
Materials through the lens of memory 
Memory formation in matter;   KITP Santa Barbara; February 15, 2018

https://www.pinterest.com/pin/292734044509882622/

What is memory?  Stored information about past history.  

Can information left behind (by design or manipulation of materials) 
provide insight about process or material? 

Is study of residual information content useful?



There are as many forms of memory as there are ways of 
perceiving, and every one of them is worth mining for inspiration.    

Twyla Tharp -- The Creative Habit



Stone and chisel / Paper and pencil 
Photograph / Phonograph 
Computer: e.g., magnetic domains 
Associative memory in neural nets (Hopfield model) 

Kaiser effect: remembers largest strain  
Kovacs effect: remembers waiting time 
Return-point memory in magnets: Nested hysteresis curves 
Pulse duration memory 
Multiple transient memories (charge density waves; non-Brownian suspensions) 
Multiple memories in jammed solids 
Sheared viscous fluid 
Echoes:  spin; (anharmonic) phonon 
Aging, rejuvenation and memory in glasses 
Dynamical systems - remembering initial conditions 

Shape-memory alloys 
Designing in function:  memory

Many examples of memories in matter



General questions 
Basic operations of memory: imprinting, reading and erasure of information 

What constitutes a memory? 
Are there different categories of memory? 
How many memories can be stored (capacity)? 
What is entropy of a memory? 
What is plasticity?

Memory stored in path  
Marginal states 

Memory stored in static positions 
Minima in a landscape 

Principles used to store memories 
What does system need to store memories? 

(many degrees of freedom, out of equilibrium, not chaotic, no instability …) 



Memories in complex energy landscapes 
Oscillatory sheared jammed solids 

After few oscillations, system finds periodic orbit   
traversing many energy barriers, visiting many energy minima. 

Memories very easy to encode   
     break few bonds, adjust few neighbors. 

This is not only way in which this complex energy landscape can be 
manipulated to form a memory: tuning by pruning. 



Moduli:  Response to compression or shear 

           B                                                 G  
(bulk modulus)                                     (shear modulus) 
    

In crystals, G comparable to B 

 G/B  ⇒  ν (Poisson ratio) 

Does disorder matter?

Designing auxetic response in disordered materials
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Make network from jammed sphere packing

Replace sphere centers by nodes 
Replace overlap interactions with unstretched springs

Jammed                                                 Spring  
sphere packing                                          network  



How are jammed solids different from crystals? 
Bond-level response  

Crystal: 
(i)  Identical cells repeated symmetrically & interminably: 
 all bonds contribute equally to any global quantity   

  
(ii) Remove any bond  →   

resistance to shear and resistance to compression drop in tandem  



Remove an arbitrary bond, i:  measure ΔBi and ΔGi   
 (decrease in bulk & shear moduli) 

Replace bond and remove another:  measure ΔBj  and ΔGj 

Measure distributions P(ΔBi), P(ΔGi)

Crystal (1 atom/cell): δ-function

Result of removing bond

P
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B
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Remove an arbitrary bond, i:  measure ΔBi and ΔGi   
 (decrease in bulk & shear moduli) 

Replace bond and remove another:  measure ΔBj  and ΔGj 

Measure distributions P(ΔBi), P(ΔGi)

Crystal (1 atom/cell): δ-function

P
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Is this what disorder does?

Result of removing bond
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Goodrich, Hexner, Liu

New principle for disordered matter: 

    (1)  Distribution of bond-level response 
    (2)  Independence of bond’s contribution to responses 

Distributions are broad, continuous, “universal” 
Contribution to B uncorrelated with contribution to G



New principle for disordered matter: 

    (1)  Distribution of bond-level response 
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*  after pruning
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Prune bonds at random  
     (rigidity percolation) 
 ⇒ G/B ~ 𝒪(1) 
Ellenbroek, Zeravcic, van Saarloos,  
van Hecke:    Europhys. Lett. (2009).

Prune bonds to create novel, desired property

Goodrich, Hexner, Liu

Random 

ΔZ  (# above rigidity threshold)



Prune bonds to create novel, desired property

Prune bonds with maximum ΔBi: 
     B  0;    G ~ ΔZ 
            ⇒ G/B → ∞ 

Auxetic limit: ν = -1 

Goodrich, Hexner, Liu
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Max ΔBi   
3D 
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Prune bonds to create novel, desired property

Prune bonds with maximum ΔBi: 
     B  0;    G ~ ΔZ 
            ⇒ G/B → ∞ 

Auxetic limit: ν = -1 

Prune bonds with minimum ΔBi: 
     B ~ constant;  G ~ ΔZ 
            ⇒ G/B → 0 

Incompressible limit: ν = +½  

Goodrich, Hexner, Liu
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Goodrich, Hexner, Liu

Prune bonds with max ΔBi 
 ⇒ G/B → ∞ 

Prune bonds with min ΔGi 
 ⇒ G/B → ∞ 

Prune bonds with min ΔBi 
     ⇒ G/B → 0 

Prune bonds with max ΔGi 
 ⇒ G/B → 0 

Prune bonds to create novel, desired property



Make them in the lab

                     2D                                                          3D
          (laser-cut sheets)                                       (3D printer)



Make negative Poisson ratio (auxetic) material:  laser-cut sheet 

Reid, Pashine, de Pablo

Need to include bond-bending forces: 

Bond compression potential 
 E(r) = kcomp (r - r0)2 

Bond bending potential 
 E(θ) = kbend (θ - θ0)2 



Make negative Poisson ratio (auxetic) material:  laser-cut sheet 

Reid, Pashine, de Pablo

Need to include bond-bending forces: 

Bond compression potential 
 E(r) = kcomp (r - r0)2 

Bond bending potential 
 E(θ) = kbend (θ - θ0)2 



How general is this behavior? 
Control local (not just global) response

e.g., protein allostery: 
    Local deformation affects distant site

https://biology.stackexchange.com/questions/42725/difference-
between-negative-allosteric-regulation-and-non-competitive-inhibition 

Remember Tsvi Tlusty’s talk: 

“Architecture and coevolution of allosteric materials,” Yan, Ravasio, Brito, Wyart PNAS 2017 
“Physical Model of Genotype-to-Phenotype Map of Proteins,” Tlusty, Libchaber, Eckmann PRX 2017.



How general is this behavior? 
Control local (not just global) response

Like protein allostery:  Compress nodes locally  

    Distant site responds as desired  
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source nodes. (The two nodes comprising the source, and sim-
ilarly the target, are chosen so that they are not initially con-
nected by a bond; see Supporting Information for details.) We
create a specific response in our system by tuning the strain ratio
⌘= "

T

/"
S

to a desired value ⌘⇤. At each step, we calculate to
linear order the change in ⌘ in response to the removal of each
bond in the network using a computationally efficient linear alge-
bra approach (Materials and Methods). We then remove the bond
whose deletion minimizes the difference between ⌘ and ⌘⇤ and
repeat until we reach a desired tolerance.

Computational Results
We apply our tuning approach to networks with free boundaries
in both two and three dimensions (Materials and Methods). We
characterize the connectivity of our networks by the excess coor-
dination number �Z ⌘Z�Ziso. Here Z is the average number of
bonds per node and Ziso ⌘ 2d�d(d+1)/N is the minimum num-
ber of bonds needed for rigidity in a network with free boundary
conditions (9). For each trial, a pair of source nodes was chosen
randomly on the network’s surface, along with a pair of target
nodes located on the surface at the opposing pole. (Note that
we could have chosen anywhere in the network for the location
of the source and target.) In two dimensions, we chose networks
that, on average, had 190 nodes and 400 bonds before tuning,
with �Z ⇡ 0.19. In three dimensions, networks had, on average,
240 nodes, 740 bonds, and �Z ⇡ 0.18. Before pruning, the aver-
age strain ratio of the networks in two dimensions was ⌘ ⇡ 0.03
and in three dimensions was ⌘ ⇡ 0.2 for the system sizes and
�Z values we studied. The response of each network was tuned
by sequentially removing bonds until the difference between the
actual and desired strain ratios, ⌘ and ⌘⇤, respectively, was less
than 1%.

To demonstrate the ability of our approach to tune the
response, we show results for ⌘=±1. Note that ⌘> 0 (<0) corre-
sponds to a larger (smaller) separation between the target nodes
when the source nodes are pulled apart. Fig. 1 shows a typical
result for a 2D network: in Fig. 1A, the strain ratio has been tuned
to⌘=+1with just 6 (out of 407) bonds removed; Fig. 1B shows the
same network tuned to ⌘=�1 with a different set of 6 removed
bonds. The red lines in each figure indicate the bonds that were
pruned. Animations of the full nonlinear responses of these net-
works are provided in Movies S1 and S2. We note that some of the
removed bonds are the same for both ⌘=+1 and ⌘=�1.

The average strain ratio versus the number of removed bonds
is shown in Fig. 2A. Remarkably few bonds need to be removed
to achieve strain ratios of ⌘ = ±1. In two dimensions, only about
five bonds out of about 400 were removed, on average (⇠1%);

A B

Fig. 1. Network with 194 nodes, and 407 bonds at �Z = 0.19 tuned to
exhibit (A) expanding (⌘=+1) and (B) contracting (⌘=�1) responses to
within 1% of the desired response. Source nodes are shown in blue, and
target nodes are shown in black. Arrows indicate the sign and magnitude
of the extensions of the source and target. The removed bonds are shown
as red lines.

A

C

B

Fig. 2. (A) Strain ratio ⌘ versus the number of removed bonds Nr for
expanding (red) and contracting (blue) responses in both 2D (solid lines)
and 3D (dashed lines). For each response type and dimension, the strain
ratio is averaged over 1,024 tuned networks constructed from 512 initial
systems. Networks in 2D have about 190 nodes and 400 bonds, on aver-
age, with an initial excess bond coordination of �Z ⇡ 0.19, whereas those
in 3D have about 240 nodes and 740 bonds, on average, with �Z ⇡ 0.18. (B)
Failure rate of tuning systems to within 1% of a specified strain ratio magni-
tude in 2D (dashed lines) and 3D (solid lines) averaged over contracting and
expanding responses. (C) Distribution of the number of removed bonds for
three different strain ratio magnitudes: |⌘|= 0.1 (blue), |⌘|= 1.0 (green),
and |⌘|= 10.0 (red). (Inset) All three distributions collapse when scaled by
the average number of removed bonds hNri.

similarly, in three dimensions, only about 4 bonds out of about
740 were removed on average (⇠0.5%). Fig. 2B shows the frac-
tion of networks that cannot be tuned successfully to within 1%
of a given strain ratio. The failure rate is less than 2% for strain
ratios of up to |⌘|=1 in two dimensions and less than 1% in three
dimensions. Therefore, not only does our algorithm allow for pre-
cise control of the response, it also works the vast majority of
the time. The failure rate increases significantly for |⌘|� 1, but
here we are considering only the linear response of the network.
Extremely large values of ⌘ necessitate an extremely small input
strain at the source and may therefore not be physically relevant.

The failure rate is insensitive to �Z except at very small
values. In the small �Z regime, the failure rate is higher
because very few bonds can be removed without compromising
the rigidity of the system. If we increase the bond connectivity
to �Z ⇡ 1.0 for networks in two dimensions, the failure rate
remains very low, but bonds are removed in a thin region con-
necting the target and source. This narrowing of the “damage”
region is reminiscent of the results of ref. 2, in which bonds above
a threshold stress were broken, or of ref. 1, in which bonds that
contribute the most to either the bulk or shear modulus were
successively pruned. A narrow damage region is consistent with
results seen in some allosteric proteins, in which strain is local-
ized to a thin region between the source and target (10).

Fig. 2C shows the distribution of the number of bonds that
must be removed to tune a network to within 1% of a desired
strain ratio for |⌘| = 0.1, 1, and 10. These distributions are broad,
and the mean shifts upward as ⌘ increases. Fig. 2C, Inset shows
that the distributions collapse when normalized by the average
number of removed bonds hN

r

i. Note that we do not achieve the
desired strain ratio simply by tuning the entire free surface of
the network to have large strain ratios; the response of the des-
ignated target is large, whereas the strain response of other pairs
of nodes is essentially unaffected by the source strain (Fig. S1).

Rocks et al. PNAS | March 7, 2017 | vol. 114 | no. 10 | 2521
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linear order the change in ⌘ in response to the removal of each
bond in the network using a computationally efficient linear alge-
bra approach (Materials and Methods). We then remove the bond
whose deletion minimizes the difference between ⌘ and ⌘⇤ and
repeat until we reach a desired tolerance.

Computational Results
We apply our tuning approach to networks with free boundaries
in both two and three dimensions (Materials and Methods). We
characterize the connectivity of our networks by the excess coor-
dination number �Z ⌘Z�Ziso. Here Z is the average number of
bonds per node and Ziso ⌘ 2d�d(d+1)/N is the minimum num-
ber of bonds needed for rigidity in a network with free boundary
conditions (9). For each trial, a pair of source nodes was chosen
randomly on the network’s surface, along with a pair of target
nodes located on the surface at the opposing pole. (Note that
we could have chosen anywhere in the network for the location
of the source and target.) In two dimensions, we chose networks
that, on average, had 190 nodes and 400 bonds before tuning,
with �Z ⇡ 0.19. In three dimensions, networks had, on average,
240 nodes, 740 bonds, and �Z ⇡ 0.18. Before pruning, the aver-
age strain ratio of the networks in two dimensions was ⌘ ⇡ 0.03
and in three dimensions was ⌘ ⇡ 0.2 for the system sizes and
�Z values we studied. The response of each network was tuned
by sequentially removing bonds until the difference between the
actual and desired strain ratios, ⌘ and ⌘⇤, respectively, was less
than 1%.

To demonstrate the ability of our approach to tune the
response, we show results for ⌘=±1. Note that ⌘> 0 (<0) corre-
sponds to a larger (smaller) separation between the target nodes
when the source nodes are pulled apart. Fig. 1 shows a typical
result for a 2D network: in Fig. 1A, the strain ratio has been tuned
to⌘=+1with just 6 (out of 407) bonds removed; Fig. 1B shows the
same network tuned to ⌘=�1 with a different set of 6 removed
bonds. The red lines in each figure indicate the bonds that were
pruned. Animations of the full nonlinear responses of these net-
works are provided in Movies S1 and S2. We note that some of the
removed bonds are the same for both ⌘=+1 and ⌘=�1.

The average strain ratio versus the number of removed bonds
is shown in Fig. 2A. Remarkably few bonds need to be removed
to achieve strain ratios of ⌘ = ±1. In two dimensions, only about
five bonds out of about 400 were removed, on average (⇠1%);

A B

Fig. 1. Network with 194 nodes, and 407 bonds at �Z = 0.19 tuned to
exhibit (A) expanding (⌘=+1) and (B) contracting (⌘=�1) responses to
within 1% of the desired response. Source nodes are shown in blue, and
target nodes are shown in black. Arrows indicate the sign and magnitude
of the extensions of the source and target. The removed bonds are shown
as red lines.
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Fig. 2. (A) Strain ratio ⌘ versus the number of removed bonds Nr for
expanding (red) and contracting (blue) responses in both 2D (solid lines)
and 3D (dashed lines). For each response type and dimension, the strain
ratio is averaged over 1,024 tuned networks constructed from 512 initial
systems. Networks in 2D have about 190 nodes and 400 bonds, on aver-
age, with an initial excess bond coordination of �Z ⇡ 0.19, whereas those
in 3D have about 240 nodes and 740 bonds, on average, with �Z ⇡ 0.18. (B)
Failure rate of tuning systems to within 1% of a specified strain ratio magni-
tude in 2D (dashed lines) and 3D (solid lines) averaged over contracting and
expanding responses. (C) Distribution of the number of removed bonds for
three different strain ratio magnitudes: |⌘|= 0.1 (blue), |⌘|= 1.0 (green),
and |⌘|= 10.0 (red). (Inset) All three distributions collapse when scaled by
the average number of removed bonds hNri.

similarly, in three dimensions, only about 4 bonds out of about
740 were removed on average (⇠0.5%). Fig. 2B shows the frac-
tion of networks that cannot be tuned successfully to within 1%
of a given strain ratio. The failure rate is less than 2% for strain
ratios of up to |⌘|=1 in two dimensions and less than 1% in three
dimensions. Therefore, not only does our algorithm allow for pre-
cise control of the response, it also works the vast majority of
the time. The failure rate increases significantly for |⌘|� 1, but
here we are considering only the linear response of the network.
Extremely large values of ⌘ necessitate an extremely small input
strain at the source and may therefore not be physically relevant.

The failure rate is insensitive to �Z except at very small
values. In the small �Z regime, the failure rate is higher
because very few bonds can be removed without compromising
the rigidity of the system. If we increase the bond connectivity
to �Z ⇡ 1.0 for networks in two dimensions, the failure rate
remains very low, but bonds are removed in a thin region con-
necting the target and source. This narrowing of the “damage”
region is reminiscent of the results of ref. 2, in which bonds above
a threshold stress were broken, or of ref. 1, in which bonds that
contribute the most to either the bulk or shear modulus were
successively pruned. A narrow damage region is consistent with
results seen in some allosteric proteins, in which strain is local-
ized to a thin region between the source and target (10).

Fig. 2C shows the distribution of the number of bonds that
must be removed to tune a network to within 1% of a desired
strain ratio for |⌘| = 0.1, 1, and 10. These distributions are broad,
and the mean shifts upward as ⌘ increases. Fig. 2C, Inset shows
that the distributions collapse when normalized by the average
number of removed bonds hN

r

i. Note that we do not achieve the
desired strain ratio simply by tuning the entire free surface of
the network to have large strain ratios; the response of the des-
ignated target is large, whereas the strain response of other pairs
of nodes is essentially unaffected by the source strain (Fig. S1).
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source nodes. (The two nodes comprising the source, and sim-
ilarly the target, are chosen so that they are not initially con-
nected by a bond; see Supporting Information for details.) We
create a specific response in our system by tuning the strain ratio
⌘= "

T

/"
S

to a desired value ⌘⇤. At each step, we calculate to
linear order the change in ⌘ in response to the removal of each
bond in the network using a computationally efficient linear alge-
bra approach (Materials and Methods). We then remove the bond
whose deletion minimizes the difference between ⌘ and ⌘⇤ and
repeat until we reach a desired tolerance.

Computational Results
We apply our tuning approach to networks with free boundaries
in both two and three dimensions (Materials and Methods). We
characterize the connectivity of our networks by the excess coor-
dination number �Z ⌘Z�Ziso. Here Z is the average number of
bonds per node and Ziso ⌘ 2d�d(d+1)/N is the minimum num-
ber of bonds needed for rigidity in a network with free boundary
conditions (9). For each trial, a pair of source nodes was chosen
randomly on the network’s surface, along with a pair of target
nodes located on the surface at the opposing pole. (Note that
we could have chosen anywhere in the network for the location
of the source and target.) In two dimensions, we chose networks
that, on average, had 190 nodes and 400 bonds before tuning,
with �Z ⇡ 0.19. In three dimensions, networks had, on average,
240 nodes, 740 bonds, and �Z ⇡ 0.18. Before pruning, the aver-
age strain ratio of the networks in two dimensions was ⌘ ⇡ 0.03
and in three dimensions was ⌘ ⇡ 0.2 for the system sizes and
�Z values we studied. The response of each network was tuned
by sequentially removing bonds until the difference between the
actual and desired strain ratios, ⌘ and ⌘⇤, respectively, was less
than 1%.

To demonstrate the ability of our approach to tune the
response, we show results for ⌘=±1. Note that ⌘> 0 (<0) corre-
sponds to a larger (smaller) separation between the target nodes
when the source nodes are pulled apart. Fig. 1 shows a typical
result for a 2D network: in Fig. 1A, the strain ratio has been tuned
to⌘=+1with just 6 (out of 407) bonds removed; Fig. 1B shows the
same network tuned to ⌘=�1 with a different set of 6 removed
bonds. The red lines in each figure indicate the bonds that were
pruned. Animations of the full nonlinear responses of these net-
works are provided in Movies S1 and S2. We note that some of the
removed bonds are the same for both ⌘=+1 and ⌘=�1.

The average strain ratio versus the number of removed bonds
is shown in Fig. 2A. Remarkably few bonds need to be removed
to achieve strain ratios of ⌘ = ±1. In two dimensions, only about
five bonds out of about 400 were removed, on average (⇠1%);

A B

Fig. 1. Network with 194 nodes, and 407 bonds at �Z = 0.19 tuned to
exhibit (A) expanding (⌘=+1) and (B) contracting (⌘=�1) responses to
within 1% of the desired response. Source nodes are shown in blue, and
target nodes are shown in black. Arrows indicate the sign and magnitude
of the extensions of the source and target. The removed bonds are shown
as red lines.
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Fig. 2. (A) Strain ratio ⌘ versus the number of removed bonds Nr for
expanding (red) and contracting (blue) responses in both 2D (solid lines)
and 3D (dashed lines). For each response type and dimension, the strain
ratio is averaged over 1,024 tuned networks constructed from 512 initial
systems. Networks in 2D have about 190 nodes and 400 bonds, on aver-
age, with an initial excess bond coordination of �Z ⇡ 0.19, whereas those
in 3D have about 240 nodes and 740 bonds, on average, with �Z ⇡ 0.18. (B)
Failure rate of tuning systems to within 1% of a specified strain ratio magni-
tude in 2D (dashed lines) and 3D (solid lines) averaged over contracting and
expanding responses. (C) Distribution of the number of removed bonds for
three different strain ratio magnitudes: |⌘|= 0.1 (blue), |⌘|= 1.0 (green),
and |⌘|= 10.0 (red). (Inset) All three distributions collapse when scaled by
the average number of removed bonds hNri.

similarly, in three dimensions, only about 4 bonds out of about
740 were removed on average (⇠0.5%). Fig. 2B shows the frac-
tion of networks that cannot be tuned successfully to within 1%
of a given strain ratio. The failure rate is less than 2% for strain
ratios of up to |⌘|=1 in two dimensions and less than 1% in three
dimensions. Therefore, not only does our algorithm allow for pre-
cise control of the response, it also works the vast majority of
the time. The failure rate increases significantly for |⌘|� 1, but
here we are considering only the linear response of the network.
Extremely large values of ⌘ necessitate an extremely small input
strain at the source and may therefore not be physically relevant.

The failure rate is insensitive to �Z except at very small
values. In the small �Z regime, the failure rate is higher
because very few bonds can be removed without compromising
the rigidity of the system. If we increase the bond connectivity
to �Z ⇡ 1.0 for networks in two dimensions, the failure rate
remains very low, but bonds are removed in a thin region con-
necting the target and source. This narrowing of the “damage”
region is reminiscent of the results of ref. 2, in which bonds above
a threshold stress were broken, or of ref. 1, in which bonds that
contribute the most to either the bulk or shear modulus were
successively pruned. A narrow damage region is consistent with
results seen in some allosteric proteins, in which strain is local-
ized to a thin region between the source and target (10).

Fig. 2C shows the distribution of the number of bonds that
must be removed to tune a network to within 1% of a desired
strain ratio for |⌘| = 0.1, 1, and 10. These distributions are broad,
and the mean shifts upward as ⌘ increases. Fig. 2C, Inset shows
that the distributions collapse when normalized by the average
number of removed bonds hN

r

i. Note that we do not achieve the
desired strain ratio simply by tuning the entire free surface of
the network to have large strain ratios; the response of the des-
ignated target is large, whereas the strain response of other pairs
of nodes is essentially unaffected by the source strain (Fig. S1).
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Fig. 3 demonstrates the variety of responses that we are able
to create. Fig. 3A, I and II show a single network with two
independent sources and targets whose responses were tuned
simultaneously and independently of one another. When a strain
is applied to the first pair of source nodes, its target responds
strongly, whereas the other target does not respond at all. Like-
wise, when the strain is applied to the second pair of source
nodes, its target responds, whereas the first target does not. In
Fig. 3B, a network with one pair of source nodes controls three
targets, each of which has been tuned to a different strain ratio.
These networks have �Z =1.0; the failure rate for creating these
more complicated responses is generally higher for lower val-
ues of �Z in two dimensions. Fig. 3C shows a periodic disor-
dered network with one source and target, demonstrating that a
network can be tuned successfully without free boundaries (see
Movie S3 for an animation of the nonlinear response). We have
also found that initial disorder in the network is not necessary
for success (Fig. S2A), nor is close proximity of the two nodes
comprising the source or the target (Fig. S2B).

Experimental Results
Fig. 4A shows an image of a 2D network created by laser-cutting
a flat sheet. The network is the same as the simulation shown
in Fig. 1A. Insets (zoomed-in areas) show the strain response
at the target along with the applied strain at the source nodes.
Movie S4 shows the response of a similarly designed network.
Fig. 4B shows an image of a 3D network created by 3D print-
ing. In this case, the network was designed to have a strain
ratio of ⌘=�5. Insets again show the strains of the source and
target.

A-I

B C

A-II

Fig. 3. (A) Network with 200 nodes and 502 bonds at �Z = 1.0 with two
independent responses tuned simultaneously into the system. (I) One tar-
get contracts in response to a strain at the first source, whereas the other
target does not respond. (II) Second target responds to a strain at the
second source, whereas the first target remains unaffected. This demon-
strates that separate responses can be shielded effectively from one another.
(B) Same network tuned to show responses at three targets with responses
of ⌘= 1, 2, and �1. All three targets are controlled by a single pair of source
nodes. (C) Periodic network with 254 nodes and 568 bonds at �Z = 0.47
tuned to display an expanding response with ⌘= 1, showing that open
boundaries are not necessary for tuning to be successful.

Fig. 4. (A) Physical realization of the network in Fig. 1A. (Insets) Zoom-ins
show the initial and final distance between the source nodes, lS and lS + eS,
respectively, and between the target nodes, lT and lT + eT . The undeformed
network is shown in black, and the deformed network is superimposed in
red. (B) Photograph of a 3D network constructed by 3D printing with 33
nodes and 106 bonds at �Z = 0.42 tuned to exhibit a negative response
(⌘=�5.0). (Insets) In the zoom-ins, the yellow and blue arrows show the
distance between the undeformed, lS (lT ), and deformed, lS + eS (lT + eT ),
source (target) nodes, respectively.

To obtain a quantitative analysis of how well the physical
realizations agree with the simulated networks, we measure the
strain on every bond in the 2D example when the distance
between the source nodes is varied. The majority of the bonds do
not change their length appreciably. We therefore focus only on
the distance between nodes that were connected by bonds that
were removed as the network was tuned. As one might expect,
these are the most sensitive to the applied source strain. We cal-
culate, for those changes in distances, the Pearson correlation
coefficient between the experiments and the simulations,

C =
h(x
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� hx
i

i)(c
i

� hc
i

i)i
�
x

�
c

. [1]

Here x

i

(c
i

) is defined as the fractional change due to the source
strain in the distance between nodes initially connected by bond
i as measured in experiments (computer simulations). The stan-
dard deviations of x

i

and c

i

are �
x

and �
c

, respectively. We
find that, when averaged over four experimental realizations of
different designed networks, C =0.98± 0.02, confirming that
the experiments are very accurate realizations of the theoretical
models.

In contrast to our simulations, where junctions are connected
only via central-force springs, our experimental systems have

2522 | www.pnas.org/cgi/doi/10.1073/pnas.1612139114 Rocks et al.

PH
YS

IC
S

source nodes. (The two nodes comprising the source, and sim-
ilarly the target, are chosen so that they are not initially con-
nected by a bond; see Supporting Information for details.) We
create a specific response in our system by tuning the strain ratio
⌘= "
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/"
S

to a desired value ⌘⇤. At each step, we calculate to
linear order the change in ⌘ in response to the removal of each
bond in the network using a computationally efficient linear alge-
bra approach (Materials and Methods). We then remove the bond
whose deletion minimizes the difference between ⌘ and ⌘⇤ and
repeat until we reach a desired tolerance.

Computational Results
We apply our tuning approach to networks with free boundaries
in both two and three dimensions (Materials and Methods). We
characterize the connectivity of our networks by the excess coor-
dination number �Z ⌘Z�Ziso. Here Z is the average number of
bonds per node and Ziso ⌘ 2d�d(d+1)/N is the minimum num-
ber of bonds needed for rigidity in a network with free boundary
conditions (9). For each trial, a pair of source nodes was chosen
randomly on the network’s surface, along with a pair of target
nodes located on the surface at the opposing pole. (Note that
we could have chosen anywhere in the network for the location
of the source and target.) In two dimensions, we chose networks
that, on average, had 190 nodes and 400 bonds before tuning,
with �Z ⇡ 0.19. In three dimensions, networks had, on average,
240 nodes, 740 bonds, and �Z ⇡ 0.18. Before pruning, the aver-
age strain ratio of the networks in two dimensions was ⌘ ⇡ 0.03
and in three dimensions was ⌘ ⇡ 0.2 for the system sizes and
�Z values we studied. The response of each network was tuned
by sequentially removing bonds until the difference between the
actual and desired strain ratios, ⌘ and ⌘⇤, respectively, was less
than 1%.

To demonstrate the ability of our approach to tune the
response, we show results for ⌘=±1. Note that ⌘> 0 (<0) corre-
sponds to a larger (smaller) separation between the target nodes
when the source nodes are pulled apart. Fig. 1 shows a typical
result for a 2D network: in Fig. 1A, the strain ratio has been tuned
to⌘=+1with just 6 (out of 407) bonds removed; Fig. 1B shows the
same network tuned to ⌘=�1 with a different set of 6 removed
bonds. The red lines in each figure indicate the bonds that were
pruned. Animations of the full nonlinear responses of these net-
works are provided in Movies S1 and S2. We note that some of the
removed bonds are the same for both ⌘=+1 and ⌘=�1.

The average strain ratio versus the number of removed bonds
is shown in Fig. 2A. Remarkably few bonds need to be removed
to achieve strain ratios of ⌘ = ±1. In two dimensions, only about
five bonds out of about 400 were removed, on average (⇠1%);

A B

Fig. 1. Network with 194 nodes, and 407 bonds at �Z = 0.19 tuned to
exhibit (A) expanding (⌘=+1) and (B) contracting (⌘=�1) responses to
within 1% of the desired response. Source nodes are shown in blue, and
target nodes are shown in black. Arrows indicate the sign and magnitude
of the extensions of the source and target. The removed bonds are shown
as red lines.
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Fig. 2. (A) Strain ratio ⌘ versus the number of removed bonds Nr for
expanding (red) and contracting (blue) responses in both 2D (solid lines)
and 3D (dashed lines). For each response type and dimension, the strain
ratio is averaged over 1,024 tuned networks constructed from 512 initial
systems. Networks in 2D have about 190 nodes and 400 bonds, on aver-
age, with an initial excess bond coordination of �Z ⇡ 0.19, whereas those
in 3D have about 240 nodes and 740 bonds, on average, with �Z ⇡ 0.18. (B)
Failure rate of tuning systems to within 1% of a specified strain ratio magni-
tude in 2D (dashed lines) and 3D (solid lines) averaged over contracting and
expanding responses. (C) Distribution of the number of removed bonds for
three different strain ratio magnitudes: |⌘|= 0.1 (blue), |⌘|= 1.0 (green),
and |⌘|= 10.0 (red). (Inset) All three distributions collapse when scaled by
the average number of removed bonds hNri.

similarly, in three dimensions, only about 4 bonds out of about
740 were removed on average (⇠0.5%). Fig. 2B shows the frac-
tion of networks that cannot be tuned successfully to within 1%
of a given strain ratio. The failure rate is less than 2% for strain
ratios of up to |⌘|=1 in two dimensions and less than 1% in three
dimensions. Therefore, not only does our algorithm allow for pre-
cise control of the response, it also works the vast majority of
the time. The failure rate increases significantly for |⌘|� 1, but
here we are considering only the linear response of the network.
Extremely large values of ⌘ necessitate an extremely small input
strain at the source and may therefore not be physically relevant.

The failure rate is insensitive to �Z except at very small
values. In the small �Z regime, the failure rate is higher
because very few bonds can be removed without compromising
the rigidity of the system. If we increase the bond connectivity
to �Z ⇡ 1.0 for networks in two dimensions, the failure rate
remains very low, but bonds are removed in a thin region con-
necting the target and source. This narrowing of the “damage”
region is reminiscent of the results of ref. 2, in which bonds above
a threshold stress were broken, or of ref. 1, in which bonds that
contribute the most to either the bulk or shear modulus were
successively pruned. A narrow damage region is consistent with
results seen in some allosteric proteins, in which strain is local-
ized to a thin region between the source and target (10).

Fig. 2C shows the distribution of the number of bonds that
must be removed to tune a network to within 1% of a desired
strain ratio for |⌘| = 0.1, 1, and 10. These distributions are broad,
and the mean shifts upward as ⌘ increases. Fig. 2C, Inset shows
that the distributions collapse when normalized by the average
number of removed bonds hN

r

i. Note that we do not achieve the
desired strain ratio simply by tuning the entire free surface of
the network to have large strain ratios; the response of the des-
ignated target is large, whereas the strain response of other pairs
of nodes is essentially unaffected by the source strain (Fig. S1).

Rocks et al. PNAS | March 7, 2017 | vol. 114 | no. 10 | 2521

How many target sites can be controlled by single source?

Jason Rocks, Henrik Ronellenfitsch, Andrea Liu, Eleni Katifori

Number of targets

DRAFT
Fig. 2. The fraction of satisfied configurations for (A) flow networks and (B) two-
dimensional mechanical networks as a function of number of target edges for various
system sizes. Results are shown for a pressure or extension applied to a single
source edge with a desired relative change in target response of � = 0.1. The
number of nodes in the system is indicated by N . Smoothing splines are shown
to guide the eye as an estimate of the underlying satisfiability transition, while error
bars are estimated using the Wilson score interval for binomially distributed data (see
Supporting Information).

set of NT target edges to be tuned. For each target edge – we
define the residual

r– = ÷– ≠ ÷
(0)
–

÷
(0)
–

≠ �. [9]

which measures how close each target is to being tuned suc-
cessfully. The Heaviside function �(≠r–) is included so that
if r– is greater than zero, that is, the target response ratio
has increased at least by the desired proportion �, then the
residual does not contribute to the loss function. Similarly,
if the desired response has not been met, then the residual
does contribute. In the spirit of (17, 18), we minimize the
loss function by removing edges from the network one at a
time, or reinserting previously removed edges to modify the
network topology in discrete steps. More specifically, we utilize
a greedy algorithm in which we measure the resulting change
in the loss function for each possible single edge removal or
reinsertion and remove or reinsert the edge which minimizes
the loss function at that step.

Results

Fig. 1 depicts networks that have been tuned using a greedy
search algorithm (see Materials and Methods) for two di�er-
ent types of applied sources. Fig. 1(A) and (B) show flow
and mechanical networks, respectively, tuned to respond to
a source applied to a pair of nodes comprising an edge. Al-
ternatively, Fig. 1(C) and (D) show the same networks, but
with a pair of source nodes that do not comprise an edge.
For the flow networks, the faces of the network have been

Fig. 3. Power law behavior of the satisfiability transition from Fig. 2 suggests a hybrid
phase transition typical of constraint satisfaction problems. (A) The transition point
N = Nc

T where PSAT =

1
2 shows power-law-like behavior as a function of system

size, along with (B) the width of the transition w calculated as the length of the interval
in N where 0.25 < PSAT < 0.75. Four cases are depicted: flow networks with an
edge source (red circles) and with a node pair source (blue triangles) and similarly,
mechanical networks with an edge source (green squares) and with a node pair
source (purple triangles). In all cases, a black dashed lines showing a power law with
an exponent of 0.7 is depicted for comparison. strain/pressure drop.

colored to represent the maximum pressure drop across all
possible pairs of nodes comprising the face. The result is a set
of crack-like structures, partitioning the network into regions
of di�erent pressures. Similarly, the faces of the mechanical
networks have been colored to indicate the intensity of the
strain face strain (see Supporting Information). Again we see
crack-like structures forming for both cases, but they are less
well-defined in the case where the source nodes are not chosen
to comprise an edge.

We investigate the ease with which networks can be tuned
as a function of the number of targets. For both flow networks
and mechanical networks, we explore the a�ects of various
aspects of the tuning problem. Fig. 2(A) and (B) display
typical results for the fraction of networks that can be tuned
successfully, PSAT , for flow networks and mechanical networks,
respectively. Data is shown for a randomly chosen edge source
and NT randomly chosen target edges with a desired relative
change in target response of � = 0.1. Systems sizes range from
N = 8 to N = 4096 nodes. Each value of PSAT is calculated by
tuning at least 512 independent randomly generated networks.
We observe that there is a transition in the maximum number
of targets that can be tuned. Using the approximate interpo-
lations of the data provided by smoothing splines shown in
Fig. 2 (see Supporting Information), we estimate the number
of targets Nc

T where PSAT = 1/2, marking the position of the
transition, along with the width of the transition w, taken as
the di�erence in NT between PSAT = 1/4 and PSAT = 3/4.
In Fig. 3, we see that both flow networks and mechanical
networks with edge and node pair sources have approximately

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Rocks, Ronellenfitsch et al.

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

NT* 

DRAFT
Fig. 2. The fraction of satisfied configurations for (A) flow networks and (B) two-
dimensional mechanical networks as a function of number of target edges for various
system sizes. Results are shown for a pressure or extension applied to a single
source edge with a desired relative change in target response of � = 0.1. The
number of nodes in the system is indicated by N . Smoothing splines are shown
to guide the eye as an estimate of the underlying satisfiability transition, while error
bars are estimated using the Wilson score interval for binomially distributed data (see
Supporting Information).

set of NT target edges to be tuned. For each target edge – we
define the residual

r– = ÷– ≠ ÷
(0)
–

÷
(0)
–

≠ �. [9]

which measures how close each target is to being tuned suc-
cessfully. The Heaviside function �(≠r–) is included so that
if r– is greater than zero, that is, the target response ratio
has increased at least by the desired proportion �, then the
residual does not contribute to the loss function. Similarly,
if the desired response has not been met, then the residual
does contribute. In the spirit of (17, 18), we minimize the
loss function by removing edges from the network one at a
time, or reinserting previously removed edges to modify the
network topology in discrete steps. More specifically, we utilize
a greedy algorithm in which we measure the resulting change
in the loss function for each possible single edge removal or
reinsertion and remove or reinsert the edge which minimizes
the loss function at that step.

Results

Fig. 1 depicts networks that have been tuned using a greedy
search algorithm (see Materials and Methods) for two di�er-
ent types of applied sources. Fig. 1(A) and (B) show flow
and mechanical networks, respectively, tuned to respond to
a source applied to a pair of nodes comprising an edge. Al-
ternatively, Fig. 1(C) and (D) show the same networks, but
with a pair of source nodes that do not comprise an edge.
For the flow networks, the faces of the network have been

Fig. 3. Power law behavior of the satisfiability transition from Fig. 2 suggests a hybrid
phase transition typical of constraint satisfaction problems. (A) The transition point
N = Nc

T where PSAT =

1
2 shows power-law-like behavior as a function of system

size, along with (B) the width of the transition w calculated as the length of the interval
in N where 0.25 < PSAT < 0.75. Four cases are depicted: flow networks with an
edge source (red circles) and with a node pair source (blue triangles) and similarly,
mechanical networks with an edge source (green squares) and with a node pair
source (purple triangles). In all cases, a black dashed lines showing a power law with
an exponent of 0.7 is depicted for comparison. strain/pressure drop.

colored to represent the maximum pressure drop across all
possible pairs of nodes comprising the face. The result is a set
of crack-like structures, partitioning the network into regions
of di�erent pressures. Similarly, the faces of the mechanical
networks have been colored to indicate the intensity of the
strain face strain (see Supporting Information). Again we see
crack-like structures forming for both cases, but they are less
well-defined in the case where the source nodes are not chosen
to comprise an edge.

We investigate the ease with which networks can be tuned
as a function of the number of targets. For both flow networks
and mechanical networks, we explore the a�ects of various
aspects of the tuning problem. Fig. 2(A) and (B) display
typical results for the fraction of networks that can be tuned
successfully, PSAT , for flow networks and mechanical networks,
respectively. Data is shown for a randomly chosen edge source
and NT randomly chosen target edges with a desired relative
change in target response of � = 0.1. Systems sizes range from
N = 8 to N = 4096 nodes. Each value of PSAT is calculated by
tuning at least 512 independent randomly generated networks.
We observe that there is a transition in the maximum number
of targets that can be tuned. Using the approximate interpo-
lations of the data provided by smoothing splines shown in
Fig. 2 (see Supporting Information), we estimate the number
of targets Nc

T where PSAT = 1/2, marking the position of the
transition, along with the width of the transition w, taken as
the di�erence in NT between PSAT = 1/4 and PSAT = 3/4.
In Fig. 3, we see that both flow networks and mechanical
networks with edge and node pair sources have approximately

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Rocks, Ronellenfitsch et al.

DRAFT
Fig. 2. The fraction of satisfied configurations for (A) flow networks and (B) two-
dimensional mechanical networks as a function of number of target edges for various
system sizes. Results are shown for a pressure or extension applied to a single
source edge with a desired relative change in target response of � = 0.1. The
number of nodes in the system is indicated by N . Smoothing splines are shown
to guide the eye as an estimate of the underlying satisfiability transition, while error
bars are estimated using the Wilson score interval for binomially distributed data (see
Supporting Information).
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Aging under constant pressure

Bonds under most stress deform plastically.

Bonds with higher stress evolve faster than 
those with less stress. 

Material not just weaker; changed character.

Directed aging 
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Material memory

Encode a pathway for material behavior: 
Global (e.g., selects Poisson’s ratio) 
Local (e.g., action-at-a-distance allosteric effects)



- - - - - - - - - - - - - - - - - - - - - - - -    - - - - - - - - - - - - - 
Greedy algorithms and aging  
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Encode a pathway for material behavior: 
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Local (e.g., action-at-a-distance allosteric effects)
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