to the origin in d ≤ 2, and

the generat ion of random self-energies from the struc-

tural disorder along barely percolat ing paths [24, 25].

Non-ergodic behavior is also known to occur in many-

body systems due to orthogonality catast rophes, like in

spin-boson systems at T = 0 and related spin problems

at finite T. However, a closer examinat ion [19] of the

bubble situat ion suggests that such effects at best renor-

malize t ime scales, but do not fully suppress the mot ion

of bubbles.

Bubbles are rare objects, as they correspond to large

deviat ions from the averageenergy density. As discussed

FIG. 1: Left: Disorder averaged energy per link εi at t = 0

(red) and averaged over t ime (green) for L = 12. Init ially a

cold region of length L c = L / 2 is prepared. The disorder
st rength is δJ = 3J . Right: Same protocol, but for δJ = J
and very short cold intervals (L c = 2), at various L . The

memory effects diminish with increasing L , but the hot
region fails to thermalize the system well, even at the largest

sizes. Results were averaged over 5000 disorder realizat ions.

in Ref. [4], such effects are neglected in the analysis of

Refs. [4–6], which focus on the set of the most numerous
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set does not capture mobile high energy bubbles.
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the numerical results do not contradict delocalizat ion by
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Ref. [7], but add a finite hz = 0.1 to remove the Ising

symmetry and the associated degeneracies. The phase

diagram in Ref. [7] predicts a mobility edge in the ther-

modynamic limit at disorder st rength δJ = 3. To test

our ideas, we prepare the system at δJ = 3 in a product

state of the form |ψ(0)⟩L = |φc⟩L c
⊗|χh ⟩L − L c

, where |φc⟩
is the ground state of an interval of L c sites, while |χh ⟩
is an eigenstate of the complement close to the middle of

thespectrum (a hot bubble). WechooseL− L c as largeas

possible but such that the result ing global energy density
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How good a bath is an „ergodic‟ finite size system?

Numerics and finite size effects

~
1

# peaks in spectral function of s1

z( )
δJ=0.1J δJ=J

• Typical 1/IPR ~  2L, but with strong fluctuations for moderate disorder

• Even at δJ=J << δJc~ 3J, small IPR are not rare: 

→ Too small bubbles are often bad baths and get stuck.

• The critical bubble size is substantial! 

→ Finite size effects are strong even far from MBL transition (δJ~3J).



Aren’t there known exceptions??

• Fine-tuned Hamiltonians may have mobility edges

(Y. Huang, 2015) – no robustness to perturbations of H

• Quantum Random Energy Model (mean field system)

Warzel/Aizenmann: coexistence of deloc/loc states

Laumann/Pal/Scardicchio: computation of a mobility edge

Crucial ingredient: energy is a completely non-local function of spins

→ There is no notion of bubbles! 

→ Localization is rather abstract



Genuine MBL is rather restrictive: It‟s all or none!

Conclusion

• lattice model ↔  continuous space

• quenched disorder ↔  disorder-free localization

• finite local Hilbert space ? ↔  unbounded local Hilbert space  

• d = 1 ? ↔  d > 1

• discrete or no symmetry ↔  Continuous symmetry 

probably necessary

BUT:

strong „asymptotic localization‟ remains interesting and useful to 

explore!

• Disorder free case

• T- or ρ- tuned crossovers 


