Quantum quenches and many-body localization

Marcos Rigol

Department of Physics
The Pennsylvania State University

Many-body Localization
KITP, Santa Barbara
October 28, 2015

Outline

(9) Introduction

- Eigenstate thermalization hypothesis (ETH)
(2) Non-equilibrium dynamics in the presence of disorder (ED)
- Spinless fermions with random hopping
- Hubbard model: quasi-periodic lattice vs disorder
(3) Non-equilibrium dynamics in the presence of disorder (NLCEs)
- Numerical linked cluster expansions
- Numerical linked cluster expansions for quantum quenches
- Hard-core bosons with binary disorder
(4) Summary

Quantum quenches and many-body localization

(1) Introduction

- Eigenstate thermalization hypothesis (ETH)
(2) Non-equilibrium dynamics in the presence of disorder (ED)
- Spinless fermions with random hopping
- Hubbard model: quasi-periodic lattice vs disorder
(3) Non-equilibrium dynamics in the presence of disorder (NLCEs)
- Numerical linked cluster expansions
- Numerical linked cluster expansions for quantum quenches
- Hard-core bosons with binary disorder

4. Summary

Eigenstate thermalization

Eigenstate thermalization hypothesis
[J. Deutsch, PRA 432046 (1991); M. Srednicki, PRE 50, 888 (1994) \& JPA 321163 (1999); MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).]

- Matrix elements of observables in the basis of the Hamiltonian eigenstates

$$
O_{m n}=O(\bar{E}) \delta_{m n}+e^{-S(\bar{E}) / 2} f_{O}(\bar{E}, \omega) R_{m n}
$$

where $\bar{E} \equiv\left(E_{m}+E_{n}\right) / 2, \omega \equiv E_{n}-E_{m}$, and $S(E)$ is the thermodynamic entropy at energy $E . O(\bar{E})$ and $f_{O}(\bar{E}, \omega)$ are smooth functions of their arguments, and $R_{m n}$ is a random variable with zero mean and unit variance.

Eigenstate thermalization

Eigenstate thermalization hypothesis

[J. Deutsch, PRA 432046 (1991); M. Srednicki, PRE 50, 888 (1994) \& JPA 321163 (1999); MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).]

- Matrix elements of observables in the basis of the Hamiltonian eigenstates

$$
O_{m n}=O(\bar{E}) \delta_{m n}+e^{-S(\bar{E}) / 2} f_{O}(\bar{E}, \omega) R_{m n}
$$

where $\bar{E} \equiv\left(E_{m}+E_{n}\right) / 2, \omega \equiv E_{n}-E_{m}$, and $S(E)$ is the thermodynamic entropy at energy $E . O(\bar{E})$ and $f_{O}(\bar{E}, \omega)$ are smooth functions of their arguments, and $R_{m n}$ is a random variable with zero mean and unit variance.

- L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, arXiv:1509.06411. From Quantum Chaos and Eigenstate Thermalization to Statistical Mechanics and Thermodynamics.

Eigenstate thermalization

Eigenstate thermalization hypothesis
[J. Deutsch, PRA 432046 (1991); M. Srednicki, PRE 50, 888 (1994) \& JPA 321163 (1999);
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).]

- Matrix elements of observables in the basis of the Hamiltonian eigenstates

$$
O_{m n}=O(\bar{E}) \delta_{m n}+e^{-S(\bar{E}) / 2} f_{O}(\bar{E}, \omega) R_{m n}
$$

where $\bar{E} \equiv\left(E_{m}+E_{n}\right) / 2, \omega \equiv E_{n}-E_{m}$, and $S(E)$ is the thermodynamic entropy at energy $E . O(\bar{E})$ and $f_{O}(\bar{E}, \omega)$ are smooth functions of their arguments, and $R_{m n}$ is a random variable with zero mean and unit variance.

- L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, arXiv:1509.06411.

From Quantum Chaos and Eigenstate Thermalization to Statistical Mechanics and Thermodynamics.

- Various aspects of eigenstate thermalization have been studied for:
(i) Hard-core bosons (in 1D and 2D) and interacting spin chains (finite number of nearest neighbors, $1 / r^{3}$ interactions, disordered spin chains)
(ii) Spinless and spinful fermions (finite number of nearest neighbors, Fermi Hubbard, diagonal and off-diagonal disorder)
(iii) Soft-core bosons (1D Bose-Hubbard model)

Diagonal part of eigenstate thermalization

$$
\hat{H}=\sum_{j=1}^{L}-J\left(\hat{b}_{j}^{\dagger} \hat{b}_{j+1}+\text { H.c. }\right)+V\left(\hat{n}_{j}-\frac{1}{2}\right)\left(\hat{n}_{j+1}-\frac{1}{2}\right)-J^{\prime}\left(\hat{b}_{j}^{\dagger} \hat{b}_{j+2}+\text { H.c. }\right)+V^{\prime}\left(\hat{n}_{j}-\frac{1}{2}\right)\left(\hat{n}_{j+2}-\frac{1}{2}\right)
$$

MR, PRL 103, 100403 (2009); PRA 80, 053607 (2009).

Off-diagonal part of eigenstate thermalization

$$
\hat{H}=-J \sum_{j=1}^{L-1}\left(\hat{b}_{j}^{\dagger} \hat{b}_{j+1}+\text { H.c. }\right)+V \sum_{j<l} \frac{\hat{n}_{j} \hat{n}_{l}}{|j-l|^{3}}+g \sum_{j} x_{j}^{2} \hat{n}_{j} .
$$

(Inset) Histogram of:

$$
\frac{\left|O_{p q}\right|-\left|O_{p q}\right| \text { avg }}{\left|O_{p q}\right| \text { avg }}
$$

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).

Width of the energy density after a sudden quench

Initial state $\left|\psi_{I}\right\rangle=\sum_{m} C_{m}|m\rangle$ is an eigenstate of \widehat{H}_{0}. At $\tau=0$

$$
\widehat{H}_{0} \rightarrow \widehat{H}=\widehat{H}_{0}+\widehat{H}_{1} \quad \text { with } \quad \widehat{H}_{1}=\sum_{j} \hat{h}(j) \quad \text { and } \quad \widehat{H}|m\rangle=E_{m}|m\rangle .
$$

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Width of the energy density after a sudden quench

Initial state $\left|\psi_{I}\right\rangle=\sum_{m} C_{m}|m\rangle$ is an eigenstate of \widehat{H}_{0}. At $\tau=0$

$$
\widehat{H}_{0} \rightarrow \widehat{H}=\widehat{H}_{0}+\widehat{H}_{1} \quad \text { with } \quad \widehat{H}_{1}=\sum_{j} \hat{h}(j) \quad \text { and } \quad \widehat{H}|m\rangle=E_{m}|m\rangle .
$$

The width of the weighted energy density ΔE is then

$$
\Delta E=\sqrt{\sum_{m} E_{m}^{2}\left|C_{m}\right|^{2}-\left(\sum_{m} E_{m}\left|C_{m}\right|^{2}\right)^{2}}=\sqrt{\left\langle\psi_{0}\right| \widehat{H}_{1}^{2}\left|\psi_{0}\right\rangle-\left\langle\psi_{0}\right| \widehat{H}_{1}\left|\psi_{0}\right\rangle^{2}}
$$

or
where N is the total number of lattice sites.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Width of the energy density after a sudden quench

Initial state $\left|\psi_{I}\right\rangle=\sum_{m} C_{m}|m\rangle$ is an eigenstate of \widehat{H}_{0}. At $\tau=0$

$$
\widehat{H}_{0} \rightarrow \widehat{H}=\widehat{H}_{0}+\widehat{H}_{1} \quad \text { with } \quad \widehat{H}_{1}=\sum_{j} \hat{h}(j) \quad \text { and } \quad \widehat{H}|m\rangle=E_{m}|m\rangle .
$$

The width of the weighted energy density ΔE is then

$$
\Delta E=\sqrt{\sum_{m} E_{m}^{2}\left|C_{m}\right|^{2}-\left(\sum_{m} E_{m}\left|C_{m}\right|^{2}\right)^{2}}=\sqrt{\left\langle\psi_{0}\right| \widehat{H}_{1}^{2}\left|\psi_{0}\right\rangle-\left\langle\psi_{0}\right| \widehat{H}_{1}\left|\psi_{0}\right\rangle^{2}}
$$

or
where N is the total number of lattice sites.
Since the width of the spectrum $W \propto N$, then the ratio

$$
\frac{\Delta E}{W} \stackrel{N \rightarrow \infty}{\propto} \frac{1}{\sqrt{N}}
$$

so, as in any thermal ensemble, it vanishes in the thermodynamic limit.
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Quantum quenches and many-body localization

(1)Introduction

- Eigenstate thermalization hypothesis (ETH)
(2) Non-equilibrium dynamics in the presence of disorder (ED)
- Spinless fermions with random hopping
- Hubbard model: quasi-periodic lattice vs disorder
(3) Non-equilibrium dynamics in the presence of disorder (NLCEs)
- Numerical linked cluster expansions
- Numerical linked cluster expansions for quantum quenches
- Hard-core bosons with binary disorder

Model Hamiltonian and the MBL transition

Spinless fermion Hamiltonian in 1D

$$
\hat{H}=\sum_{i j} J_{i j}\left(\hat{f}_{i}^{\dagger} \hat{f}_{j}+\text { H.c. }\right)+V \sum_{i}\left(\hat{n}_{i}-\frac{1}{2}\right)\left(\hat{n}_{i+1}-\frac{1}{2}\right)
$$

E. Khatami, MR, A. Relaño, and A. García-García, PRE 85, 050102(R) (2012); arXiv:1103.0787.

Model Hamiltonian and the MBL transition

Spinless fermion Hamiltonian in 1D

$$
\hat{H}=\sum_{i j} J_{i j}\left(\hat{f}_{i}^{\dagger} \hat{f}_{j}+\text { H.c. }\right)+V \sum_{i}\left(\hat{n}_{i}-\frac{1}{2}\right)\left(\hat{n}_{i+1}-\frac{1}{2}\right)
$$

E. Khatami, MR, A. Relaño, and A. García-García, PRE 85, 050102(R) (2012); arXiv:1103.0787.

Hopping amplitudes
Gaussian random distribution $\left\langle J_{i j}\right\rangle=0$

$$
\begin{gathered}
\left\langle\left(J_{i j}\right)^{2}\right\rangle=\left[1+\left(\frac{|i-j|}{\beta}\right)^{2 \alpha}\right]^{-1} \\
V=0
\end{gathered}
$$

- Properties depend on α but not on

$$
\beta>0
$$

- $\alpha<1$, eigenstates are delocalized
- $\alpha>1$, eigenstates are localized
- $\alpha=1$, eigenstates are multifractal

Mirlin et al., PRE 54, 3221 (1996).

Model Hamiltonian and the MBL transition

Spinless fermion Hamiltonian in 1D

$$
\hat{H}=\sum_{i j} J_{i j}\left(\hat{f}_{i}^{\dagger} \hat{f}_{j}+\text { H.c. }\right)+V \sum_{i}\left(\hat{n}_{i}-\frac{1}{2}\right)\left(\hat{n}_{i+1}-\frac{1}{2}\right)
$$

E. Khatami, MR, A. Relaño, and A. García-García, PRE 85, 050102(R) (2012); arXiv:1103.0787.

Hopping amplitudes

Gaussian random distribution $\left\langle J_{i j}\right\rangle=0$

$$
\begin{gathered}
\left\langle\left(J_{i j}\right)^{2}\right\rangle=\left[1+\left(\frac{|i-j|}{\beta}\right)^{2 \alpha}\right]^{-1} \\
V=0
\end{gathered}
$$

- Properties depend on α but not on $\beta>0$
- $\alpha<1$, eigenstates are delocalized
- $\alpha>1$, eigenstates are localized
- $\alpha=1$, eigenstates are multifractal Mirlin et al., PRE 54, 3221 (1996).

Ergodic-MBL transition

$\eta=\left[\operatorname{var}-\operatorname{var}_{\mathrm{WD}}\right] /\left[\operatorname{var}_{\mathrm{P}}-\operatorname{var}_{\mathrm{WD}}\right]$
var: variance of level spacing distribution

Dynamics after a quench

Quench protocol

- Start from an eigenstate of $\hat{H}\left(\left|\psi_{I}\right\rangle\right)$ in a certain disorder realization.
- Evolve under another disorder realization with the same α.
- $E=\left\langle\psi_{I}\right| \hat{H}_{\text {fin }}\left|\psi_{I}\right\rangle$ is the energy of a thermal state with temperature $T=10$.

Dynamics after a quench

Quench protocol

- Start from an eigenstate of $\hat{H}\left(\left|\psi_{I}\right\rangle\right)$ in a certain disorder realization.
- Evolve under another disorder realization with the same α.
- $E=\left\langle\psi_{I}\right| \hat{H}_{\text {fin }}\left|\psi_{I}\right\rangle$ is the energy of a thermal state with temperature $T=10$.

Eigenstate thermalization
Observables:

$$
\begin{aligned}
\hat{n}(k) & =\frac{1}{L} \sum_{l, m} e^{i k(l-m)} \hat{f}_{l}^{\dagger} \hat{f}_{m} \\
\hat{N}(k) & =\frac{1}{L} \sum_{l, m} e^{i k(l-m)} \hat{n}_{l} \hat{n}_{m}
\end{aligned}
$$

Maximal normalized difference:

$$
\Delta O_{\alpha \alpha}^{\max }=\frac{\sum_{k}\left|O_{\alpha \alpha}^{\max }(k)-O_{\mathrm{ME}}(k)\right|}{\sum_{k} O_{\mathrm{ME}}(k)}
$$

Disorder average:

$$
\left\langle\Delta O_{\alpha \alpha}^{\max }\right\rangle_{\text {dis }}
$$

Dynamics after a quench

Quench protocol

- Start from an eigenstate of $\hat{H}\left(\left|\psi_{I}\right\rangle\right)$ in a certain disorder realization.
- Evolve under another disorder realization with the same α.
- $E=\left\langle\psi_{I}\right| \hat{H}_{\text {fin }}\left|\psi_{I}\right\rangle$ is the energy of a thermal state with temperature $T=10$.

Microcanonical vs diagonal
Observables:
$\hat{n}(k)=\frac{1}{L} \sum_{l, m} e^{i k(l-m)} \hat{f}_{l}^{\dagger} \hat{f}_{m}$
$\hat{N}(k)=\frac{1}{L} \sum_{l, m} e^{i k(l-m)} \hat{n}_{l} \hat{n}_{m}$
Normalized difference:

$$
\Delta O=\frac{\sum_{k}\left|O_{\mathrm{ME}}(k)-O_{\mathrm{DE}}(k)\right|}{\sum_{k} O_{\mathrm{DE}}(k)}
$$

Disorder average:

$$
\langle\Delta O\rangle_{\text {dis }}
$$

Dynamics after a quench

Quench protocol

- Start from an eigenstate of $\hat{H}\left(\left|\psi_{I}\right\rangle\right)$ in a certain disorder realization.
- Evolve under another disorder realization with the same α.
- $E=\left\langle\psi_{I}\right| \hat{H}_{\text {fin }}\left|\psi_{I}\right\rangle$ is the energy of a thermal state with temperature $T=10$.

Time evolution $\left[\Delta O(t)=\frac{\sum_{k}\left|O(k, t)-O_{\mathrm{DE}}(k)\right|}{\sum_{k} O_{\mathrm{DE}}(k)}\right]$

Quantum quenches and many-body localization

(1) Introduction

- Eigenstate thermalization hypothesis (ETH)
(2) Non-equilibrium dynamics in the presence of disorder (ED)
- Spinless fermions with random hopping
- Hubbard model: quasi-periodic lattice vs disorder
(3) Non-equilibrium dynamics in the presence of disorder (NLCEs)
- Numerical linked cluster expansions
- Numerical linked cluster expansions for quantum quenches
- Hard-core bosons with binary disorder

4 Summary

Experimental results

Hubbard Hamiltonian in 1D: $\left[\varepsilon_{i}=\Delta \cos (2 \pi \beta i+\phi)\right.$, and $\left.\beta \approx 0.721\right]$

$$
\hat{H}=-J \sum_{i, \sigma}\left(\hat{c}_{i \sigma}^{\dagger} \hat{c}_{i+1, \sigma}+\text { H.c. }\right)+U \sum_{i}^{L} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}+\sum_{i \sigma} \varepsilon_{i} \hat{n}_{i \sigma}
$$

Schreiber et al., Science 349, 842 (2015).

Experimental results

Hubbard Hamiltonian in 1D: $\left[\varepsilon_{i}=\Delta \cos (2 \pi \beta i+\phi)\right.$, and $\left.\beta \approx 0.721\right]$

$$
\hat{H}=-J \sum_{i, \sigma}\left(\hat{c}_{i \sigma}^{\dagger} \hat{c}_{i+1, \sigma}+\text { H.c. }\right)+U \sum_{i}^{L} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}+\sum_{i \sigma} \varepsilon_{i} \hat{n}_{i \sigma}
$$

Schreiber et al., Science 349, 842 (2015).

We add: ($J^{\prime}=J / 2$, and also consider $\varepsilon_{i} \in[-W / 2, W / 2]$, at quarter filling)

$$
\hat{H}^{\prime}=-J^{\prime} \sum_{i, \sigma}^{L-2}\left(\hat{c}_{i \sigma}^{\dagger} \hat{c}_{i+2, \sigma}+\text { H.c. }\right)+\mu_{b}\left(\hat{n}_{L, \uparrow}+\hat{n}_{L, \downarrow}\right)+h_{b}\left(\hat{n}_{1, \uparrow}-\hat{n}_{1, \downarrow}\right)
$$

R. Mondaini and MR, Phys. Rev. A 92, 041601(R) (2015).

Results for $r_{n}=\min \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right] / \max \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right]$

Results for $r_{n}=\min \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right] / \max \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right]$

Dynamics and thermalization: $\left|\psi_{I}\right\rangle=|\uparrow 0 \downarrow 0 \uparrow 0 \downarrow \ldots\rangle$

Relaxation Dynamics

$$
I=\frac{\left(\left\langle\hat{n}^{e}\right\rangle-\left\langle\hat{n}^{o}\right\rangle\right)}{\left(\left\langle\hat{n}^{e}\right\rangle+\left\langle\hat{n}^{o}\right\rangle\right)}
$$

$$
S=\frac{1}{L} \sum_{i, j} e^{i \pi(i-j)}\left\langle\left(\hat{n}_{i \uparrow}-\hat{n}_{i \downarrow}\right)\left(\hat{n}_{j \uparrow}-\hat{n}_{j \downarrow}\right)\right\rangle
$$

Dynamics and thermalization: $\left|\psi_{I}\right\rangle=|\uparrow 0 \downarrow 0 \uparrow 0 \downarrow \ldots\rangle$

Relaxation Dynamics

$$
I=\frac{\left(\left\langle\hat{n}^{e}\right\rangle-\left\langle\hat{n}^{o}\right\rangle\right)}{\left(\left\langle\hat{n}^{e}\right\rangle+\left\langle\hat{n}^{o}\right\rangle\right)}
$$

Thermalization

$S=\frac{1}{L} \sum_{i, j} e^{i \pi(i-j)}\left\langle\left(\hat{n}_{i \uparrow}-\hat{n}_{i \downarrow}\right)\left(\hat{n}_{j \uparrow}-\hat{n}_{j \downarrow}\right)\right\rangle$

Quantum quenches and many-body localization

(1)Introduction

- Figenstate thermalization hypothesis (ETH)
(2) Non-equilibrium dynamics in the presence of disorder (ED)
- Spinless fermions with random hopping
- Hubbard model: quasi-periodic lattice vs disorder

3 Non-equilibrium dynamics in the presence of disorder (NLCEs)

- Numerical linked cluster expansions
- Numerical linked cluster expansions for quantum quenches
- Hard-core bosons with binary disorder
(4) Summary

Linked-Cluster Expansions

Extensive observables $\hat{\mathcal{O}}$ per lattice site (\mathcal{O}) in the thermodynamic limit

$$
\mathcal{O}=\sum_{c} L(c) \times W_{\mathcal{O}}(c)
$$

where $L(c)$ is the number of embeddings of cluster c

Linked-Cluster Expansions

Extensive observables $\hat{\mathcal{O}}$ per lattice site (\mathcal{O}) in the thermodynamic limit

$$
\mathcal{O}=\sum_{c} L(c) \times W_{\mathcal{O}}(c)
$$

where $L(c)$ is the number of embeddings of cluster c and $W_{\mathcal{O}}(c)$ is the weight of observable \mathcal{O} in cluster c

$$
W_{\mathcal{O}}(c)=\mathcal{O}(c)-\sum_{s \subset c} W_{\mathcal{O}}(s)
$$

$\mathcal{O}(c)$ is the result for \mathcal{O} in cluster c

$$
\begin{aligned}
\mathcal{O}(c) & =\operatorname{Tr}\left\{\hat{\mathcal{O}} \hat{\rho}_{c}^{\mathrm{GC}}\right\} \\
\hat{\rho}_{c}^{\mathrm{GC}} & =\frac{1}{Z_{c}^{\mathrm{GC}}} \exp ^{-\left(\hat{H}_{c}-\mu \hat{N}_{c}\right) / k_{B} T} \\
Z_{c}^{\mathrm{GC}} & =\operatorname{Tr}\left\{\exp ^{-\left(\hat{H}_{c}-\mu \hat{N}_{c}\right) / k_{B} T}\right\}
\end{aligned}
$$

and the s sum runs over all subclusters of c.

Linked-Cluster Expansions

Extensive observables $\hat{\mathcal{O}}$ per lattice site (\mathcal{O}) in the thermodynamic limit

$$
\mathcal{O}=\sum_{c} L(c) \times W_{\mathcal{O}}(c)
$$

where $L(c)$ is the number of embeddings of cluster c and $W_{\mathcal{O}}(c)$ is the weight of observable \mathcal{O} in cluster c

$$
W_{\mathcal{O}}(c)=\mathcal{O}(c)-\sum_{s \subset c} W_{\mathcal{O}}(s)
$$

$\mathcal{O}(c)$ is the result for \mathcal{O} in cluster c

$$
\begin{aligned}
\mathcal{O}(c) & =\operatorname{Tr}\left\{\hat{\mathcal{O}} \hat{\rho}_{c}^{\mathrm{GC}}\right\} \\
\hat{\rho}_{c}^{\mathrm{GC}} & =\frac{1}{Z_{c}^{\mathrm{GC}}} \exp ^{-\left(\hat{H}_{c}-\mu \hat{N}_{c}\right) / k_{B} T} \\
Z_{c}^{\mathrm{GC}} & =\operatorname{Tr}\left\{\exp ^{-\left(\hat{H}_{c}-\mu \hat{N}_{c}\right) / k_{B} T}\right\}
\end{aligned}
$$

and the s sum runs over all subclusters of c. In numerical linked cluster expansions (NLCEs) an exact diagonalization of the cluster is used to calculate $\mathcal{O}(c)$ at any temperature.
MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).

Finite size effects

- In unordered phases, not all ensemble calculations of finite systems approach the thermodynamic limit the same way
There is a preferred ensemble (the grand canonical ensemble) and preferred boundary conditions (periodic boundary conditions, so that the system is translationally invariant) for which finite-size effects are exponentially small in the system size. All others exhibit power-law convergence with system size.
D. Iyer, M. Srednicki, and MR, Phys. Rev. E 91, 062142 (2015).

Finite size effects

- In unordered phases, not all ensemble calculations of finite systems approach the thermodynamic limit the same way
There is a preferred ensemble (the grand canonical ensemble) and preferred boundary conditions (periodic boundary conditions, so that the system is translationally invariant) for which finite-size effects are exponentially small in the system size. All others exhibit power-law convergence with system size.
- NLCEs convergence is also exponential, but a faster one!
D. Iyer, M. Srednicki, and MR, Phys. Rev. E 91, 062142 (2015).

Finite size effects

- In unordered phases, not all ensemble calculations of finite systems approach the thermodynamic limit the same way
There is a preferred ensemble (the grand canonical ensemble) and preferred boundary conditions (periodic boundary conditions, so that the system is translationally invariant) for which finite-size effects are exponentially small in the system size. All others exhibit power-law convergence with system size.
- NLCEs convergence is also exponential, but a faster one! Kinetic energy in the $J-V$ model

D. Iyer, M. Srednicki, and MR, Phys. Rev. E 91, 062142 (2015).

Quantum quenches and many-body localization

©Introduction

- Figenstate thermalization hypothesis (ETH)
(2) Non-equilibrium dynamics in the presence of disorder (ED)
- Spinless fermions with random hopping
- Hubbard model: quasi-periodic lattice vs disorder

3 Non-equilibrium dynamics in the presence of disorder (NLCEs)

- Numerical linked cluster expansions
- Numerical linked cluster expansions for quantum quenches
- Hard-core bosons with binary disorder

4) Summary

Diagonal ensemble and NLCEs

The initial state is in thermal equilibrium in contact with a reservoir

$$
\hat{\rho}_{c}^{I}=\frac{\sum_{a} e^{-\left(E_{a}^{c}-\mu_{I} N_{a}^{c}\right) / T_{I}}\left|a_{c}\right\rangle\left\langle a_{c}\right|}{Z_{c}^{I}}, \quad \text { where } \quad Z_{c}^{I}=\sum_{a} e^{-\left(E_{a}^{c}-\mu^{I} N_{a}^{c}\right) / T_{I}},
$$

$\left|a_{c}\right\rangle\left(E_{a}^{c}\right)$ are the eigenstates (eigenvalues) of the initial Hamiltonian \hat{H}_{c}^{I} in c.

Diagonal ensemble and NLCEs

The initial state is in thermal equilibrium in contact with a reservoir

$$
\hat{\rho}_{c}^{I}=\frac{\sum_{a} e^{-\left(E_{a}^{c}-\mu_{I} N_{a}^{c}\right) / T_{I}}\left|a_{c}\right\rangle\left\langle a_{c}\right|}{Z_{c}^{I}}, \quad \text { where } \quad Z_{c}^{I}=\sum_{a} e^{-\left(E_{a}^{c}-\mu^{I} N_{a}^{c}\right) / T_{I}}
$$

$\left|a_{c}\right\rangle\left(E_{a}^{c}\right)$ are the eigenstates (eigenvalues) of the initial Hamiltonian \hat{H}_{c}^{I} in c.
At the time of the quench $\hat{H}_{c}^{I} \rightarrow \hat{H}_{c}$, the system is detached from the reservoir. Writing the eigenstates of \hat{H}_{c}^{I} in terms of the eigenstates of \hat{H}_{c}

$$
\hat{\rho}_{c}^{\mathrm{DE}} \equiv \lim _{t^{\prime} \rightarrow \infty} \frac{1}{t^{\prime}} \int_{0}^{t^{\prime}} d t \hat{\rho}(t)=\sum_{\alpha} W_{\alpha}^{c}\left|\alpha_{c}\right\rangle\left\langle\alpha_{c}\right|
$$

where

$$
W_{\alpha}^{c}=\frac{\sum_{a} e^{-\left(E_{a}^{c}-\mu_{I} N_{a}^{c}\right) / T_{I}}\left|\left\langle\alpha_{c} \mid a_{c}\right\rangle\right|^{2}}{Z_{c}^{I}}
$$

$\left|\alpha_{c}\right\rangle\left(\varepsilon_{\alpha}^{c}\right)$ are the eigenstates (eigenvalues) of the final Hamiltonian \hat{H}_{c} in c.

MR, PRL 112, 170601 (2014).

Diagonal ensemble and NLCEs

The initial state is in thermal equilibrium in contact with a reservoir

$$
\hat{\rho}_{c}^{I}=\frac{\sum_{a} e^{-\left(E_{a}^{c}-\mu_{I} N_{a}^{c}\right) / T_{I}}\left|a_{c}\right\rangle\left\langle a_{c}\right|}{Z_{c}^{I}}, \quad \text { where } \quad Z_{c}^{I}=\sum_{a} e^{-\left(E_{a}^{c}-\mu^{I} N_{a}^{c}\right) / T_{I}},
$$

$\left|a_{c}\right\rangle\left(E_{a}^{c}\right)$ are the eigenstates (eigenvalues) of the initial Hamiltonian \hat{H}_{c}^{I} in c.
At the time of the quench $\hat{H}_{c}^{I} \rightarrow \hat{H}_{c}$, the system is detached from the reservoir. Writing the eigenstates of \hat{H}_{c}^{I} in terms of the eigenstates of \hat{H}_{c}

$$
\hat{\rho}_{c}^{\mathrm{DE}} \equiv \lim _{t^{\prime} \rightarrow \infty} \frac{1}{t^{\prime}} \int_{0}^{t^{\prime}} d t \hat{\rho}(t)=\sum_{\alpha} W_{\alpha}^{c}\left|\alpha_{c}\right\rangle\left\langle\alpha_{c}\right|
$$

where

$$
W_{\alpha}^{c}=\frac{\sum_{a} e^{-\left(E_{a}^{c}-\mu_{I} N_{a}^{c}\right) / T_{I}}\left|\left\langle\alpha_{c} \mid a_{c}\right\rangle\right|^{2}}{Z_{c}^{I}}
$$

$\left|\alpha_{c}\right\rangle\left(\varepsilon_{\alpha}^{c}\right)$ are the eigenstates (eigenvalues) of the final Hamiltonian \hat{H}_{c} in c.
Using $\hat{\rho}_{c}^{\mathrm{DE}}$ in the calculation of $\mathcal{O}(c)$, NLCEs allow one to compute observables in the DE in the thermodynamic limit.
MR, PRL 112, 170601 (2014).

Quenches in the XXZ model

MR, PRE 90, $031301(R)$ (2014); B. Wouters et al., PRL 113, 117202 (2014).

Quantum quenches and many-body localization

©Introduction

- Figenstate thermalization hypothesis (ETH)
(2) Non-equilibrium dynamics in the presence of disorder (ED)
- Spinless fermions with random hopping
- Hubbard model: quasi-periodic lattice vs disorder

3 Non-equilibrium dynamics in the presence of disorder (NLCEs)

- Numerical linked cluster expansions
- Numerical linked cluster expansions for quantum quenches
- Hard-core bosons with binary disorder

4) Summary

Hard-core bosons with binary disorder

Hamiltonian with diagonal disorder

$$
\hat{H}=\sum_{i}\left[-J\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V\left(\hat{n}_{i}-\frac{1}{2}\right)\left(\hat{n}_{i+1}-\frac{1}{2}\right)+h_{i}\left(\hat{n}_{i}-\frac{1}{2}\right)\right]
$$

binary disorder (equal probabilities for $h_{i}= \pm h$).
B. Tang, D. Iyer, and MR, Phys. Rev. B 91, 161109(R) (2015).

Hard-core bosons with binary disorder

Hamiltonian with diagonal disorder

$$
\hat{H}=\sum_{i}\left[-J\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V\left(\hat{n}_{i}-\frac{1}{2}\right)\left(\hat{n}_{i+1}-\frac{1}{2}\right)+h_{i}\left(\hat{n}_{i}-\frac{1}{2}\right)\right]
$$

binary disorder (equal probabilities for $h_{i}= \pm h$).

Disorder average restores translational invariance (exactly!)

$$
\mathcal{O}(c)=\left\langle\operatorname{Tr}\left[\hat{\mathcal{O}} \hat{\rho}_{c}\right]\right\rangle_{\mathrm{dis}},
$$

where $\langle\cdot\rangle_{\text {dis }}$ represents the disorder average.
B. Tang, D. Iyer, and MR, Phys. Rev. B 91, 161109(R) (2015).

Hard-core bosons with binary disorder

Hamiltonian with diagonal disorder

$$
\hat{H}=\sum_{i}\left[-J\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V\left(\hat{n}_{i}-\frac{1}{2}\right)\left(\hat{n}_{i+1}-\frac{1}{2}\right)+h_{i}\left(\hat{n}_{i}-\frac{1}{2}\right)\right]
$$

binary disorder (equal probabilities for $h_{i}= \pm h$).

Disorder average restores translational invariance (exactly!)

$$
\mathcal{O}(c)=\left\langle\operatorname{Tr}\left[\hat{\mathcal{O}} \hat{\rho}_{c}\right]\right\rangle_{\mathrm{dis}},
$$

where $\langle\cdot\rangle_{\text {dis }}$ represents the disorder average.

Initial state: $J_{I}=0.5, V_{I}=2.5, h_{j}=0$, and T_{I} (no disorder)
Final Hamiltonian: $J=1, V=2$, and different values of $h \neq 0$
B. Tang, D. Iyer, and MR, Phys. Rev. B 91, 161109(R) (2015).

Disordered systems and many-body localization

Ratio of consecutive energy gaps

Ratio between the smaller and the larger of two consecutive energy gaps

$$
r_{n}=\min \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right] / \max \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right], \quad \text { where } \quad \delta_{n}^{E} \equiv E_{n+1}-E_{n}
$$

we compute $r=\left\langle\left\langle r_{n}^{\text {dis }}\right\rangle_{n}\right\rangle_{\text {dis }}$.
Continuous disorder: $h_{c} \approx 7.4$ [Luitz, Laflorencie, \& Alet, PRB 91, 081103 (2015).]

Disordered systems and many-body localization

Ratio of consecutive energy gaps

Diagonal vs Thermal

Ratio between the smaller and the larger of two consecutive energy gaps

$$
r_{n}=\min \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right] / \max \left[\delta_{n-1}^{E}, \delta_{n}^{E}\right], \quad \text { where } \quad \delta_{n}^{E} \equiv E_{n+1}-E_{n}
$$

we compute $r=\left\langle\left\langle r_{n}^{\text {dis }}\right\rangle_{n}\right\rangle_{\text {dis }}$.
Continuous disorder: $h_{c} \approx 7.4$ [Luitz, Laflorencie, \& Alet, PRB 91, 081103 (2015).]

Scaling of the differences: $\delta(m)_{l}=\frac{\sum_{k}\left|\left(m_{k}\right)_{l}^{\mathrm{DE}}-\left(m_{k}\right)_{14}^{\mathrm{CE}}\right|}{\sum_{k}\left|\left(m_{k}\right)_{14}^{\mathrm{CA}}\right|}$

Summary

- We have seen signatures of MBL, no eigenstate thermalization and/or failure of the system to thermalize after a quench, in three different models involving spinless and spinful fermions, and hard-core bosons.
- MBL for spinful fermions requires a disorder strength that is several times the single-particle bandwidth. This might be hidden by finite-size effects in the experiments.
- Numerical linked cluster expansions (NLCEs) provide an alternative way to look into these problems starting from a thermodynamic limit formulation.

Collaborators

Supported by:

