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Premise: Granular materials respond to strains by 

forming networks—these reflect a memory of the initial 

state plus strain protocol 

• Background 

– Shearing—can rewrite memory, but also reproduce previous 

states 

– Particles: elastic (soft) and frictional 

– Force networks and protocols 

– Experimental techniques 

– Shear jamming phase diagram 

• Cyclic shear systematically rewrites memory—activation 

by shear amplitude 

• What are the microscopic processes that cause shear 

jamming, and also rewrite the networks 



Context 

Shear stress τ vs. packing fraction φ 

Frictional spheres; static states 

Yield stress curve 



Shear strain applied to granular materials can jam an 

initially stress-free state. Continued shear drives the 

system to the yield stress curve 

• The macroscopic state diagram includes fragile, shear 

jammed and dynamic states at the YSC 

• The initial processes leading to shear jamming generate 

anisotropic networks, called force chains. How should one 

characterize/distinguish networks? 

• At a yet smaller scale, what processes enable the 

formation of force chains under shear? 

• Do these processes lead to memory? If so, how? 

 



Granular Material:Dense Phases, 

particularly sheared, frictional 

 

 
Forces are carried preferentially  

 on force chains (Networks) 

multiscale 

 phenomena—grains to system 

 Deformation leads to large  

 spatio-temporal fluctuations 

Granular materials jam 

 —fluid  solid transition 

(Howell, P&G1997, PRL 1999) 
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Force networks are an essential part of dense granular physics 



Particle properties for this discussion 

• Particles interact when they are in contact—no contact no 

force 

• Particles interact by elastic normal forces and tangential 

frictional forces 

• Normal force, Fn depends on the distance δ by which two 

particles have been pushed together (overlap)—Fn ~ δα… 

     α = 1, 3/2 for Hookean and Hertzian contacts resp. 

• Grains typically have friction, coefficient μ…friction 

forces do not depend on inter-grain positions -> no 

potential energy—large particle size -> athermal 



Relation of force networks to protocols—e.g. 

compression or shear 

Isotropic Compression 

Pure Shear 

T. Majmudar and BB, Nature 2005 



Measuring contact forces by photoelasticity—2D 

quantiative experiments from smallest scales 



Fun with photoelasticity* 

*Joshua Dijksman 



 
Experimental advances allow grain-scale force 

measurements--I 
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Experimental Advances allow grain-scale contact force 

measurements--II 

 

 

 

 

 

• Contact forces determine exact photoelastic 

pattern: 

• Contact forces  stresses within disk (linear 

elasticity) 

• Planar stresses give pattern:    

       I = Iosin2[(σ2- σ1)CT/λ] 

 

T. Majmudar and BB 

Nature, 2005 



Technique for finding 2D contact forces 

• Process images to obtain particle centers and 

contacts 

• Exact solution for stresses (biharmonic equation) 

has contact forces as parameters 

• Make a nonlinear fit to photoelastic pattern using 

contact forces as fit parameters 

• I = Iosin2[(σ2- σ1)CT/λ] 

• In the previous step, invoke force and torque 

balance to reduce unknown contact forces 

• Newton’s 3d law provides error checking 



Key new approach: obtain grain contact forces 

Experiment--raw 

Reconstruction 

From force 

inverse algorithm 
Experiment 

Color filtered 



Obtaining stresses and fabric from experimental data 

Fabric  

Stress  

These quantities can be coarse-grained to produce continuum fields  

Now possible to obtain direct experimental 

characterizations at grain scale 



Stresses, fabric, force moment tensor—2D 

evaluate across scales: particles, networks, system 

Fabric tensor 

Rij = Sk,c n
c
ik n

c
jk 

Z = trace[R] 

Stress tensor, force moment tensor 

       stress:  sij = (1/A) Sk,c r
c
ik f

c
jk 

 

   Force moment Sij =  Sk,c r
c
ik f

c
jk = A sij  

 
A is particle/system area 

Pressure, P and shear stress   

P = Tr (s)/2  (σ2 + σ1)/2 

 

:τ   (σ2 - σ1)/2 

 



Displacements and rotations of grains 



Track Particle: Forces/Displacements/Rotations 

Following a small  

strain step we track  

particle 

displacements 

Majmudar and BB Nature, 2005; Majmudar et al. PRL 2007; Zhang et al. 

Gran.Matt2010; Bi, Zhang, Chacraborty, BB, Nature 2011, Ren et al. PRL 2013, 

Zheng et al. EPL 2014; Clark et al. PRL 2015; Cox et al. EPL 2016, Barés et al. PRE 

2017, Wang et al. 2018 

Under UV light bars 

Allow rotational 

tracking 

 μ = 0.15 

  

 

 μ = 0.65 

 

 

 μ >> 1 

 

 



Context: Jamming and Fragility—

sheared granular materials 

Cates et al. PRL 1998 

After Liu and Nagel, Nature, 

1998, O’Hern et al. PRE 2003 

Fragile states: ability to resist strain: 

Strong in one direction but weak in reverse 



Investigate the response to shear—creation of stable 

anisotropic states 

• Example 1: pure shear 

 

 

• Example 2: simple shear 

 

 

• Example 3: Couette shear  

Series of experiments to map out phase diagram  



Time-lapse video (one shear cycle) shows force network 

evolution—Frictional Shear Jamming—  

Bi, Zhang, Chakraborty, RPB, Nature, 2011 



 Initial state, isotropic, 

no stress   

Final state  

large stresses 

jammed 

Initial and final states  

following a shear cycle— 

no change in area— 

Density cannot distinguish 

--but networks can 

Works between φS < φ < φJ 



Some special properties of shear jammed states—start with  

Directional Percolation, Fragile and Shear-Jammed States (Bi et al. Nature, 

2011) 

See Otsuki and Hayakawa, Phys. Rev. E 83, 051301 (2011) 

 fNR = nonrattler fraction 



Jamming diagram for frictional grains 

Bi et al. Nature 2011 



Other features of shear jamming 

Stresses vs. non-rattler fraction fNR 
Good collapse of ‘classical measures’ 

fNR = fraction of non-rattlers—a rattler 

 has too few contacts to be mechanically stable 



Ditto for contact network properties, e.g. Z 

fNR = fraction of non-rattler particles 

 non-rattlers need at least 2 contact 

Z is average number of contacts per particle  



Range of densities for which shear jamming can be 

achieved 

Random loose 

Random dense 

Minimum strain to shear jam 



Shear band forms: result of driving soft system from wall, base friction 

density 

Contour plots of coarse-grained local density and strain components, 

                                     at a strain of γ=9.3%}  

εyy 

εxx 

Jie Zhang, 

I.Goldhirsch 

BB, Supp.Prog. 

Theor.Phys2010 



2nd apparatus: uniform simple shear throughout system 

Joshua Dijksman, Jie Ren, Dong Wang 

     BB, PRL 2013 



This new experimental approach supplies uniform 

shear—max strain ~ γ = 0.5 



Shear-Jamming—clean experiment, constant φ—states well 

characterized 



Networks are key to shear jamming 
Increasing shear strain—first unidirectional, then all-

directional percolation of strong force network (e.g. Cates et al. 

PRL 1998) 

Same idea for pure and simple shear 

Fragile 

Shear 

Jammed 

Evolves 

towards 

more 

isotropic 

Unjammed 

not 

fragile 



Changing friction: higher (lower) μ gives lower (higher) φS 

Jonathan Barés, Dong Wang 

 μ >> 1 

Make gear particles 

 with very high μ 

Wrap particles with Teflon for low μ 



Effect of friction (Dong Wang, Jie Ren, Jonathan Barés, 

BB) 

 μ = 0.65 

 μ >> 1 

 μ = 0.15 

Increasing strain, γ  



Does a GM have memory under cyclic shear? 

Use simple shear experiment, no shear bands 

(Joshua Dijksman, Jie Ren, Dong Wang 

     RPB, Phys. Rev. Lett. 2013) 

Dense materials—compare to Corté et al. Nat. Phys. (2008) 

  Fiocco et al. PRL (2014); Royer and Chaikin, PNAS (2015) 



Memory forms and evolves under cyclic shear 

Example below is  

 asymmetric shear 

Also: symmetric cyclic  

 shear 

Granular analogue of dense 

 suspension experiment 



Apply symmetric cyclic shear—rapid relaxation to 

limit cycle 



Apply asymmetric cyclic shear: note slow relaxation 

ΔP = Pmax - Pmin 

Pmax 

Pmin 

Cycle 1 

Cycle 29 



Apply asymmetric cyclic shear: note slow relaxation 

(time-lapse videos of quasistatic shear) 



Networks are at core of evolving granular systems—e.g. 

Strobed images-shear cycles: stress activated process 

Stress, position, rotation— 

All evolve over many cycles 

stresses fluctuate 

Positions are nearly frozen  



Apply asymmetric cyclic shear: note slow 

relaxation 

ΔP = Pmax - Pmin 
Pmin 

P(gmax) 

P(gmin) 

log(n) 

P (N/m) 

no 



Asymmetric shear:  

1) log-relaxation: 

2) simple φ and γ dependence 

ΔP = -ß ln(n/no) 
Colors encode density 



Universal relaxation: 

consistent with activated process in a stress ensemble 

 
β is temperature-like—a candidate for 

a granular ‘thermometer’ for shear 

ΔP = -ß ln(n/no) n/no = exp(- ΔP/β) 



What are the microscopic processes that enable shear jamming 

and memory in granular materials? 



Actual particle motions are very small, beyond affine strain 

        STZ evolution is not at play here—relaxes stress 

                       hence not conducive to jamming 

Arrows show nonaffine motion of 

each grain, multiplied by 3.5, after 

a strain of 0.2 

Affine motion of each grain, after a 

strain of 0.2, to scale 



Things that don’t happen: 1)  ‘straight’ force chains 

Force chains are not like this: Lines of particles possible but 

highly improbable 

Stable if tan(θ) < μ  Continuing force chain-

unique placement  

No way for this 



Things that don’t happen 2: 

 

Ziso =  d + 1 for frictional grains—Force chains cannot 

     stand alone  

• Things that don’t happen: 2) T1 events 

T1 events: relax stresses, geometry differs from 

            chains 



Chains bend, wiggle and intersect at branches 
 



What does happen as chains form? 

Zoom in on some local processes 

Compression direction 



Consider small-scale configurational changes 

                   -Trimers (captures bending) and branches-(chain  

                      mergers) 

A trimer consists of three (nearly) 

contacting particles, e.g. 1, 2, 3. 

 θ measures trimer bending 

 

 α measures orientation wrt compression 

direction 



Trimers (captures bending) and branches-(chain mergers) 

Branches occur naturally due to initial 

packing, instability of long force chains, and 

bending 

 α moderate: compression pushes 1, 2, and 3 

together 

 continued compression bends trimer 

 

pushes 2 to left faster than affine dilation for 

most  θ  

 

Creates new contacts, e.g. 2 and 4 



What do trimers do under shear?  

trimer in compression direction 
 Trimer bends 

Extra contact forms for middle particle 

Force goes up 

local processes—now slower 



A: crosses: relative populations of 

particles with i contacts 

B: Contact fractions for the 

strong network— 

Symbols: number of strong 

Force contacts. Colors: 

number of total contacts 

A: Red circles: system-wide 

contact number, Z.  

Need Z > 3 to be jammed—all vs. 

non-rattler fraction 

Contact numbers:  Conversion from 2-contacts to 3 or more contacts 

Z 
2 contacts 

3 contacts 

2 strong contacts 



Define O to include geometric properties of a trimer  

O for particles in strong network decreases  

with shear as trimers bend and rotate  

Trimer ‘straightness’, 

 0 to 1 

 bi = unit vector 

 bj = unit vector 

Trimer alignment with 

compression direction, 

 -1 to 1 

*Normalization: <O> = 1 for uniform 

distribution in allowed θ, and only in 

compression direction 

*Normalization 



<O> for trimers with O > 0 

Average O vs. γ for φ = 0.805 

For trimers in the network at jamming 

 <O>, Trimers in network at shear jamming 

<O> before shearing 

<O> at shear jamming 



Pressure from particles in trimers with O ≥ 0 

Dashed line:  

P from particles 

in trimers 

below O = 0 



Shear jamming, force networks, and structural evolution 
 

•Shear jamming creates strong networks at fixed volume 

•Networks reflect initial conditions and protocol 

•In the absence of shear banding, cyclic shearing writes and 

rewrites memory into force network 

•Small conformational changes enable these processes 

•Trimers, branches and contact evolution capture changes 

•Provides first steps towards systematic understand of network 

evolution in frictional granular materials 

 
 

 


