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Thermalization in isolated quantum systems?

• No local memory of initial conditions 

• Usual intuition OK: Stat mech 

• Excited eigenstates are highly entangled 

• Rapid spreading of entanglement or energy

• Local quantum information persists to 

infinite time:  generic “integrability” 

• Excited eigenstates have low entanglement 

~ gapped groundstates  

• No energy transport
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Polyakov ’05, Basko, Aleiner & Altshuler ’05, Oganesyan & 
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• Can MBL protect any type of symmetry-
breaking, topological or SPT order? 

• Role of symmetries? 

• Usually, start from completely localized 
single-particle orbitals.  

  What about “marginal localization”? 

Marginal Anderson localization and many body delocalization

Rahul Nandkishore1 and Andrew C. Potter2
1
Princeton Center for Theoretical Science,Princeton University, Princeton, New Jersey 08544, USA and

2
Department of Physics, University of California, Berkeley, CA 94720, USA

(Dated: June 5, 2014)

We consider d dimensional systems which are localized in the absence of interactions, but whose
single particle (SP) localization length diverges near a discrete set of (single-particle) energies, with
critical exponent ⌫. This class includes disordered systems with intrinsic- or symmetry-protected-
topological bands, such as disordered integer quantum Hall insulators. In the absence of interactions,
such marginally localized systems exhibit anomalous properties intermediate between localized and
extended including: vanishing DC conductivity but sub-di↵usive dynamics, and fractal entanglement
(an entanglement entropy with a scaling intermediate between area and volume law). We investigate
the stability of marginal localization in the presence of interactions, and argue that arbitrarily weak
short range interactions trigger delocalization for partially filled bands at non-zero energy density
if ⌫ � 1/d. We use the Harris/Chayes bound ⌫ � 2/d, to conclude that marginal localization
is generically unstable in the presence of interactions. Our results suggest the impossibility of
stabilizing quantized Hall conductance at non-zero energy density.

I. INTRODUCTION

Edge states of topological systems give rise to a strik-
ing set of coherent quantum phenomena. For example,
chiral edge states of two-dimensional quantum Hall sys-
tems lead to precisely quantized Hall conductance at zero
temperature. However in thermal systems with non-zero
temperature, these edge-state properties are washed out
due to thermal excitations that communicate between
opposite edges of the system. Such deleterious thermal
e↵ects can sometimes be mitigated by careful cooling and
isolation. Nevertheless, it is interesting and potentially
useful to ask whether one can obtain systems with topo-
logical edge state properties that are immune to thermal
washing out, circumventing the need for cooling.

An intriguing possibility arises from the study of many-
body localization (MBL) - a phenomenon whereby well-
isolated quantum systems fail to thermalize due to the
localization of excitations by strong disorder [1–11]. In
MBL systems, disorder can protect quantum coherence
against such thermal degradation by localizing the of-
fending excitations. In this fashion certain coherent
quantum phenomena including symmetry breaking and
topological order may survive in MBL systems at non-
zero energy density (the appropriate analog of finite tem-
perature in non-thermal systems) [12–17].

This naturally raises the question of whether topolog-
ical edge states can be protected by localization of the
bulk states. Here, we face a new complication not present
in previous examples of localization protected quantum
order: topological bands in fermionic systems cannot be
completely localized by disorder. Rather, the non-trivial
band-topology guarantees the existence of an extended
single-particle (SP) bulk orbital at some critical SP en-
ergy Ec[19] (or more generally a discrete set of such ex-
tended orbitals). SP orbitals with energy E near Ec ex-
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a) b)

FIG. 1. Schematic dependence of SP localization length ⇠
on single-particle energy E for a fully-localized system (a),
marginally localized system (b), and extended system with a
mobility edge (c).

hibit diverging SP localization length [18]:

⇠(E) ⇠ 1

|E � Ec|⌫
(1)

where ⌫ is an exponent whose value depends on the
particular system under consideration (see Fig.1). We
dub such systems “marginally localized.” Examples in-
clude: disordered integer quantum Hall systems [20 and
22] and chiral superconductors, intrinsically topological
superconductors [23], and symmetry protected topolog-
ical phases (e.g. topological insulators) with symmetry-
preserving disorder [24]. Here, the diverging localization
length accompanies each change in the topological edge-
state structure (e.g. the Chern-number changing quan-
tum Hall plateau to plateau transitions). The presence of
at least one extended state is guaranteed by the topologi-
cal obstruction to constructing localized Wannier orbitals
in a topological band [20 and 24]. In the vicinity of the
critical energy, the SP localization length diverges as in
Eq. 1. A diverging SP localization length can occur in
non-topological contexts, such as 1D XX spin chains with
random bond disorder (or equivalently, non-interacting
fermion chains with random hopping). Such marginally
localized systems have properties intermediate between
localized and extended systems, as we shall discuss in
Sec.II.
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Prototypical MBL system
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

least 50 eigenpairs with energy densities closest to the
targets ✏ = {0.05, 0.1, . . . 0.95}. Note that this is a much
more demanding computational task than for the Ander-
son problem, as the number of o↵-diagonal elements of H
scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [51] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse

is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase
(at h = 1) around the GOE mean value of 2 with a vari-
ance decreasing with L provides strong evidence that the
statistical behavior of the eigenstates is well described
by GOE, extending its applicability beyond simple level
statistics. In the MBL regime (h = 4.8), the behavior is
completely di↵erent as variance and mean both increase
with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [58], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [32], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [57]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.



Model and symmetries
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Why should you care?

MULTIFRACTALORTHOGONALITYCATASTROPHEIN...PHYSICALREVIEWB92,054203(2015)

Assumingstrongdisorder,thisbondistypicallymuchlarger
thanitsneighborsJi≫Ji−1,Ji+1,sotoleadingorderwe
candiagonalizethisstrongbondandformasingletbetween
thespinsSiandSi+1,andthendealwiththerestofthe
chainperturbatively.Virtualfluctuationsinduceaneffective
HeisenbergcouplingbetweenthespinsSi−1andSi+2given
by[13,46]

Jeff=
Ji−1Ji+1

2Ji

,(5)

withJeff≪Ji−1,Ji,Ji+1atstrongdisorder.Repeatingthis
processproducessingletsatincreasinglylong-lengthscales,
anditerativelyconstructsthegroundstateintermsof“random
singlets.”Althoughwedonotexpectthisproceduretobe
accurateinitiallyforfinitedisorder,wewillseeinthe
followingthattheeffectivedisorderstrengthgrowsunder
renormalization,sothatthemethodissaidtobeasymptotically
exact,i.e.,isbelievedtogiveexactresultsforuniversal
quantities.

Let!=maxi{Ji}bethelargestcouplingintheHamilto-
nian,andletusparametrizethecouplingsasβi=ln

!
Ji.We

alsodefineaRGflowparameter#=ln
!0
!where!0isthe

initialvalueof!.Usingthedecimationrule(5)andignoring
afactorln2(irrelevantatstrongdisorder),onefindstheflow
equationforthedistributionofthecouplingsβi:

∂P#(β)
∂#

=
∂P#(β)

∂β
+P#(0)P#⋆P#(β),(6)

whereP#⋆P#(β)=
∫

dβ1dβ2P#(β1)P#(β2)δ(β−β1−β2)
denotestheconvolution.Thisequationhasaremarkably
simplesolution[14]thatisessentiallyanattractortoallinitial
distributions

P#(β)=
1
#

e−β/#
.(7)

Mostfeaturesofrandom-singletcriticalpointsfollowdirectly
fromthisfixed-pointdistribution,inparticularthescaling(2)
betweendistanceandenergy,whichcanberecastas

√
ℓ∼#

whereℓisthesizeofthesingletscreatedatenergyscale#.It
isalsopossibletoarguethateventhoughthetypicalvalueof
thespin-spincorrelationfunction⟨S⃗0·S⃗r⟩decaysase−c

√
r
,its

averagedecaysmuchmoreslowlyas1/r2asitisdominated
byrareeventswherethetwospinsbelongtothesamesinglet.
Itisalsoclearfromthisdistributionthattheeffectivedisorder
strengthis#,andisthereforeincreasingatlowenergy.

C.RSRG,entanglemententropy,andground-stateoverlap

Therandom-singletstructureofthegroundstatecanalso
beusedtoinferthescalingofmoreinvolvedquantities
ofinterestsuchasentanglemententropyoroverlaps.For
example,consideringasystemoflengthL=2NwithN

evenandopenboundaryconditions,thebipartiteentanglement
entropybetweentherightandleftpartsofthesystem(each
ofsizeN)isgivenbyS=neln2whereneisthenumber
ofsingletscrossingtheentanglementcutintheground-state
wavefunction|(A⟩.UsingRSRG,thedisorderaverageofthis
quantitywasshown[44]toscaleasne∼1

6lnL(hereandin
thefollowing,OdenotesthedisorderaverageofO),leading
tothecritical-likescalingS∼ln2

6lnL.Theground-state

FIG.1.(Coloronline)Left:exampleofrandom-singletconfigu-
rationsonL=100siteswith(|(B⟩,top)andwithout(|(A⟩,bottom)
acutinthemiddleofthesystem(dashedverticalline),forthe
samedisorderconfiguration.Onlytheredsingletsareaffectedby
thecut.Right:theoverlapG=⟨(B|(A⟩iscomputedbycounting
thenumberofloopsformedbygluingtheseconfigurationstogether.
Inthisexample,wefindG=(

1
2)

4
consistentwithne=4singlets

crossingthecutin|(A⟩andn=6singletsmodifiedbythecut
[seeEq.(8)].

overlapG=⟨(A|(B⟩canalsobeevaluatedusingtheRSRG
procedure:foragivendistributionofdisorder,theground
states|(A⟩and|(B⟩withoutandwithacutinthemiddleof
thesystemaregivenintermsofacollectionofsinglets(seeleft
panelofFig.1).TheoverlapthenreadsasG=(1

2)
Nloops−N/2

,
whereNloopsisthenumberofloopsintheconfiguration
obtainedbyrepresentingsingletsbysemicirclesandbygluing
themirrorimageof|(A⟩ontopof|(B⟩(seeleftpanelof
Fig.1).Thisquantityseemsobviouslymorecomplicatedthan
thenumberofsingletsnecrossingthecutcharacterizingthe
entanglemententropy,butwewillshowthatitisnevertheless
possibletounderstanditsscalinganalyticallyinmanycases.

Weremarkthateventhoughweconsideropenboundary
conditionsandasinglecutinthemiddleofthesystem,the
resultsfollowingcanbestraightforwardlygeneralizedtoa
systemwithperiodicboundaryconditionsfor(A,cutinto
twohalvesfor(B:alltheexponentsderivedinthefollowing
shouldthenbemultipliedby2asthis“periodic”setupnow
involvestwocutsinsteadofasingleone.

III.TYPICALDECAYOFTHEGROUND-STATEOVERLAP

Wefirstarguethatthetypicalvalueoftheoverlapdefined
asGtyp≡elnG

decayswithsystemsizeasapowerlawGtyp∼
L−αtypwithαtyp=ln2

4.Ourstartingpointwillbetoexpressthe
overlapintermsofsimplerobservableswhosestatisticscan
beunderstoodusingtherandom-singletfixedpoint.Wefirst
notethatiftheentanglemententropyof|(a⟩is0,thatis,ifthe
numberofsingletscrossingtheboundaryne=0,thenG=
⟨(B|(A⟩=1.Ingeneral,however,Gisnotsimplyrelated
tone,althoughitiseasytoshowthatG!(1

2)
ne/2

,wherewe
recallthatneiseven.Thisisconsistentwiththeintuitionthat
thewave-functionoverlapGmeasureshowdifferentthewave
functionsarewithandwithoutacut,andhasthereforeno
reasontobedirectlyrelatedtoentanglementingeneral.For
therandom-singletconfigurationsthataregeneratedbythe

054203-3

•Groundstate not fully localized:  
“random-singlet” (quantum critical) 

• Interactions irrelevant in the groundstate 
what about highly excited-states? 

•Non-interacting case             has a diverging SP localization  
length + massive degeneracies of excited states 

• Particle-hole symmetric MBL???
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1. Strong disorder RG and spontaneous PHS breaking 

2. Numerics  

3. Instability of certain types of excited-state SPT order
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• Asymptotically exact  

• Interactions irrelevant near  

• Quantum critical: S ~ log L, algebraic correlations… 

�i = 0

T=0: Refael & Moore, ‘04



T=0 :  target g.s. by always picking lowest-energy outcome 

GS

“walking down the RG tree”

RSRG

Ma-Dasgupta-Hu ‘79, Bhatt & Lee ‘79, Fisher ’92, ’94

  
project strong bond onto groundstate manifold  



RSRG-X

Pekker et al ’13 (Ising, MC Sampling)

Related Dynamical RG: Vosk & Altman ’13 

project strong bond onto groundstate manifold  

iteratively resolves smaller and smaller energy gaps  

excited
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FIG. 1. a Schematic representation of a typical eigenstate in the paramagnetic (local-field-dominated) phase: the local spins
are largely aligned or anti-aligned with the local fields; rare clusters can still be present. b Hilbert-glass (cluster-dominated)
eigenstate: local spins form magnetic clusters, that often contain domain walls; rare isolated spins can still be present. c
Schematic phase diagram of the Hilbert-glass transition (HGT) in the tuning parameter–temperature plane. The diagram
shows the HGT line separating the paramagnetic (local-field-dominated) and the Hilbert-glass (cluster-dominated) phases
terminating in a zero-temperature quantum critical point (QCP). The behavior of equilibrium thermodynamic observables
at finite temperatures is governed by the QCP in the region of critical fluctuations [38]. While equilibrium thermodynamic
observables have no singularities in the phase diagram, with the exception of the zero temperature QCP, dynamical observables
show singular behavior along the HGT line.

the acronym RSRG-X. The RSRG-X allows us to inves-
tigate the dynamics of an arbitrary-temperature ther-
mal state of strongly disordered systems containing thou-
sands of sites, i.e., accessing systems two orders of mag-
nitude larger than what exact diagonalization can access.

Unlike the many-body localization transition, the tran-
sition we describe occurs between two localized phases,
which therefore cannot thermalize on their own [29–31].
Nonetheless there are physical settings in which it is
meaningful to discuss thermal response functions and
temperature tuned transitions in these systems. First,
one can imagine preparing the system in equilibrium by
connecting it to an external bath, which is adiabatically
disconnected before the start of the response measure-
ment. Alternatively, the system could be weakly coupled
to a thermal bath at all times. In the second case there is
a time scale, set by the bath coupling strength, beyond
which the bath dominates the dynamics. The strong-
disorder fixed point that we describe would provide a
faithful description of the dynamical behavior on shorter
time scales.

The model we investigate with the RSRG-X is the gen-
eralized quantum Ising model

H
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Without the last J 0 term Eq. (1) represents the usual
transverse field Ising model (TFIM), which was the first
arena in which real-space renormalization group was used
to elucidate the novel universal properties of phase tran-
sition dominated by strong disorder [24, 26]. In partic-

ular, the RSRG analysis yields the infinite randomness
energy-length scaling log(1/E) ⇠ `1/2, in contrast to the
E ⇠ `�z scaling in conventional critical systems.

The TFIM makes a natural starting point for inves-
tigating dynamical critical points in strongly disordered
systems. The TFIM, Eq. (1), however, can be mapped
to a free fermion theory, making its dynamics funda-
mentally equivalent to that of a certain class of single
particle Anderson localization (with particle-hole sym-
metry). We avoid this problem by adding the J 0 interac-
tion term, which preserves the Z

2

symmetry, while mak-
ing the model intrinsically interacting. It has been shown
that the dynamics in the many-body localized phase, i.e.
in presence of interactions, can be di↵erent than in the
non-interacting case [19–21, 28, 32].

The paper is organized as follows. In Sec. II we de-
velop the RSRG-X procedure and consider the flows it
produces. The flows reveal the evolution of the many-
body eigenstate structure as temperature is varied, which
allows us to identify the dynamical phase transition
and construct the phase diagram. We find that the
temperature-tuned transition is controlled by an infinite-
randomness critical point, with the same scaling prop-
erties as the zero temperature quantum phase transi-
tion [24]. In Sec. III and IV we examine two dynamical
observables: the low frequency spin autocorrelation func-
tion (and an associated Edwards-Anderson type order
parameter) and the frequency dependent thermal con-
ductivity. Using the RSRG-X, we find that in the vicinity
of the critical temperature both observables show scaling
behavior consistent with the infinite randomness critical
point. The scaling behavior becomes non-analytic in the

2
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ment. Alternatively, the system could be weakly coupled
to a thermal bath at all times. In the second case there is
a time scale, set by the bath coupling strength, beyond
which the bath dominates the dynamics. The strong-
disorder fixed point that we describe would provide a
faithful description of the dynamical behavior on shorter
time scales.

The model we investigate with the RSRG-X is the gen-
eralized quantum Ising model
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Without the last J 0 term Eq. (1) represents the usual
transverse field Ising model (TFIM), which was the first
arena in which real-space renormalization group was used
to elucidate the novel universal properties of phase tran-
sition dominated by strong disorder [24, 26]. In partic-

ular, the RSRG analysis yields the infinite randomness
energy-length scaling log(1/E) ⇠ `1/2, in contrast to the
E ⇠ `�z scaling in conventional critical systems.

The TFIM makes a natural starting point for inves-
tigating dynamical critical points in strongly disordered
systems. The TFIM, Eq. (1), however, can be mapped
to a free fermion theory, making its dynamics funda-
mentally equivalent to that of a certain class of single
particle Anderson localization (with particle-hole sym-
metry). We avoid this problem by adding the J 0 interac-
tion term, which preserves the Z

2

symmetry, while mak-
ing the model intrinsically interacting. It has been shown
that the dynamics in the many-body localized phase, i.e.
in presence of interactions, can be di↵erent than in the
non-interacting case [19–21, 28, 32].

The paper is organized as follows. In Sec. II we de-
velop the RSRG-X procedure and consider the flows it
produces. The flows reveal the evolution of the many-
body eigenstate structure as temperature is varied, which
allows us to identify the dynamical phase transition
and construct the phase diagram. We find that the
temperature-tuned transition is controlled by an infinite-
randomness critical point, with the same scaling prop-
erties as the zero temperature quantum phase transi-
tion [24]. In Sec. III and IV we examine two dynamical
observables: the low frequency spin autocorrelation func-
tion (and an associated Edwards-Anderson type order
parameter) and the frequency dependent thermal con-
ductivity. Using the RSRG-X, we find that in the vicinity
of the critical temperature both observables show scaling
behavior consistent with the infinite randomness critical
point. The scaling behavior becomes non-analytic in the
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Is that what happens for random-bond XXZ? 

“random-singlet” physics in excited states? 

 Vosk & Altman ’13: YES (BUT special initial state) 
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RG results I – Entropy growth
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Numerics 

Could higher-order terms flip the superspins? Quantum criticality? 
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flipping the e↵ective spin Se↵ and more importantly Ising
couplings Sz

R,L

Sz

e↵ generated at first-order in perturba-
tion theory. To leading order, the e↵ective Hamiltonian
takes the form of a simple Ising coupling that will dom-
inate the physics until the much weaker second order
flip-flop terms involving S

L

, S
R

and the superspin Sz

e↵

are decimated. Although it is hard to keep track of
all the multi-spin terms emerging after many RSRG-X
iterations, the trend is already clear. Namely, super-
spins made of n > 2 aligned UV spins will be eventu-
ally generated in the course of the RG. Because of spin
conservation, it is increasingly harder to flip these large
superspins as this will involve higher-order processes in
perturbation theory involving many super-spin clusters.
This strongly suggests a physical picture of the excited
states in terms of almost frozen superspins with strong
Ising interactions, very weakly coupled by flip-flop terms
generated at higher order in perturbation theory. The
eigenstates would then consist of (super)spins showing a
random pattern of frozen magnetization — breaking the
Ising symmetry — varying from eigenstate to eigenstate.

Such spontaneous breaking of particle-hole symme-
try by interactions generates a random chemical po-
tential term

P
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µ
i

Sz

i

(e.g. in a mean field treatment
µ

i

=
P

j=i�1,i+1 J
j

�
j

hSz

j

i), which localizes the ex-
tended single-particle modes near zero energy and cuts
o↵ the quantum critical spin fluctuations at length scales
longer than the spin-glass correlation length. Sponta-
neous particle-hole symmetry breaking appears to be the
only route to an MBL phase in this model: in particular,
single-spin terms h

i

Sx,y,z

i

acting on the super-spins are
forbidden by symmetry.

Numerics.— Though the above argument based on
RSRG-X strongly suggests that even infinitesimally weak
interactions will destroy the quantum critical glass be-
havior of the random XX spin chain and lead to spin
glass order instead, it is hard to explicitly track all the
higher-order terms generated during the renormalization
process that could (in principle) flip the super-spins. In
order to clarify this issue, we now turn to numerical
exact diagonalization methods to study (1). We draw
the couplings J

i

2 (0, 1] from the power-law distribution
P (J) = 1

W

1
J

1�1/W and we choose �
i

to be uniformly dis-
tributed in the interval [��,�]. We also restrict to even
L and

P
i

Sz

i

= 0, and consider the even sector of the Z2

symmetry C. For each disorder realization, we first calcu-
late the extremal energies Emin and Emax and define the
normalized energy density ✏ = (E�Emin)/(Emax�Emin).
We then use the shift-invert method [26] to obtain the 50
eigenstates with energy closest to ✏ = 0.5, corresponding
to the middle of the many-body spectrum. Results are
averaged over at least 2⇥ 103 disorder realizations.

To distinguish between ergodic and non-ergodic
phases we measure the level spacing parameter r

n

=
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n

, �
n+1)/max(�

n

, �
n+1) [23] characterizing the ra-

FIG. 2. Ergodic to spin glass (MBL) transition. At
weak disorder (W = 0.5), our data are consistent with an
ergodic to spin glass (MBL) transition as � is increased. Top:
Ratio of consecutive level spacings showing a transition from
GOE to Poisson statistics. Middle: Scaling of �EA showing
a divergence with system size in the localized phase. Inset:
Extrapolations of mEA with L�1 finite-size corrections (see
text) are consistent with spin glass order in the MBL phase.
Bottom: Finite-size scaling of the entanglement entropy.

tio between consecutive level spacings �
n

= E
n

� E
n�1

averaged over energy levels n. Its disorder-averaged value
changes from that characteristic of random matrices in
the Gaussian orthogonal ensemble, rGOE ' 0.5307 [35]
in the ergodic phase, to rPoisson = 2 ln 2�1 ' 0.3863 (re-
flecting absence of level repulsion) in the MBL regime.
We also compute the bipartite entanglement entropy
S

n

= �tr⇢
n

ln ⇢
n

, where ⇢
n

the reduced density matrix
in the nth eigenstate after tracing over half of the sys-
tem. The entanglement scales as S

n

⇠ 1, logL, and L
for MBL, QCG, and thermalizing systems respectively.
To characterize the spin glass order, we introduce an
Edwards-Anderson-like order parameter,

mEA =
1
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X
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�z
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��n
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, (4)

which tends to a constant (zero) in the thermodynamic
limit for a spin-glass ordered (disordered) phase. (We
also consider the auxiliary quantity �EA ⌘ LmEA [21],
which can in principle distinguish short-range spin glass
order from certain types of quasi-long range order.)
The results are summarized in the phase diagram of

Fig. 1 [32]. For weak disorder (0  W . 1.5), and
� < �

c

(W ), we find GOE level statistics, extensive
entanglement, and vanishing spin glass order signaling

Kjall, Bardarson & Pollmann ‘14
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Strong disorder: spin glass

Many-body localized phase… but could be critical?

W=2.0
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tion theory. To leading order, the e↵ective Hamiltonian
takes the form of a simple Ising coupling that will dom-
inate the physics until the much weaker second order
flip-flop terms involving S
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are decimated. Although it is hard to keep track of
all the multi-spin terms emerging after many RSRG-X
iterations, the trend is already clear. Namely, super-
spins made of n > 2 aligned UV spins will be eventu-
ally generated in the course of the RG. Because of spin
conservation, it is increasingly harder to flip these large
superspins as this will involve higher-order processes in
perturbation theory involving many super-spin clusters.
This strongly suggests a physical picture of the excited
states in terms of almost frozen superspins with strong
Ising interactions, very weakly coupled by flip-flop terms
generated at higher order in perturbation theory. The
eigenstates would then consist of (super)spins showing a
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only route to an MBL phase in this model: in particular,
single-spin terms h
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acting on the super-spins are
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Numerics.— Though the above argument based on
RSRG-X strongly suggests that even infinitesimally weak
interactions will destroy the quantum critical glass be-
havior of the random XX spin chain and lead to spin
glass order instead, it is hard to explicitly track all the
higher-order terms generated during the renormalization
process that could (in principle) flip the super-spins. In
order to clarify this issue, we now turn to numerical
exact diagonalization methods to study (1). We draw
the couplings J
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symmetry C. For each disorder realization, we first calcu-
late the extremal energies Emin and Emax and define the
normalized energy density ✏ = (E�Emin)/(Emax�Emin).
We then use the shift-invert method [26] to obtain the 50
eigenstates with energy closest to ✏ = 0.5, corresponding
to the middle of the many-body spectrum. Results are
averaged over at least 2⇥ 103 disorder realizations.

To distinguish between ergodic and non-ergodic
phases we measure the level spacing parameter r
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FIG. 2. Ergodic to spin glass (MBL) transition. At
weak disorder (W = 0.5), our data are consistent with an
ergodic to spin glass (MBL) transition as � is increased. Top:
Ratio of consecutive level spacings showing a transition from
GOE to Poisson statistics. Middle: Scaling of �EA showing
a divergence with system size in the localized phase. Inset:
Extrapolations of mEA with L�1 finite-size corrections (see
text) are consistent with spin glass order in the MBL phase.
Bottom: Finite-size scaling of the entanglement entropy.
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averaged over energy levels n. Its disorder-averaged value
changes from that characteristic of random matrices in
the Gaussian orthogonal ensemble, rGOE ' 0.5307 [35]
in the ergodic phase, to rPoisson = 2 ln 2�1 ' 0.3863 (re-
flecting absence of level repulsion) in the MBL regime.
We also compute the bipartite entanglement entropy
S
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ln ⇢
n

, where ⇢
n

the reduced density matrix
in the nth eigenstate after tracing over half of the sys-
tem. The entanglement scales as S
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⇠ 1, logL, and L
for MBL, QCG, and thermalizing systems respectively.
To characterize the spin glass order, we introduce an
Edwards-Anderson-like order parameter,

mEA =
1

L2

X

n

X

i 6=j

⌦
n
���z

i

�z

j

��n
↵2

, (4)

which tends to a constant (zero) in the thermodynamic
limit for a spin-glass ordered (disordered) phase. (We
also consider the auxiliary quantity �EA ⌘ LmEA [21],
which can in principle distinguish short-range spin glass
order from certain types of quasi-long range order.)
The results are summarized in the phase diagram of

Fig. 1 [32]. For weak disorder (0  W . 1.5), and
� < �

c

(W ), we find GOE level statistics, extensive
entanglement, and vanishing spin glass order signaling



Strong disorder: spin glass

Data consistent  
with

�EA ⇠ L

⇣
lim

L!1
mEA 6= 0

⌘

�EA = LmEA

W=2.0

3

flipping the e↵ective spin Se↵ and more importantly Ising
couplings Sz

R,L

Sz

e↵ generated at first-order in perturba-
tion theory. To leading order, the e↵ective Hamiltonian
takes the form of a simple Ising coupling that will dom-
inate the physics until the much weaker second order
flip-flop terms involving S

L

, S
R

and the superspin Sz

e↵

are decimated. Although it is hard to keep track of
all the multi-spin terms emerging after many RSRG-X
iterations, the trend is already clear. Namely, super-
spins made of n > 2 aligned UV spins will be eventu-
ally generated in the course of the RG. Because of spin
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only route to an MBL phase in this model: in particular,
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Numerics.— Though the above argument based on
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interactions will destroy the quantum critical glass be-
havior of the random XX spin chain and lead to spin
glass order instead, it is hard to explicitly track all the
higher-order terms generated during the renormalization
process that could (in principle) flip the super-spins. In
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exact diagonalization methods to study (1). We draw
the couplings J

i

2 (0, 1] from the power-law distribution
P (J) = 1

W

1
J

1�1/W and we choose �
i

to be uniformly dis-
tributed in the interval [��,�]. We also restrict to even
L and

P
i

Sz

i

= 0, and consider the even sector of the Z2

symmetry C. For each disorder realization, we first calcu-
late the extremal energies Emin and Emax and define the
normalized energy density ✏ = (E�Emin)/(Emax�Emin).
We then use the shift-invert method [26] to obtain the 50
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Bottom: Finite-size scaling of the entanglement entropy.
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averaged over energy levels n. Its disorder-averaged value
changes from that characteristic of random matrices in
the Gaussian orthogonal ensemble, rGOE ' 0.5307 [35]
in the ergodic phase, to rPoisson = 2 ln 2�1 ' 0.3863 (re-
flecting absence of level repulsion) in the MBL regime.
We also compute the bipartite entanglement entropy
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, where ⇢
n

the reduced density matrix
in the nth eigenstate after tracing over half of the sys-
tem. The entanglement scales as S
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which tends to a constant (zero) in the thermodynamic
limit for a spin-glass ordered (disordered) phase. (We
also consider the auxiliary quantity �EA ⌘ LmEA [21],
which can in principle distinguish short-range spin glass
order from certain types of quasi-long range order.)
The results are summarized in the phase diagram of

Fig. 1 [32]. For weak disorder (0  W . 1.5), and
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(W ), we find GOE level statistics, extensive
entanglement, and vanishing spin glass order signaling



Pairing of eigenstates

2

FIG. 2: Ergodic to spin glass (MBL) transition as a function of W at fixed � = 2.0.

FIG. 3: Spin glass phase at strong disorder (W = 2.0). Without restricting to a given Ising sector, the
r ratio is decreasing with system size (left), well below the Poisson value, signaling pairing of the excited
eigenstates. The spin glass parameter �EA = LmEA (middle) and the bipartite entanglement entropy (right)
are also consistent with a many-body localized spin glass phase for all values of �.

PAIRING OF EXCITED STATES IN THE SPIN GLASS PHASE

In the spin glass (MBL) phase, the eigenstates for large systems are cat states |ni± = (|ni ±
C |ni)/p2 that are even/odd under the Z

2

symmetry generated by C =
Q

i

�x

i

, where |ni is some
eigenstate-dependent pattern of �z magnetization (with some background of random-singlet spins).
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Do not restrict to given “Ising” sector: 

|n i± =
|n i± C |n ip
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e�L/⇠ � ⇠ e�(ln 2)LVS

Strong disorder: pairing, r ratio

Again consistent with spontaneously broken PHS

Huse, Nandkishore, Oganesyan, Pal & Sondhi ’13
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Consequence for SPT order

Topological fermionic  
zero mode

c†0

Ji =
J

2
(1� �(�1)i)

c†L

T=0 Dimerized XXZ chain:

Protected by symmetry 

U(1)⇥ ZS
2

CLASS AIII
Chiral sublattice symmetry:

Z �! Z4 classification
interactions

Fidkowski & Kitaev ’10 
Turner, Pollmann & Berg ‘11  

S = CK
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Su-Schrieffer-Heeger 



Instability of excited-state SPT order

MBL can protect SPT order at finite energy density!
Chandran, Khemani, Laumann & Sondhi ’14 

Bahri, Vosk, Altman & Vishwanath ’15, …



Instability of excited-state SPT order

MBL can protect SPT order at finite energy density!
Chandran, Khemani, Laumann & Sondhi ’14 

Bahri, Vosk, Altman & Vishwanath ’15, …

BUT

c†0 c†L

XXZ-type effective interactions

|"#i � |#"i|"#i+ |#"i|""i |##i |""i |##i |""i |##i

U(1)⇥ ZS
2

NO SPT Order!

Spontaneously broken Previous constraints on MBL+SPT: Slagle, Bi, You & Xu ‘15 
                                                      Potter & Vishwanath ’15



Conclusion

RV, A.C. Potter and S.A. Parameswaran, PRL 2015, arXiv:1410.6165 

RV, A.J. Friedman, S.A. Parameswaran & A.C. Potter, arXiv:1510.04282

• Quantum critical glasses: quantum-critical excited eigenstates 

• Genuine MBL phase with broken PHS in random-bond XXZ chain 

• Instability of certain types of excited state SPT order 

• Future directions/In progress: 

1.What about PHS systems in d=2? 
2.General rules for MBL + quantum order? 
3.General proof of absence of PHS + MBL? 
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FIG. 2: Crossover between volume- and area-law scaling of the entanglement entropy as a function of � for
W = 0.5.

FIG. 3: Ergodic to spin glass (MBL) transition as a function of W at fixed � = 2.0.

FIG. 4: Strong disorder regime (W = 2.0) with uniform anisotropy �i = �. Away from the pathological
SU(2)-symmetric point � = 1, the results are qualitatively similar to the random �i case, consistent with
a many-body localized phase with spontaneously broken particle-hole symmetry at all values of � 6= 1.
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FIG. 4: Strong disorder regime (W = 2.0) with uniform anisotropy �i = �. Away from the pathological
SU(2)-symmetric point � = 1, the results are qualitatively similar to the random �i case, consistent with
a many-body localized phase with spontaneously broken particle-hole symmetry at all values of � 6= 1.

Qualitatively similar except at SU(2) 
symmetric point

(there expect thermalization)
RV, Potter, Parameswaran ’14


