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Colloidal particles (colloids)

+ Colloidal particles: diameters ~ 10-8-10-° m. (> atoms, « scales of humans)

+ Potential to make new materials (- size ~ wavelength of light) + memory

+ Range of interaction « diameter of particles (unlike atoms)
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Colloids could be programmed to have memories:
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Number of sored suctures 171 Macfarlane et al, Science (2011)
Murugan, Zeravcic, Brenner, Leibler, PNAS (2015)

Self-replicating colloidal clusters
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... to be continued (see end of presentation)....






Challenges of very short-ranged interactions
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What is Geometrical Frustration?

D. Nelson, F. Spaepen, Solid State Phys. 42, 1 (1989)
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Geometric frustration: locally preferred order = globally preferred order



Behaviour of small groups of particles can help understand
thermodynamic or dynamic phenomena

nucleation, phase transitions, glass transition, gel formation, jamming, etc

The theoretical argument is misleading also. Consider the question: ‘In how (Jhservation of five-fold |oca1
many different ways can one put twelve billiard balls in simultaneous contact Wlth '
PR T el e e e symmetry in liquid lead m@)
iy T

| contng‘ as different the rrangents which cannot be transformed into
each other without breaking contact with the centre ball?’ The answer is three. Two  p, Reichert, 0. Klein*1, H. Dosch*, M. Denk*, V. Honkimiiki,
which come to the mind of any crystallographer occur in the face-centred cubic T.Lippmann§ & G. Reiterl|

and hexagonal close-packed lattices. The third comes to the mind of any good Relchert et al, Nature (2000)

schoolboy, and is to put one at the centre of each face of a regular dodecahedron.
That body has five-fold axes, which are abhorrent to crystal symmetry: unlike
the other two packings, this one cannot be continuously extended in three
dimensions. You will find that the outer twelve in this packing do not touch each
other. If we have mutually attracting deformable spheres, like atoms, they will , ] ! Doye & Wales,
be a little closer to the centre in this third type of packing; and if one assumes they R ool - Faraday Trans (1997)
are argon atoms (interacting in pairs with attractive and repulsive energy terms TN e e ks e

proportional to 7—¢ and r~2) one may calculate that the binding energy of the

close-packed
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group of thirteen is 8-4 9, greater than for the other two packings. This is 409, of 5\;& e oo P A
the lattice energy per atom in the crystal. I infer that this will be a very common 02 0 4 50 0 0 80
grouping in liquids, that most of the groups of twelve atoms around one will be in o

this form, that freezing involves a substantial rearrangement, and not merely an
extension of the sdme klnd of order frbméhort dlstaces tlon ones; a rearrange-
ment which is quite costly of nerg in small localities, and only becomes
economical when extended over a considerable volume, because unlike the other
packing it can be so extended without discontinuities.

F.C. Frank, Proc. R. Soc. Lond. A Math. creation of local “global g .,
Phys. Sci. 215, 43 (1952) minima” leads to gel :

formation

C. Patrick Royall, S. R. Williams, T. Ohtsuka,
H. Tanaka, Nat. Mater. 7, 556 (2008)




What about frustration in colloids?
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What about frustration in colloids?
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G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)



What about frustration in colloids?
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Symmetry number explained the huge discrepancy!
G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)



(1) Colloids are different from atoms

Colloids: asymmetric states
Atoms: symmetric states.

Lennard-Jones potential: octahedron is ~8% lower in energy
Hoare & Pal, Adv. Phys. (1971)

Colloidal crystal

From Wikipedia, the free encydiopeda

A colloidal crystal is an ordered array of colloid particles, analogous 0 a standard crystal whose repeating subunits are atoms or

(2 ) Small grOup S Of COllOidS behave molecules.!! A natural example of this phenomenon can be found in the gem opal, where spheres of siica assume a close-packed

locally periodic structure under moderate compression Z15] Bulk properties of a colloidal crystal depend on composition, particle size,
packing arrangement, and degree of regularity. Applications include photonics, materials processing, and the study of seif-assembily

differently from large ones pockng arerent

Contents [hoe)
1 Introduction

2 Origins
3 Trends

Small: disordered AR o

4.2 Viscoelasticity

Large: crystals 13 e ansnons e

4.5 Kossel lines A collection of smal 2D colloidal crysials with
gran boundaries between them. Spherical glass
parscies (10 um diameler) in water

4.6 Growth rates
4.7 Microgravity

Frustration = competition between asymmetric/disordered, and crystalline state.
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Contents [hoe)
1 Introduction

2 Origins
3 Trends

Small: disordered oy el

4.2 Viscoelasticity
° 4.3 Phase transitions
Large: crystals B
4.5 Kossel lines A collection of m'l 20 colloidal crystals with

gran boundaries between them. Spherical glass
parscies (10 um diameter) in water

o)
]

4.6 Growth rates
4.7 Microgravity

Frustration = competition between asymmetric/disordered, and crystalline state.

but.... these systems were small.

Goal: show a different kind of competition for higher N (N >10)
show symmetry is not that important



Data for N=9

PR

A non-rigid, N=9

G. Meng, N. Arkus, M. P. Brenner, V. N.
Manoharan, Science 327 (2010)

¢ One cluster dominated — probability = 11%! (out of 52 clusters total)
¢ It has a fair amount of symmetry —> symmetry cannot be that important...
¢ Seems to be “floppy” — has an infinitesimal zero mode.

o Important property — it’s not actually floppy — it’s rigid!



What is rigid?
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» Each adjacency matrix corresponds to a system of quadratic equations and

inequalities (x; €R3):
Lg — Ly

.CIZ‘Z'—$]'

o A cluster (x,A) with x = (x1, X, ..
system of equations (modulo translations, rotations)
< There is no finite, continuous deformation of the cluster that preserves all edge

lengths.

o Itis first order rigid if it is rigid and the equations above are linearly independent

iR A ]
el lfAZJ:O

., XN) is rigid if it is an isolated solution to this
(e.g. Asimow&Roth 1978)

< rigid and there are no infinitesimal zero-modes in the above equations






Quiz!

floppy (in R2,R3)
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Quiz!
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floppy (in R3) not first-order rigid (R?)
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first-order rigid (in R3) first-order rigid (in R3)



Quiz!

floppy (in R?,R3) first-order rigid (in R?) rigid (R2)
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Quiz!
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Singular: rigid but NOT first-order rigid



Quiz!

floppy (in R?,R3) first-order rigid (in R?) rigid (R2)
floppy (in R®) not first-order rigid (R2)

rigid (R3)

first-order rigid (in R3) first-order rigid (in R%) not first-order rigid (R3)

Singular: rigid but NOT first-order rigid
Regular: rigid AND first-order rigid



N=10

Singular clusters: Hyperstatic clusters:

B non-rigid, N=10 P=21% C

25 bond, N=10 P=12%

Singular 21%, Hyperstatic 12%, > 250 total clusters!



Question:

[s there a competition between singular & hyperstatic
clusters as N increases?
What can we say about this competition mathematically?

Strategy:

e Look at all local minima on energy landscape of N sticky spheres

e Evaluate their partition functions

e Compare them

Free energy

Sticky: interacting with
infinitestimally short-ranged

(&deep) pair potential

1.e. U

range —> (0 r
depth—> oo :



What do local minima look like?

Local minima are rigid clusters:

S

Spheres are either touching, or not
Energy of cluster of N spheres o« # of contacts
Lowest-energy clusters = those with maximal number of contacts

These are (typically) rigid: they cannot be continuously deformed without
breaking a contact (=crossing an energy barrier.)

More generally: energetic local minima have a locally maximal number of
contacts, so are (typically) rigid.



What do local minima look like?

Local minima are rigid clusters:

» Spheres are either touching, or not
» Energy of cluster of N spheres « # of contacts
* Lowest-energy clusters = those with maximal number of contacts

» These are (typically) rigid: they cannot be continuously deformed without
breaking a contact (=crossing an energy barrier.)

¢ More generally: energetic local minima have a locally maximal number of
contacts, so are (typically) rigid.

2 rigid clusters for N=6



What are all the rigid clusters of N identical spheres?

H.-C. (2016) SIAM Review



Algorithms to find rigid clusters

¢ List all adjacency matrices with 3N-6 contacts; for each adjacency matrix, solve
(analytically or with computer) for the positions of the particles, or argue that
no solution exists.

e N. Arkus, V. N. Manoharan, M. P. Brenner. Phys. Rev. Lett., 103 (2009)

e N. Arkus, V. N. Manoharan, M. P. Brenner. SIAM |. Disc. Math., 25 (2011)
e R. S. Hoy, J. Harwayne-Gindansky, C. O’'Hern, Phys. Rev. E, 85 (2012)

e R.S. Hoy, Phys. Rev. E, 91 (2015)

Analytical: to N=10
Computer: to N=13 (though many were missed)

¢ Move from cluster to cluster dynamically, via one-dimensional transition paths
H.-C., SIAM Review (2016)
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H.-C. (2016) SIAM Review
Total number of clusters computed

n number of contacts
3In—9 3In—8 3n-—-7 3n — 6 3In—5 3n—4 3In—3 3n-—2 Total
5 1 1
6 2 2
7 5 5
8 6} 13
9 52 52
10 1 259 3 263
11 2 18 1618 20 1 1659
12 il 148 11,638 174 8 1 11,980
13 87 1201 95,810 1307 96 8 98,529
14 1 707 10,537 872,992 10,280 878 79 4 895,478
DAt 3N — 3 3 — 2 3n —1 3n n+1 3n+2
1530 7675 782 55 6 (9 x 10° est.)
16 7895 664 62 8 (1 x 108 est.)
17 7796 789 85 6 (1.2 x 10? est.)
18 9629 1085 91 5 (1.6 x 1010 est.)
19 L3 AT S A58 95 7 (2.2 x 101! est.)

(N=20,21 also; data not shown)
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Total number of clusters computed

n number of contacts
3In—9 3In—8 3n-—-7 3n — 6 3In—5 3n—4 3In—3 3n-—2 Total
5 1 1
6 2 2
i 5 5
8 13 13
9 52 52
10 1 259 | 263
il 2 18 1618 b.. N 1659
12 L 148 11,638 [ 11,980
13 87 il 95,810 1307 " 98,529
14 1 707 10,537 872,992 10,280 878 2 P 895,478
S d - dn—38 'dn=-2  Jdn—1] 3n Sl S =2
57675 782 55 W O e s (9 x 10° est.)
16 7895 664 6. 8 T (1 x 108 est.)
il 7796 789 DRI (1.2 x 10 est.)
18 9629 OS5y e T S (1.6 x 1010 est.)
19 13,472 = 1458 = “™OGagu. 7% | (2.2 x 101 % esth

(N=20,21 also; data not shown)

hyperstatic
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n number of contacts
In—9 3n—8 3In-—7 3n —6 3In—5 3n—4 3In—3 3n-—2 Total
5 1 1
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7 5 5
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17 7796 789 85 6 (1.2 x 10? est.)
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(N=20,21 also; data not shown)
hypostatic



A cluster “missing” one contact, N=10




clusters missing two contacts,
N=11

& 5
& &

cluster missing three
contacts, N=14




cluster missing arbitrarily many contacts

# of contacts ~ 2N when N large



cluster missing arbitrarily many contacts

# of contacts ~ 2N when N large



Does the algorithm find everything?

N=11
hypostatic
3N-7 contacts
hcp fragment

INIodE. e o here’s an example:

Cluster landscape looks like:
Question:

Is the landscape ever
connected (by 1 dof
motions), under additional
assumptions?

® e.g. clusters are regular,
Isostatic, have random
diameters, ....




What is the partition function of a rigid cluster in the sticky-sphere limit?

Y. Kallus and M. H.-C., Phys Rev E (2017).



Interactions short-ranged (compared to diameter of particles) :

Sticky-sphere limit:
¢ Range € « d

» Depth U(d) » 1

—> Really stiff springs

energy of a pair = U(Ixixi|), xi=center of ith sphere, T = (Z1,%2,...,TN)
energy of a cluster of N spheres = V(x) = Z R e 0 j )
i7J
What is partition function in the sticky-sphere limit?

2= [ e b
N (z)

= Inverse temperature

N(x) = neighbourhood of x, including translations, rotations, permutations,
and bonds with lengths € (d - ¢, d + €)



“Geometry” of the calculation

Write yk(x) — |£I?Zl_c o Zlfjk| — 1

{z :yr(x) =0} ishypersurface where sphere ix touches sphere ji

exponential function just
introduces a pre-factor

L o L) / dx

{—e<yk (m)ée}szl

evaluate asymptotically
as e —>0

B = # of bonds

» “Fatten” constraint surfaces by amount ¢ on either side
¢ Look at volume of intersection region, as ¢ —> 0

¢ Pull out Boltzmann factor



Example (regular)

xeR?
y1(x) = vi-x

yQ(X) = V2-X

Vol = 41 vi X vy |1 g2

“Regular” constraints should have volumes that scale as

gdimension of intersection set



Example (regular)

xeR?
Y1(X) = V1-X

yQ(X) = V2-X

Vol = 4| V1><V2 |',

“Regular” constraints should have volumes that scale as

8dimension of intersection set



Example (singular)

xeR?

Y1(X) =S
y2(x) = (x1)? - x2

i — v/ € oY

= :26_3/2 Y1 Y2 | :
O — o cl/2 02 L el
1
e e— 63/2 // ledYQ — 63/2 ; O(l)
2vY1 + Yo
sy q<il
1<Y5<1
Y1+Y2>0

blows up as (Y+,Y2)—>(0,0), but in
an integrable way



Example (singular)

xeR?

yl(X) =X0
ya(x) = (x1)? - X2

="y /¢ e

—_— =Y I |
B0 el/2 or i i e’
3/2 1 | |
2vY1 + Y5 ol
el
Ity
Y0

blows up as (Y+,Y2)—>(0,0), but in
an integrable way



Vol(Example 2) 1
_ _ ~ — — 0
Vol(Example 1)  €l/2 G

—> Equilibrium probability of singular clusters should dominate that of regular
clusters (with the same number of contacts), in the sticky-sphere limit.

Physically, they have more entropy.



Example (hyperstatic)

xeR?

y1(x) = vi-x

yQ(X) = V2-X

Y3(X) = V3'X

Vol x g2 o e 38U(d} 2

Z..(hyperstatic example
»(hyp ple)  —su@)

U(d) — —
7. (regular example) — 00 as U(d) o0

—> Free energy of hyperstatic clusters should dominate that of regular clusters,
in the sticky-sphere limit.
Physically, they have lower energy.
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xeR?

Y1(X) = V1-X

yQ(X) = V2-X

Y3(X) = V3'X

Vol o g2

Z..(hyperstatic example
»(hyp ple)  —su@)

7. (regular example)

—> Free energy of hyperstatic clusters should dominate that of regular clusters,
in the sticky-sphere limit.
Physically, they have lower energy.



Example (hyperstatic)

xeR?

Y1(X) = V1-X

yQ(X) = V2-X

Y3(X) = V3'X

Vol o g2

Z..(hyperstatic example
»(hyp ple)  —su@)

7. (regular example)

—> Free energy of hyperstatic clusters should dominate that of regular clusters,
in the sticky-sphere limit.

Physically, they have lower energy.

Who wins: singular clusters or hyperstatic clusters?



General case

How does the free energy of singular clusters scale with &?

Algebraic geometry:
Volweq(loge)k, geQ, keZ

qk related to the algebraic nature of the singularity, i.e. what it looks like
once it is “resolved”

IGUSA INTEGRALS AND VOLUME ASYMPTOTICS
IN ANALYTIC AND ADELIC GEOMETRY

ANTOINE CHAMBERT-LOIR
Université de Rennes 1 and Institut universitaire de France,
IRMAR-UMR 6625 du CNRS, Campus de Beaulieu,
35042 Rennes Cedex, France
antoine.chambert-loirQuniv-rennesl.fr

YURI TSCHINKEL

Courant Institute, NYU, 251 Mercer St.
New York, NY 10012, USA
tschinkel@cims.nyu.edu

Received 24 December 2009
Revised 11 October 2010

We establish asymptotic formulas for volumes of height balls in analytic varieties over
local fields and in adelic points of algebraic varieties over number fields, relating the
Mellin transforms of height functions to Igusa integrals and to global geometric invariants
of the underlying variety. In the adelic setting, this involves the construction of general
Tamagawa measures.

Keywords: Heights; Poisson formula; Manin’s conjecture; Tamagawa measure.

AMS Subject Classification: 11G50 (11G35, 14G05)
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Our approach

A e~ BV (@) gt
N(z)

» Taylor-expand the potential V(x) = g DR — 17| |
17
010,03V = Z Uéﬁ(aﬂ“aﬂ“ag?“) + U6/(6137“627“ + Oo37r017 + 8127“837°)
(4,7)
01020304V = > Uy (01r02rdsrdar)

(2,7)

+ U (0147021031 + 0137027041 + 0127031041 + 0247017031 + 0237017041 + 034701701 7)
- U6/(81237“847“ + 01047021 + (92347“(917“ —+ (9127“(9347“ —+ (9137“(9247“ —+ 8147“8247“)

» EBvaluate integral using Laplace asymptotics

¢ Asymptotically the same scaling as square-well potential:
log(Zsquare) ~ l0g(Zx) as e—=0, U(d)—>c0 (Kallus & H.-C., Phys Rev E (2017))



Partition function for second-order rigid cluster

ABadX

Z, = (const) - %

where the geometrical part is

zr = (const) - - i(m) H )\il/Q(x)/Xe_Q(i)dfi

A #0
parameters are geometry-dependent variables are
L . AU AE = B =0 s
# of bonds beyond isostatic

~ exp(depth) dx # of singular directions

L (U// ( d) 3 d2)1 /4 I(x) determinant of moment of inertia tensor
; i o symmetry number
~ width i () eigenvalues of Hessian VVV = R(z)R! (2)
Q(x) = quartic function on subspace of

singular directions

Y. Kallus and M. H.-C., Phys. Rev. E (2017).



Partition function for second-order rigid cluster

ABadX

Z, = (const) - %

where the geometrical part is

zr = (const) - - i(x) H )\il/Q(x)/Xe_Q(i)dfi

2
parameters are geometry-dependent variables are
e o—BU(d) AB = B—(3N-6) . .

# of bonds beyond isostatic

¢

exp(depth)

QL

# of singular directions

X
L (U// ( d) 3 d2)1 /4 I(x) determinant of moment of inertia tensor
; i o symmetry number
~ width i () eigenvalues of Hessian VVV = R(z)R! (2)
QQ(x) = quartic function on subspace of

Only TWO parameters needed!

singular directions

Y. Kallus and M. H.-C., Phys. Rev. E (2017).



Comparing hyperstatic & singular clusters




N<8

¢ All rigid clusters are first-order rigid

¢ Symmetry number is most important factor: more asymmetric —> more

probable.
V1 e S
=1l

poly octa ratio

Polytetrahedron Octahedron

95.7% 4.3% 22.3

G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)



N=9

¢ 1 singular cluster, 51 regular clusters

: Qv 2\1/4 . 1.1, —1/2
P(singular) = o = (U"(d)Bd*)!/* ~ width™"/
230 + «
oa2ff | o Agrees with simulations for
experimentg ]*' | ' large o (small width)
e ¢ For small a, no robust way
008 e i to identity clusters
= 0.06 : PR S —> likely due to non-nearest
] § o : . neighbour interactions, since
ot lc 1_1: 10 I gaps are small.
002 , :f;z ¢ Experiments: P1=11%
ok (4%-27%), ot = 10.

12 14 16 18 20 22 24 26



N =10: group by type

Total partition function of all rigid clusters Z

Z X § ot
ABId

ZAB.dx = sum of geometric contributions of all clusters with

AB extra bonds and dx singular directions

o~ Width_l/Z, log v ~ depth



N =10: group by type

Total partition function of all rigid clusters Z
AB.dx :

ZAB.dx = sum of geometric contributions of all clusters with

AB extra bonds and dx singular directions

o~ Width_1/2, log v ~ depth



N >10: group by type

Total partition function of all rigid clusters Z
AB.dx :

ZAB.dx = sum of geometric contributions of all clusters with

AB extra bonds and dx singular directions

o~ Width_1/2, log v ~ depth

Which term is largest as a function of y, a ?
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.. back to frustration ....

+ Symmetry (or lack thereof) doesn’t seem to be particularly important
+ Competition is between

energy (of extra bonds), and “singular” entropy (of 0-frequency modes):

eneri ?tropy

Z, = (const) - v~ a%% 2

and combinatorial entropy (total number of states)
(also global entropy term — neglected here)

+ For identical spheres, energy beats “singular entropy”:
Max-bond, crystalline states win for N > 10, strong enough bonds

—> Sticky spheres do not appear to be frustrated!

+ Question: Are there systems where “singular entropy” dominates?
(non-identical spheres, ellipsoids, ...?)

Thanks to: Steven Gortler, Yoav Kallus, John Ryan, Louis Theran, US DOE, NSF-FRG



Why do the landscapes look so similar?
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Why do the landscapes look so similar?
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Why all these exponential scaling laws?
Do the exponents approach a common value as N—co0 ?

N =21
E LS
[N o -4.35
A ]
\
\
¥
N !
\
N\
2 L 3
8 9 10 11
+ o x-2.96
\*\
T ¥
x -1.39
[m*-a._
mﬁﬁf‘~J
8 9 10 11
A B



Why do the landscapes look so similar?

N=16 N=17 N=18 N=19 N=20 N =21
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Why all these exponential scaling laws?
Do the exponents approach a common value as N—co0 ?

can explain using geometry, combinatorics, random matrix theory;, ...*

?
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Two-dimensional rigid clusters
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Back to memory

1. Colloids could be programmed to contain memories
* realize memories in physical system
* make multi-function devices

® requires quantitative computation & optimization on free energy landscape
(tools under development), to account for real & important constraints
imposed by geometry

2. Link to continuous attractor M

e Folding experiment....
* entropy may help stabilize (states & memories), W
via kinetics — but memory is a kinetic phenomenon
3. Observed colloidal crystals contain memory (J. Crocker, GRC 2017)

e colloids have “slow” kinetics (c.f. atomic vibrational timescales, for e.g.)

* how can we predict which structures will form? Given that it is not only
the lowest free-energy structure, but also one which favours growth?



