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Eigenstate thermalization
Eigenstate thermalization hypothesis
[J. Deutsch, PRA 43 2046 (1991); M. Srednicki, PRE 50, 888 (1994) & JPA 32 1163 (1999);
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).]

Matrix elements of observables in the basis of the Hamiltonian eigenstates

Omn = O
(
Ē
)
δmn + e−S(Ē)/2fO

(
Ē, ω

)
Rmn,

where Ē ≡ (Em + En)/2, ω ≡ En − Em, and S(E) is the thermodynamic
entropy at energy E. O

(
Ē
)

and fO
(
Ē, ω

)
are smooth functions of their

arguments, and Rmn is a random variable with zero mean and unit variance.

L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, arXiv:1509.06411.
From Quantum Chaos and Eigenstate Thermalization to
Statistical Mechanics and Thermodynamics.

Various aspects of eigenstate thermalization have been studied for:
(i) Hard-core bosons (in 1D and 2D) and interacting spin chains (finite num-
ber of nearest neighbors, 1/r3 interactions, disordered spin chains)
(ii) Spinless and spinful fermions (finite number of nearest neighbors, Fermi
Hubbard, diagonal and off-diagonal disorder)
(iii) Soft-core bosons (1D Bose-Hubbard model)
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Diagonal part of eigenstate thermalization
Ĥ =

L∑
j=1

−J
(
b̂
†
j b̂j+1 + H.c.

)
+V

(
n̂j −

1

2

)(
n̂j+1 −

1

2

)
−J′

(
b̂
†
j b̂j+2 + H.c.

)
+V

′
(
n̂j −

1

2

)(
n̂j+2 −

1

2

)

MR, PRL 103, 100403 (2009); PRA 80, 053607 (2009).
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Off-diagonal part of eigenstate thermalization

Ĥ = −J
L−1∑
j=1

(
b̂†j b̂j+1 + H.c.

)
+ V

∑
j<l

n̂j n̂l
|j − l|3 + g

∑
j

x2
j n̂j .

(Inset) Histogram of:
|Opq| − |Opq|avg

|Opq|avg

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).
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Width of the energy density after a sudden quench

Initial state |ψI〉 =
∑
m Cm|m〉 is an eigenstate of Ĥ0. At τ = 0

Ĥ0 → Ĥ = Ĥ0 + Ĥ1 with Ĥ1 =
∑
j

ĥ(j) and Ĥ|m〉 = Em|m〉.

The width of the weighted energy density ∆E is then

∆E =

√∑
m

E2
m|Cm|2 − (

∑
m

Em|Cm|2)2 =

√
〈ψ0|Ĥ2

1 |ψ0〉 − 〈ψ0|Ĥ1|ψ0〉2,

or

∆E =

√ ∑
j1,j2∈σ

[
〈ψ0|ĥ(j1)ĥ(j2)|ψ0〉 − 〈ψ0|ĥ(j1)|ψ0〉〈ψ0|ĥ(j2)|ψ0〉

]
N→∞∝

√
N,

where N is the total number of lattice sites.
Since the width of the spectrum W ∝ N , then the ratio

∆E

W

N→∞∝ 1√
N
,

so, as in any thermal ensemble, it vanishes in the thermodynamic limit.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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∑
j
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Model Hamiltonian and the MBL transition

Spinless fermion Hamiltonian in 1D

Ĥ =
∑
ij

Jij

(
f̂†i f̂j + H.c.

)
+ V

∑
i

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
E. Khatami, MR, A. Relaño, and A. García-García, PRE 85, 050102(R) (2012); arXiv:1103.0787.

Hopping amplitudes
Gaussian random distribution 〈Jij〉 = 0

〈
(Jij)

2〉 =

[
1 +

(
|i− j|
β

)2α
]−1

V = 0

Properties depend on α but not on
β > 0

α < 1, eigenstates are delocalized

α > 1, eigenstates are localized

α = 1, eigenstates are multifractal

Mirlin et al., PRE 54, 3221 (1996).

Ergodic-MBL transition

η = [var− varWD ]/[ varP − varWD]

var: variance of level spacing distribution

0 0.5 1 1.5 2
α

0

0.2

0.4

0.6

0.8

1.0

η

L=12

L=15

L=18

β=0.1

V=1
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Dynamics after a quench

Quench protocol
Start from an eigenstate of Ĥ (|ψI〉) in a certain disorder realization.
Evolve under another disorder realization with the same α.
E = 〈ψI |Ĥfin|ψI〉 is the energy of a thermal state with temperature T = 10.

Eigenstate thermalization
Observables:

n̂(k) =
1

L

∑
l,m

eik(l−m)f̂†l f̂m

N̂(k) =
1

L

∑
l,m

eik(l−m)n̂ln̂m

Maximal normalized difference:

∆Omax
αα =

∑
k |O

max
αα (k)−OME(k)|∑
k OME(k)

Disorder average:
〈∆Omax

αα 〉dis

0

0.1

0.2

0.3

<
∆

n
α

αm
a
x
>

d
is

α=0.6

α=0.8

α=1.0

α=1.2

α=1.4

9 12 15 18

L

0

0.5

1

<
∆

N
α

αm
a
x
>

d
is
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Dynamics after a quench

Quench protocol
Start from an eigenstate of Ĥ (|ψI〉) in a certain disorder realization.
Evolve under another disorder realization with the same α.
E = 〈ψI |Ĥfin|ψI〉 is the energy of a thermal state with temperature T = 10.

Time evolution
[
∆O(t) =

∑
k |O(k,t)−ODE(k)|∑

k ODE(k)

]

10
0

10
1

10
2

10
3

10
4

t

0.01

0.1

<
∆

n
(t

)>
d
is

L=15

L=18

10
0

10
1

10
2

10
3

10
4

t

0.01

0.1

<
∆

N
(t

)>
d
is

α=0.6

α=1.0

α=1.4

Marcos Rigol (Penn State) Quantum quenches and MBL October 28, 2015 12 / 28



Quantum quenches and many-body localization

1 Introduction
Eigenstate thermalization hypothesis (ETH)

2 Non-equilibrium dynamics in the presence of disorder (ED)
Spinless fermions with random hopping
Hubbard model: quasi-periodic lattice vs disorder

3 Non-equilibrium dynamics in the presence of disorder (NLCEs)
Numerical linked cluster expansions
Numerical linked cluster expansions for quantum quenches
Hard-core bosons with binary disorder

4 Summary

Marcos Rigol (Penn State) Quantum quenches and MBL October 28, 2015 13 / 28



Experimental results
Hubbard Hamiltonian in 1D: [εi = ∆ cos (2πβi+ φ), and β ≈ 0.721]

Ĥ = −J
∑
i,σ

(ĉ†iσ ĉi+1,σ + H.c.) + U

L∑
i

n̂i↑n̂i↓ +
∑
iσ

εin̂iσ

Schreiber et al., Science 349, 842 (2015).

We add: (J ′ = J/2, and also consider εi ∈ [−W/2,W/2], at quarter filling)

Ĥ ′ = −J ′
L−2∑
i,σ

(ĉ†iσ ĉi+2,σ + H.c.) + µb(n̂L,↑ + n̂L,↓) + hb(n̂1,↑ − n̂1,↓)

R. Mondaini and MR, Phys. Rev. A 92, 041601(R) (2015).
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Results for rn = min[δEn−1, δ
E
n ]/max[δEn−1, δ

E
n ]
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Dynamics and thermalization: |ψI〉 = | ↑ 0 ↓ 0 ↑ 0 ↓ . . .〉
Relaxation Dynamics
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Dynamics and thermalization: |ψI〉 = | ↑ 0 ↓ 0 ↑ 0 ↓ . . .〉
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Linked-Cluster Expansions
Extensive observables Ô per lattice site (O) in the thermodynamic limit

O =
∑
c

L(c)×WO(c)

where L(c) is the number of embeddings of cluster c

and WO(c) is the weight
of observable O in cluster c

WO(c) = O(c)−
∑
s⊂c

WO(s).

O(c) is the result for O in cluster c

O(c) = Tr
{
Ô ρ̂GC

c

}
,

ρ̂GC
c =

1

ZGC
c

exp−(Ĥc−µN̂c)/kBT

ZGC
c = Tr

{
exp−(Ĥc−µN̂c)/kBT

}
and the s sum runs over all subclusters of c.
In numerical linked cluster expansions (NLCEs) an exact diagonalization of
the cluster is used to calculate O(c) at any temperature.
MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).
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Finite size effects

In unordered phases, not all ensemble calculations of finite systems
approach the thermodynamic limit the same way
There is a preferred ensemble (the grand canonical ensemble) and preferred boundary
conditions (periodic boundary conditions, so that the system is translationally invariant) for
which finite-size effects are exponentially small in the system size. All others exhibit
power-law convergence with system size.

NLCEs convergence is also exponential, but a faster one!

Kinetic energy in the J-V model

2 4 6 8 10 12 14 16

l

10
-7

10
-5

10
-3

10
-1

|K
l-K

E
|/

K
E

CE-O

CE-P

GE-O

GE-P

NLCE

T=1.0

D. Iyer, M. Srednicki, and MR, Phys. Rev. E 91, 062142 (2015).
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Diagonal ensemble and NLCEs
The initial state is in thermal equilibrium in contact with a reservoir

ρ̂Ic =

∑
a e
−(Ec

a−µIN
c
a)/TI |ac〉〈ac|

ZIc
, where ZIc =

∑
a

e−(E
c
a−µ

INc
a)/TI ,

|ac〉 (Eca) are the eigenstates (eigenvalues) of the initial Hamiltonian ĤI
c in c.

At the time of the quench ĤI
c → Ĥc , the system is detached from the

reservoir. Writing the eigenstates of ĤI
c in terms of the eigenstates of Ĥc

ρ̂DE
c ≡ limt′→∞

1

t′

∫ t′

0

dt ρ̂(t) =
∑
α

W c
α |αc〉〈αc|

where
W c
α =

∑
a e
−(Ec

a−µIN
c
a)/TI |〈αc|ac〉|2

ZIc
,

|αc〉 (εcα) are the eigenstates (eigenvalues) of the final Hamiltonian Ĥc in c.

Using ρ̂DE
c in the calculation of O(c), NLCEs allow one to compute

observables in the DE in the thermodynamic limit.

MR, PRL 112, 170601 (2014).
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c in c.

At the time of the quench ĤI
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Quenches in the XXZ model
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MR, PRE 90, 031301(R) (2014); B. Wouters et al., PRL 113, 117202 (2014).
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Quantum quenches and many-body localization

1 Introduction
Eigenstate thermalization hypothesis (ETH)
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Numerical linked cluster expansions
Numerical linked cluster expansions for quantum quenches
Hard-core bosons with binary disorder

4 Summary
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Hard-core bosons with binary disorder

Hamiltonian with diagonal disorder

Ĥ =
∑
i

[
−J(b̂†i b̂i+1 + H.c.) + V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
+ hi

(
n̂i −

1

2

)]
binary disorder (equal probabilities for hi = ±h).

Disorder average restores translational invariance (exactly!)

O(c) =
〈

Tr[Ôρ̂c]
〉
dis
,

where 〈·〉dis represents the disorder average.

Initial state: JI = 0.5, VI = 2.5, hj = 0, and TI (no disorder)

Final Hamiltonian: J = 1, V = 2, and different values of h 6= 0

B. Tang, D. Iyer, and MR, Phys. Rev. B 91, 161109(R) (2015).
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Disordered systems and many-body localization

Ratio of consecutive energy gaps
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Ratio between the smaller and the larger of two consecutive energy gaps

rn = min[δEn−1, δ
E
n ]/max[δEn−1, δ

E
n ], where δEn ≡ En+1 − En

we compute r = 〈〈rdisn 〉n〉dis.
Continuous disorder: hc ≈ 7.4 [Luitz, Laflorencie, & Alet, PRB 91, 081103 (2015).]
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Scaling of the differences: δ(m)l =
∑
k |(mk)DE

l −(mk)GE
14 |∑

k |(mk)GE
14 |
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Summary

We have seen signatures of MBL, no eigenstate thermalization
and/or failure of the system to thermalize after a quench, in
three different models involving spinless and spinful fermions,
and hard-core bosons.

MBL for spinful fermions requires a disorder strength that is sev-
eral times the single-particle bandwidth. This might be hidden by
finite-size effects in the experiments.

Numerical linked cluster expansions (NLCEs) provide an alterna-
tive way to look into these problems starting from a thermody-
namic limit formulation.
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