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Colloidal particles (colloids)

✤ Colloidal particles: diameters ~ 10-8-10-6 m. (≫ atoms, ≪ scales of humans)
✤ Potential to make new materials (∵ size ~ wavelength of light)
✤ Range of interaction ≪ diameter of particles (unlike atoms)

sand

opal

red blood cells

paint

mayonnaise

cornstarch

ketchup

+ memory



Colloidal particles (colloids)

✤ Colloidal particles: diameters ~ 10-8-10-6 m. (≫ atoms, ≪ scales of humans)
✤ Potential to make new materials (∵ size ~ wavelength of light)
✤ Range of interaction ≪ diameter of particles (unlike atoms)

sand

opal

red blood cells

paint

mayonnaise

cornstarch

ketchup

+ memory



Colloids could be programmed to have memories: 

DNA —> highly specific interactions

size NðmM=N2Þz=2, determines the species that can specifically
bind to all of the z=2 boundary components. When this number is
larger than 1, many different species can attach to a given boundary
site on a growing seed, resulting in a proliferation of chimeras.
Hence, the largest number m of structures that can be stored is

mc ∼
!
N
M

"
Nðz−2Þ=z: [1]

For z> 2, the exponent ðz− 2Þ=2 is positive and this equation
implies that the capacitymc can be much larger than the traditional
estimate of the capacity N=M. It is instructive to understand why
z= 2 structures i.e., linear chains, cannot share components. Bind-
ing to an end of a growing chain requires forming a bond with just
one component. If that component is promiscuous, the seed can
always grow in a nonunique chimeric manner. Hence the promiscu-
ity of individual species, implied by Eq. 1, must be countered by the
requirement on incoming particles to form multiple (i.e., z=2 >1)
bonds. (A detailed description of our calculations is in SI Text.)

Retrieval
The above argument shows that the number of structures that
can be stored and stabilized with N components is large. For this

to be useful, we need to be able to retrieve each of them easily.
The retrieval can be done in three different ways. One can in-
troduce a nucleation seed, i.e., a part of a stored structure, into
the solution. Alternatively, one can enhance the formation of
such a seed by increasing the chemical potential of its compo-
nents by an appropriate amount Δμ or by strengthening the
interactions US

αβ by ΔU for bonds found in such a seed. These
methods enhance the nucleation of one stored structure without
nucleating others, despite all stored structures being made of the
same set of components. Such selective nucleation is possible
only for multifarious structures; it relies on the fact that small
contiguous subsets of distinct structures typically have distinct
compositions. Such subsets can be used as selective nucleating seeds
or to selectively lower the nucleation barrier for one structure, using
the other two methods described above.
The critical question is, How many different species have to be

tuned in this way to successfully retrieve a particular stored
structure? The answer follows directly from general nucleation
theory, which specifies a critical nucleation radius rp in terms of
the chemical potential μ and bond energy E (20). The minimal
seed size Np needed to recover a structure is set by rp; smaller
seeds dissolve back into components whereas larger seeds are
supercritical and grow into stored structures. We can make the
multifarious assembly mixture responsive to smaller seeds by

Fig. 2. Diagram of the different simulation outcomes as a function of the number of stored structures m and temperature kBT=E, starting from a particular
supercritical seed (shown at Bottom). We use different colors to visualize different stored structures, with the seeded structure colored in dark red. Bottom
Row distinguishes the four regimes identified in the diagram. In regime I the desired structure is retrieved through heterogeneous nucleation because the
solution remains stable in the time required for assembly. The solution in this regime is a functional multifarious assembly mixture. Regime II is characterized
by homogeneous nucleation of all structures due to reduced stability of the solution (SI Text). In regime III, formation of structures is dominated by chimeras.
Finally, in regime IV, any initial seed is disintegrated into the solution (SI Text and Fig. S1). These simulations were run for a fixed length of time, 2× 106 lattice
sweeps, and with fixed chemical potential, μ= 1:80E, for all species. The value of μ mostly influences the extent of regimes I and II. In each plotted snapshot
only neighboring tiles that have specific binding between them are plotted, and hence tiles without any bonds are omitted. Note that in a system with fixed
concentrations, rather than μ, most components would clump to the seed in regime III, whereas in regime I they would disperse in the solution independently
of the structure nucleated from the seed.
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each NP in a bcc lattice possesses more nearest
neighbors of the opposite particle type. Note
that this rule holds for a wide range of nano-
particle diameters and oligonucleotide lengths,
and it can therefore be used to make many fcc
and bcc lattices with well-defined and predict-
able lattice parameters over the 25- to 150-nm
range (figs. S2 and S3).

Rule 2: When two lattices are of similar
stability, the kinetic product can be produced by
slowing the rate at which individual DNA linkers
dehybridize and subsequently rehybridize. For
example, theoretical predictions show that, al-
though they possess the same number of nearest
neighbors, hcp lattices are slightly less stable than

fcc lattices, and thus any hcp crystals observed
would likely be kinetic products (20). Indeed, we
have observed hcp lattices in these systems, but
only as metastable structures that reorganize into
fcc lattices upon annealing (15). Stable hcp lat-
tices can be realized by annealing at lower so-
lution temperatures and decreasing the local DNA
density around a NP surface (Fig. 1E). These two
changes both slow the DNA linker sticky end re-
lease and rehybridization rates necessary for crys-
tallization, and promote lattice growth over lattice
reorganization, thereby stabilizing initial kinetic
products. For example, by using longDNA strands
(~30 nm) and NPs bearing a small number of
linkers (7.2-nm NPs, 20 T 3 DNA strands per

particle) and annealing at 25° to 30°C, one can
preferentially stabilize the growth of initial hcp-
like lattices that form during early time points
of the assembly process (15). It is important to
note that although this process can consistently
be used to produce large (>1 mm) hcp lattices
that are stable for extended periods of time (sev-
eral weeks after formation), these structures are
still kinetic products. Annealing hcp lattices at
higher temperatures for several hours always re-
sults in the lattices reorganizing to an fcc structure
(fig. S23).

Rule 3: The overall hydrodynamic radius of a
DNA-NP, rather than the sizes of its individual
NP or oligonucleotide components, dictates its

Fig. 1. (A) Nanoparticle superlattice engineering with DNA, unlike conventional
particle crystallization, allows for independent control of three important design
parameters (particle size, lattice parameters, and crystallographic symmetry) by
separating the identity of the particle from the variables that control its assembly. (B)
The DNA strands that assemble these nanoparticle superlattices consist of (i) an alkyl-
thiolmoiety and10-base nonbinding region, (ii) a recognition sequence that binds to
a DNA linker, (iii) a spacer sequence of programmable length to control interparticle
distances, and (iv) a “sticky end” sequence that drives nanoparticle assembly via DNA
hybridization interactions. Although only a single linkage is shown schematically
here, DNA-NPs typically contain tens to hundreds of DNA linkers per particle. (C to I)

The superlattices reported herein are isostructural with (C) fcc, (D) bcc, (E) hcp, (F)
CsCl, (G) AlB2, (H) Cr3Si, and (I) Cs6C60 lattices. From left to right, each panel contains
a model unit cell (not to scale), 1D and 2D (inset) x-ray diffraction (SAXS) patterns,
and a TEM image of resin-embedded superlattices, along with the unit cell viewed
along the appropriate projection axis (inset). Lines in the model denote edges of the
unit cell; individual DNA connections are omitted for clarity. SAXS data are plots of
nanoparticle superlattice structure factor S(q) (y axis, arbitrary units) versus scattering
vector q (x axis, Å−1). Black traces are experimental data; blue traces are modeled
SAXS patterns for perfect lattices. All scale bars in the TEM images are 50 nm. See
(19) for a complete list of particle sizes and lattice parameters.
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each NP in a bcc lattice possesses more nearest
neighbors of the opposite particle type. Note
that this rule holds for a wide range of nano-
particle diameters and oligonucleotide lengths,
and it can therefore be used to make many fcc
and bcc lattices with well-defined and predict-
able lattice parameters over the 25- to 150-nm
range (figs. S2 and S3).

Rule 2: When two lattices are of similar
stability, the kinetic product can be produced by
slowing the rate at which individual DNA linkers
dehybridize and subsequently rehybridize. For
example, theoretical predictions show that, al-
though they possess the same number of nearest
neighbors, hcp lattices are slightly less stable than

fcc lattices, and thus any hcp crystals observed
would likely be kinetic products (20). Indeed, we
have observed hcp lattices in these systems, but
only as metastable structures that reorganize into
fcc lattices upon annealing (15). Stable hcp lat-
tices can be realized by annealing at lower so-
lution temperatures and decreasing the local DNA
density around a NP surface (Fig. 1E). These two
changes both slow the DNA linker sticky end re-
lease and rehybridization rates necessary for crys-
tallization, and promote lattice growth over lattice
reorganization, thereby stabilizing initial kinetic
products. For example, by using longDNA strands
(~30 nm) and NPs bearing a small number of
linkers (7.2-nm NPs, 20 T 3 DNA strands per

particle) and annealing at 25° to 30°C, one can
preferentially stabilize the growth of initial hcp-
like lattices that form during early time points
of the assembly process (15). It is important to
note that although this process can consistently
be used to produce large (>1 mm) hcp lattices
that are stable for extended periods of time (sev-
eral weeks after formation), these structures are
still kinetic products. Annealing hcp lattices at
higher temperatures for several hours always re-
sults in the lattices reorganizing to an fcc structure
(fig. S23).

Rule 3: The overall hydrodynamic radius of a
DNA-NP, rather than the sizes of its individual
NP or oligonucleotide components, dictates its

Fig. 1. (A) Nanoparticle superlattice engineering with DNA, unlike conventional
particle crystallization, allows for independent control of three important design
parameters (particle size, lattice parameters, and crystallographic symmetry) by
separating the identity of the particle from the variables that control its assembly. (B)
The DNA strands that assemble these nanoparticle superlattices consist of (i) an alkyl-
thiolmoiety and10-base nonbinding region, (ii) a recognition sequence that binds to
a DNA linker, (iii) a spacer sequence of programmable length to control interparticle
distances, and (iv) a “sticky end” sequence that drives nanoparticle assembly via DNA
hybridization interactions. Although only a single linkage is shown schematically
here, DNA-NPs typically contain tens to hundreds of DNA linkers per particle. (C to I)

The superlattices reported herein are isostructural with (C) fcc, (D) bcc, (E) hcp, (F)
CsCl, (G) AlB2, (H) Cr3Si, and (I) Cs6C60 lattices. From left to right, each panel contains
a model unit cell (not to scale), 1D and 2D (inset) x-ray diffraction (SAXS) patterns,
and a TEM image of resin-embedded superlattices, along with the unit cell viewed
along the appropriate projection axis (inset). Lines in the model denote edges of the
unit cell; individual DNA connections are omitted for clarity. SAXS data are plots of
nanoparticle superlattice structure factor S(q) (y axis, arbitrary units) versus scattering
vector q (x axis, Å−1). Black traces are experimental data; blue traces are modeled
SAXS patterns for perfect lattices. All scale bars in the TEM images are 50 nm. See
(19) for a complete list of particle sizes and lattice parameters.
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each NP in a bcc lattice possesses more nearest
neighbors of the opposite particle type. Note
that this rule holds for a wide range of nano-
particle diameters and oligonucleotide lengths,
and it can therefore be used to make many fcc
and bcc lattices with well-defined and predict-
able lattice parameters over the 25- to 150-nm
range (figs. S2 and S3).

Rule 2: When two lattices are of similar
stability, the kinetic product can be produced by
slowing the rate at which individual DNA linkers
dehybridize and subsequently rehybridize. For
example, theoretical predictions show that, al-
though they possess the same number of nearest
neighbors, hcp lattices are slightly less stable than

fcc lattices, and thus any hcp crystals observed
would likely be kinetic products (20). Indeed, we
have observed hcp lattices in these systems, but
only as metastable structures that reorganize into
fcc lattices upon annealing (15). Stable hcp lat-
tices can be realized by annealing at lower so-
lution temperatures and decreasing the local DNA
density around a NP surface (Fig. 1E). These two
changes both slow the DNA linker sticky end re-
lease and rehybridization rates necessary for crys-
tallization, and promote lattice growth over lattice
reorganization, thereby stabilizing initial kinetic
products. For example, by using longDNA strands
(~30 nm) and NPs bearing a small number of
linkers (7.2-nm NPs, 20 T 3 DNA strands per

particle) and annealing at 25° to 30°C, one can
preferentially stabilize the growth of initial hcp-
like lattices that form during early time points
of the assembly process (15). It is important to
note that although this process can consistently
be used to produce large (>1 mm) hcp lattices
that are stable for extended periods of time (sev-
eral weeks after formation), these structures are
still kinetic products. Annealing hcp lattices at
higher temperatures for several hours always re-
sults in the lattices reorganizing to an fcc structure
(fig. S23).

Rule 3: The overall hydrodynamic radius of a
DNA-NP, rather than the sizes of its individual
NP or oligonucleotide components, dictates its

Fig. 1. (A) Nanoparticle superlattice engineering with DNA, unlike conventional
particle crystallization, allows for independent control of three important design
parameters (particle size, lattice parameters, and crystallographic symmetry) by
separating the identity of the particle from the variables that control its assembly. (B)
The DNA strands that assemble these nanoparticle superlattices consist of (i) an alkyl-
thiolmoiety and10-base nonbinding region, (ii) a recognition sequence that binds to
a DNA linker, (iii) a spacer sequence of programmable length to control interparticle
distances, and (iv) a “sticky end” sequence that drives nanoparticle assembly via DNA
hybridization interactions. Although only a single linkage is shown schematically
here, DNA-NPs typically contain tens to hundreds of DNA linkers per particle. (C to I)

The superlattices reported herein are isostructural with (C) fcc, (D) bcc, (E) hcp, (F)
CsCl, (G) AlB2, (H) Cr3Si, and (I) Cs6C60 lattices. From left to right, each panel contains
a model unit cell (not to scale), 1D and 2D (inset) x-ray diffraction (SAXS) patterns,
and a TEM image of resin-embedded superlattices, along with the unit cell viewed
along the appropriate projection axis (inset). Lines in the model denote edges of the
unit cell; individual DNA connections are omitted for clarity. SAXS data are plots of
nanoparticle superlattice structure factor S(q) (y axis, arbitrary units) versus scattering
vector q (x axis, Å−1). Black traces are experimental data; blue traces are modeled
SAXS patterns for perfect lattices. All scale bars in the TEM images are 50 nm. See
(19) for a complete list of particle sizes and lattice parameters.
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each NP in a bcc lattice possesses more nearest
neighbors of the opposite particle type. Note
that this rule holds for a wide range of nano-
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and it can therefore be used to make many fcc
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slowing the rate at which individual DNA linkers
dehybridize and subsequently rehybridize. For
example, theoretical predictions show that, al-
though they possess the same number of nearest
neighbors, hcp lattices are slightly less stable than

fcc lattices, and thus any hcp crystals observed
would likely be kinetic products (20). Indeed, we
have observed hcp lattices in these systems, but
only as metastable structures that reorganize into
fcc lattices upon annealing (15). Stable hcp lat-
tices can be realized by annealing at lower so-
lution temperatures and decreasing the local DNA
density around a NP surface (Fig. 1E). These two
changes both slow the DNA linker sticky end re-
lease and rehybridization rates necessary for crys-
tallization, and promote lattice growth over lattice
reorganization, thereby stabilizing initial kinetic
products. For example, by using longDNA strands
(~30 nm) and NPs bearing a small number of
linkers (7.2-nm NPs, 20 T 3 DNA strands per

particle) and annealing at 25° to 30°C, one can
preferentially stabilize the growth of initial hcp-
like lattices that form during early time points
of the assembly process (15). It is important to
note that although this process can consistently
be used to produce large (>1 mm) hcp lattices
that are stable for extended periods of time (sev-
eral weeks after formation), these structures are
still kinetic products. Annealing hcp lattices at
higher temperatures for several hours always re-
sults in the lattices reorganizing to an fcc structure
(fig. S23).

Rule 3: The overall hydrodynamic radius of a
DNA-NP, rather than the sizes of its individual
NP or oligonucleotide components, dictates its

Fig. 1. (A) Nanoparticle superlattice engineering with DNA, unlike conventional
particle crystallization, allows for independent control of three important design
parameters (particle size, lattice parameters, and crystallographic symmetry) by
separating the identity of the particle from the variables that control its assembly. (B)
The DNA strands that assemble these nanoparticle superlattices consist of (i) an alkyl-
thiolmoiety and10-base nonbinding region, (ii) a recognition sequence that binds to
a DNA linker, (iii) a spacer sequence of programmable length to control interparticle
distances, and (iv) a “sticky end” sequence that drives nanoparticle assembly via DNA
hybridization interactions. Although only a single linkage is shown schematically
here, DNA-NPs typically contain tens to hundreds of DNA linkers per particle. (C to I)

The superlattices reported herein are isostructural with (C) fcc, (D) bcc, (E) hcp, (F)
CsCl, (G) AlB2, (H) Cr3Si, and (I) Cs6C60 lattices. From left to right, each panel contains
a model unit cell (not to scale), 1D and 2D (inset) x-ray diffraction (SAXS) patterns,
and a TEM image of resin-embedded superlattices, along with the unit cell viewed
along the appropriate projection axis (inset). Lines in the model denote edges of the
unit cell; individual DNA connections are omitted for clarity. SAXS data are plots of
nanoparticle superlattice structure factor S(q) (y axis, arbitrary units) versus scattering
vector q (x axis, Å−1). Black traces are experimental data; blue traces are modeled
SAXS patterns for perfect lattices. All scale bars in the TEM images are 50 nm. See
(19) for a complete list of particle sizes and lattice parameters.
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each NP in a bcc lattice possesses more nearest
neighbors of the opposite particle type. Note
that this rule holds for a wide range of nano-
particle diameters and oligonucleotide lengths,
and it can therefore be used to make many fcc
and bcc lattices with well-defined and predict-
able lattice parameters over the 25- to 150-nm
range (figs. S2 and S3).

Rule 2: When two lattices are of similar
stability, the kinetic product can be produced by
slowing the rate at which individual DNA linkers
dehybridize and subsequently rehybridize. For
example, theoretical predictions show that, al-
though they possess the same number of nearest
neighbors, hcp lattices are slightly less stable than

fcc lattices, and thus any hcp crystals observed
would likely be kinetic products (20). Indeed, we
have observed hcp lattices in these systems, but
only as metastable structures that reorganize into
fcc lattices upon annealing (15). Stable hcp lat-
tices can be realized by annealing at lower so-
lution temperatures and decreasing the local DNA
density around a NP surface (Fig. 1E). These two
changes both slow the DNA linker sticky end re-
lease and rehybridization rates necessary for crys-
tallization, and promote lattice growth over lattice
reorganization, thereby stabilizing initial kinetic
products. For example, by using longDNA strands
(~30 nm) and NPs bearing a small number of
linkers (7.2-nm NPs, 20 T 3 DNA strands per

particle) and annealing at 25° to 30°C, one can
preferentially stabilize the growth of initial hcp-
like lattices that form during early time points
of the assembly process (15). It is important to
note that although this process can consistently
be used to produce large (>1 mm) hcp lattices
that are stable for extended periods of time (sev-
eral weeks after formation), these structures are
still kinetic products. Annealing hcp lattices at
higher temperatures for several hours always re-
sults in the lattices reorganizing to an fcc structure
(fig. S23).

Rule 3: The overall hydrodynamic radius of a
DNA-NP, rather than the sizes of its individual
NP or oligonucleotide components, dictates its

Fig. 1. (A) Nanoparticle superlattice engineering with DNA, unlike conventional
particle crystallization, allows for independent control of three important design
parameters (particle size, lattice parameters, and crystallographic symmetry) by
separating the identity of the particle from the variables that control its assembly. (B)
The DNA strands that assemble these nanoparticle superlattices consist of (i) an alkyl-
thiolmoiety and10-base nonbinding region, (ii) a recognition sequence that binds to
a DNA linker, (iii) a spacer sequence of programmable length to control interparticle
distances, and (iv) a “sticky end” sequence that drives nanoparticle assembly via DNA
hybridization interactions. Although only a single linkage is shown schematically
here, DNA-NPs typically contain tens to hundreds of DNA linkers per particle. (C to I)

The superlattices reported herein are isostructural with (C) fcc, (D) bcc, (E) hcp, (F)
CsCl, (G) AlB2, (H) Cr3Si, and (I) Cs6C60 lattices. From left to right, each panel contains
a model unit cell (not to scale), 1D and 2D (inset) x-ray diffraction (SAXS) patterns,
and a TEM image of resin-embedded superlattices, along with the unit cell viewed
along the appropriate projection axis (inset). Lines in the model denote edges of the
unit cell; individual DNA connections are omitted for clarity. SAXS data are plots of
nanoparticle superlattice structure factor S(q) (y axis, arbitrary units) versus scattering
vector q (x axis, Å−1). Black traces are experimental data; blue traces are modeled
SAXS patterns for perfect lattices. All scale bars in the TEM images are 50 nm. See
(19) for a complete list of particle sizes and lattice parameters.
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that this rule holds for a wide range of nano-
particle diameters and oligonucleotide lengths,
and it can therefore be used to make many fcc
and bcc lattices with well-defined and predict-
able lattice parameters over the 25- to 150-nm
range (figs. S2 and S3).

Rule 2: When two lattices are of similar
stability, the kinetic product can be produced by
slowing the rate at which individual DNA linkers
dehybridize and subsequently rehybridize. For
example, theoretical predictions show that, al-
though they possess the same number of nearest
neighbors, hcp lattices are slightly less stable than

fcc lattices, and thus any hcp crystals observed
would likely be kinetic products (20). Indeed, we
have observed hcp lattices in these systems, but
only as metastable structures that reorganize into
fcc lattices upon annealing (15). Stable hcp lat-
tices can be realized by annealing at lower so-
lution temperatures and decreasing the local DNA
density around a NP surface (Fig. 1E). These two
changes both slow the DNA linker sticky end re-
lease and rehybridization rates necessary for crys-
tallization, and promote lattice growth over lattice
reorganization, thereby stabilizing initial kinetic
products. For example, by using longDNA strands
(~30 nm) and NPs bearing a small number of
linkers (7.2-nm NPs, 20 T 3 DNA strands per

particle) and annealing at 25° to 30°C, one can
preferentially stabilize the growth of initial hcp-
like lattices that form during early time points
of the assembly process (15). It is important to
note that although this process can consistently
be used to produce large (>1 mm) hcp lattices
that are stable for extended periods of time (sev-
eral weeks after formation), these structures are
still kinetic products. Annealing hcp lattices at
higher temperatures for several hours always re-
sults in the lattices reorganizing to an fcc structure
(fig. S23).

Rule 3: The overall hydrodynamic radius of a
DNA-NP, rather than the sizes of its individual
NP or oligonucleotide components, dictates its

Fig. 1. (A) Nanoparticle superlattice engineering with DNA, unlike conventional
particle crystallization, allows for independent control of three important design
parameters (particle size, lattice parameters, and crystallographic symmetry) by
separating the identity of the particle from the variables that control its assembly. (B)
The DNA strands that assemble these nanoparticle superlattices consist of (i) an alkyl-
thiolmoiety and10-base nonbinding region, (ii) a recognition sequence that binds to
a DNA linker, (iii) a spacer sequence of programmable length to control interparticle
distances, and (iv) a “sticky end” sequence that drives nanoparticle assembly via DNA
hybridization interactions. Although only a single linkage is shown schematically
here, DNA-NPs typically contain tens to hundreds of DNA linkers per particle. (C to I)

The superlattices reported herein are isostructural with (C) fcc, (D) bcc, (E) hcp, (F)
CsCl, (G) AlB2, (H) Cr3Si, and (I) Cs6C60 lattices. From left to right, each panel contains
a model unit cell (not to scale), 1D and 2D (inset) x-ray diffraction (SAXS) patterns,
and a TEM image of resin-embedded superlattices, along with the unit cell viewed
along the appropriate projection axis (inset). Lines in the model denote edges of the
unit cell; individual DNA connections are omitted for clarity. SAXS data are plots of
nanoparticle superlattice structure factor S(q) (y axis, arbitrary units) versus scattering
vector q (x axis, Å−1). Black traces are experimental data; blue traces are modeled
SAXS patterns for perfect lattices. All scale bars in the TEM images are 50 nm. See
(19) for a complete list of particle sizes and lattice parameters.
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each NP in a bcc lattice possesses more nearest
neighbors of the opposite particle type. Note
that this rule holds for a wide range of nano-
particle diameters and oligonucleotide lengths,
and it can therefore be used to make many fcc
and bcc lattices with well-defined and predict-
able lattice parameters over the 25- to 150-nm
range (figs. S2 and S3).

Rule 2: When two lattices are of similar
stability, the kinetic product can be produced by
slowing the rate at which individual DNA linkers
dehybridize and subsequently rehybridize. For
example, theoretical predictions show that, al-
though they possess the same number of nearest
neighbors, hcp lattices are slightly less stable than

fcc lattices, and thus any hcp crystals observed
would likely be kinetic products (20). Indeed, we
have observed hcp lattices in these systems, but
only as metastable structures that reorganize into
fcc lattices upon annealing (15). Stable hcp lat-
tices can be realized by annealing at lower so-
lution temperatures and decreasing the local DNA
density around a NP surface (Fig. 1E). These two
changes both slow the DNA linker sticky end re-
lease and rehybridization rates necessary for crys-
tallization, and promote lattice growth over lattice
reorganization, thereby stabilizing initial kinetic
products. For example, by using longDNA strands
(~30 nm) and NPs bearing a small number of
linkers (7.2-nm NPs, 20 T 3 DNA strands per

particle) and annealing at 25° to 30°C, one can
preferentially stabilize the growth of initial hcp-
like lattices that form during early time points
of the assembly process (15). It is important to
note that although this process can consistently
be used to produce large (>1 mm) hcp lattices
that are stable for extended periods of time (sev-
eral weeks after formation), these structures are
still kinetic products. Annealing hcp lattices at
higher temperatures for several hours always re-
sults in the lattices reorganizing to an fcc structure
(fig. S23).

Rule 3: The overall hydrodynamic radius of a
DNA-NP, rather than the sizes of its individual
NP or oligonucleotide components, dictates its

Fig. 1. (A) Nanoparticle superlattice engineering with DNA, unlike conventional
particle crystallization, allows for independent control of three important design
parameters (particle size, lattice parameters, and crystallographic symmetry) by
separating the identity of the particle from the variables that control its assembly. (B)
The DNA strands that assemble these nanoparticle superlattices consist of (i) an alkyl-
thiolmoiety and10-base nonbinding region, (ii) a recognition sequence that binds to
a DNA linker, (iii) a spacer sequence of programmable length to control interparticle
distances, and (iv) a “sticky end” sequence that drives nanoparticle assembly via DNA
hybridization interactions. Although only a single linkage is shown schematically
here, DNA-NPs typically contain tens to hundreds of DNA linkers per particle. (C to I)

The superlattices reported herein are isostructural with (C) fcc, (D) bcc, (E) hcp, (F)
CsCl, (G) AlB2, (H) Cr3Si, and (I) Cs6C60 lattices. From left to right, each panel contains
a model unit cell (not to scale), 1D and 2D (inset) x-ray diffraction (SAXS) patterns,
and a TEM image of resin-embedded superlattices, along with the unit cell viewed
along the appropriate projection axis (inset). Lines in the model denote edges of the
unit cell; individual DNA connections are omitted for clarity. SAXS data are plots of
nanoparticle superlattice structure factor S(q) (y axis, arbitrary units) versus scattering
vector q (x axis, Å−1). Black traces are experimental data; blue traces are modeled
SAXS patterns for perfect lattices. All scale bars in the TEM images are 50 nm. See
(19) for a complete list of particle sizes and lattice parameters.
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+ what else ???? 

a volume fraction of colloids ϕcoll = 0:01, and a larger volume
fraction of solvent ϕsol ≈ 0:2. More details are given in SI Text.
Even with a geometrically compatible scheme for self-repli-

cation, a successful implementation still requires an extensive
search for both bond strengths and the characteristics of the
disassociation reaction nc. With bond optimization, and the value

nc = 9, Fig. 3 presents typical snapshots of a simulation showing
successful self-replication, where different phases of the reaction
cycle can be recognized. Fig. 3A shows exponential growth of the
number of octahedra, as expected for a hypercycle.
Such robust results rely critically on avoiding traps along the

self-replication reaction pathway, requiring careful choice of

A

A

A’

A’

B
B’

B
C B’

C’

C
C’

B*
C*

B*’
C*’

A

A

B
B

C

C

B*

C*

A’

A’

B’
B’

C’

C’

A’

A’

B’ B’
C’

C’

B*’

C*’

A

A

B
C

B*’

C*’
B*

C*

B
C

I
VIII

III

Ia

IIa

IIIa

IVa

A
A
B
C

B C B*’ C*’ A’ B’ C’ B* C*

B*’

C*’

A’
B’
C’

B*

C*

A B

Fig. 2. A detailed self-replication scheme for an octahedron. (A) The reaction scheme. (B) Full interaction matrix between particle types present in the
simulation. Interactions between particle types A=A′ and B,C,B*,C*=B′,C′,B*′,C*′ (colored light orange) are weaker than the other interactions (dark orange).
The ratio of these bond strengths is optimized (SI Text). Once particles form an octahedron or a catalyst, their bonds become irreversible.
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Fig. 3. DPD simulation of octahedron self-replication using 512 colloidal particles. (A) The total number of octahedra (both ABC and A′B′C′) as function of
time. The black line ∼ ex is a guide for the eye. (B1–B8) Typical snapshots of a simulation (see SI Text for the movie). Colloids are colored if they comprise an Oh
or a catalyst (color scheme like in Fig. 2A). Monomers are in general not shown unless they are attached to an Oh/catalyst (transparent spheres). These
snapshots reveal phases of the reaction cycle (Fig. 2A). For example, B3 shows a melting process, after which in B4 a new octahedron is formed together with
a new catalyst. In B8, there are 12 octahedral clusters apart from the initial seed. One of the replicas (marked with a red arrow) is a misfolded octahedron.
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We construct schemes for self-replicating clusters of spherical
particles, validated with computer simulations in a finite-temper-
ature heat bath. Each particle has stickers uniformly distributed
over its surface, and the rules for self-replication are encoded into
the specificity and strength of interactions. Geometrical constraints
imply that a compact cluster can copy itself only with help of
a catalyst, a smaller cluster that increases the surface area to form
a template. Replication efficiency requires optimizing interaction
energies to destabilize all kinetic traps along the reaction pathway,
as well as initiating a trigger event that specifies when the new
cluster disassociates from its parent. Although there is a reasonably
wide parameter range for self-replication, there is a subtle balance
between the speed of the reaction, and the error rate. As a proof of
principle, we construct interactions that self-replicate an octahe-
dron, requiring a two-particle dimer for a catalyst. The resulting self-
replication scheme is a hypercycle, and computer simulations confirm
the exponential growth of both octahedron and catalyst replicas.

self-assembly | catalytic cycle

The ability to invent materials that replicate themselves could
lead to a paradigm shift in materials discovery. The expo-

nential amplification of biological molecules, followed by mu-
tation and selection, has allowed the development of powerful
protocols for evolving proteins with improved catalytic proper-
ties (1, 2). However, whereas modern materials science excels at
synthesis, there has been much less success at building artificial
self-replicating materials. If there were methods for self-repli-
cating complex materials, then selection–amplification cycles
would surely discover solutions with greatly enhanced properties.
The logical framework required for objects to replicate them-

selves was given by von Neumann. He gave an explicit construc-
tion of a self-replicating 2D lattice of coupled cellular automata
(3), in which a finite area of the lattice replicates itself on an
adjacent region. Over the years, von Neumann’s schemes have
been refined (4–8), but an efficiently self-replicating artificial
system has never been physically realized. To date, artificial self-
replicating systems have focused on linear chain-like structures,
where the replicate is templated on the original, closely analogous
to DNA, whose replication machinery was unknown at the time of
von Neumann’s writings. For example, Seeman and coworkers (9)
have recently described and experimentally demonstrated the
creation of a self-replicating DNA-based material, using tile motifs
with specific binding at their edges and faces. In their scheme, the
replication of each generation is achieved by manipulating chem-
istry and temperature, with complementary motifs manually sep-
arated from the initial sequence. The newly formed generation is
an accurate copy about one-third of time. Although this is a step
in the desired direction, this setup does not achieve exponential
growth, and moreover this type of protocol is restricted to linear
chain-like molecules.
In this paper, we present explicit examples of physical inter-

actions between spheres in a finite-temperature bath that lead to
self-replication of clusters, in a manner that is geometrically
distinct from replicating reactions of linear chains. Although our
examples were inspired by recent experiments with colloidal
spheres or nanoparticles coated with DNA, we believe that our
construction is sufficiently general that it might prove implement-
able with a broader class of materials, such as protein complexes

with designed interactions (10). We make no attempt to con-
struct a self-replicating material of minimal complexity, but in-
stead endeavor to show that efficient schemes exist, where the
errors caused by thermal fluctuations into misfolded states do
not inhibit the replication reaction.
In our examples, each sphere has stickers distributed uniformly

over its surface, causing short-ranged, specific interactions with
other spheres. The rules for self-replication are encoded into the
specificity and strength of the interactions. Bond strengths must be
chosen not only to respect the geometry of the desired self-rep-
lication reaction, but also, critically, to avoid kinetic traps. We find
that self-replicating a compact cluster requires a specifically de-
signed catalyst, a smaller cluster that allows the parent to template
itself from a finite-concentration monomer bath. Additionally,
efficient self-replication requires specifying an allosteric trigger
event, where the daughter structure separates from the parent,
and the bonds within the daughter stabilize. The self-replication
reactions we outline replicate both the parent cluster and the
catalyst, so that a single catalyst and cluster are sufficient for ex-
ponential growth of both. Computer simulations of interacting
particles in a thermal bath verify that the design interactions lead
to efficient self-replication.
For definiteness, we focus on a detailed scheme for the specific

case of a self-replicating octahedron, as shown in Fig. 1A. The
first step is the design of the initial seed octahedron (red par-
ticles). Octahedron is one of the two rigid (ground-state) struc-
tures, having 12 contacts, that can be formed out of 6 colloidal
particles, the other being a polytetrahedron. When self-assem-
bling from identical particles, the yield of octahedra is ∼4% and
that of the polytetrahedra is ∼96%, the difference stemming from
rotational entropy (11, 12). If, however, particles are not identical
but have stickers that are chosen to satisfy certain interaction
rules (13), octahedron becomes the only ground-state structure
that can be self-assembled, and therefore the yield is improved

Significance

One of the hallmarks of living systems is self-replication.
Mimicking nature’s ability to self-replicate would not only give
more insight into biological mechanisms of self-replication but
also could potentially revolutionize material science and nano-
technology. Over the past 60 y, much research, both theoretical
and experimental, has been focused on understanding and
realizing self-replicating systems. However, artificial systems
that efficiently self-replicate remained elusive. In this paper,
we construct schemes for self-replication of small clusters of
isotropic particles. By manipulating the energy landscape of
the process, we show how exponential replication can be
achieved. As a proof of principle, we show exponential self-
replication of an octahedral cluster using finite-temperature
computer simulations.
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a volume fraction of colloids ϕcoll = 0:01, and a larger volume
fraction of solvent ϕsol ≈ 0:2. More details are given in SI Text.
Even with a geometrically compatible scheme for self-repli-

cation, a successful implementation still requires an extensive
search for both bond strengths and the characteristics of the
disassociation reaction nc. With bond optimization, and the value

nc = 9, Fig. 3 presents typical snapshots of a simulation showing
successful self-replication, where different phases of the reaction
cycle can be recognized. Fig. 3A shows exponential growth of the
number of octahedra, as expected for a hypercycle.
Such robust results rely critically on avoiding traps along the

self-replication reaction pathway, requiring careful choice of
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Fig. 3. DPD simulation of octahedron self-replication using 512 colloidal particles. (A) The total number of octahedra (both ABC and A′B′C′) as function of
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or a catalyst (color scheme like in Fig. 2A). Monomers are in general not shown unless they are attached to an Oh/catalyst (transparent spheres). These
snapshots reveal phases of the reaction cycle (Fig. 2A). For example, B3 shows a melting process, after which in B4 a new octahedron is formed together with
a new catalyst. In B8, there are 12 octahedral clusters apart from the initial seed. One of the replicas (marked with a red arrow) is a misfolded octahedron.

1750 | www.pnas.org/cgi/doi/10.1073/pnas.1313601111 Zeravcic and Brenner
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What is Geometrical Frustration? 
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FIG. 1. (a) Particle packing in two dimensions: equilateral triangles are preferred locally 
and pack naturally to form a close-packed triangular lattice. (b) Particle packing in three 
dimensions: although tetrahedra are preferred locally and combine with slight distortions to 
form a regular icosahedron, the fivefold symmetry axes of the icosahedron preclude a 
simple space-filling lattice. 

For identical particles interacting with simple pair potentials, liquids 
would have the same short-range order as crystals, crystals would always 
form a triangular lattice, and undercooling liquids fast enough to form a 
glass would be virtually impossible. The reason for this state of affairs lies 
in the geometry of 2-D particle packings: As shown in Fig. l a ,  triplets of 
particles will tend to form equilateral triangles to minimize the energy or 
maximize the density. Six such triangles pack naturally to form a 
hexagon, which should be the dominant motif characterizing short-range 
order in a dense liquid. Such a hexagon can be extended very easily to 
form a triangular (i.e., hexagonal close-packed) lattice, which is the 
expected ground state for classical particles with a wide variety of pair 
potentials. A liquid with hexagonal short-range order automatically 
contains many nuclei of the stable crystal, which prevents the undercool- 
ing necessary to form a glass. 

The situation is quite different in three dimensions, again for elemen- 
tary geometrical reasons: Four hard spheres form a dense tetrahedral 
packing, in which each sphere is in contact with the three others. 

Geometric frustration: locally preferred order ≠ globally preferred order 
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would have the same short-range order as crystals, crystals would always 
form a triangular lattice, and undercooling liquids fast enough to form a 
glass would be virtually impossible. The reason for this state of affairs lies 
in the geometry of 2-D particle packings: As shown in Fig. l a ,  triplets of 
particles will tend to form equilateral triangles to minimize the energy or 
maximize the density. Six such triangles pack naturally to form a 
hexagon, which should be the dominant motif characterizing short-range 
order in a dense liquid. Such a hexagon can be extended very easily to 
form a triangular (i.e., hexagonal close-packed) lattice, which is the 
expected ground state for classical particles with a wide variety of pair 
potentials. A liquid with hexagonal short-range order automatically 
contains many nuclei of the stable crystal, which prevents the undercool- 
ing necessary to form a glass. 

The situation is quite different in three dimensions, again for elemen- 
tary geometrical reasons: Four hard spheres form a dense tetrahedral 
packing, in which each sphere is in contact with the three others. 
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Behaviour of small groups of particles can help understand 
thermodynamic or dynamic phenomena

ARTICLES
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Figure 2 Coordinates identified as belonging to different LFSs. a, Liquid, cP/cPG = 0.73±0.04. b, (Ergodic) liquid close to gelation, cP/cPG = 0.92±0.04. c, Colloidal
gel, cP/cPG = 1.08±0.04. d, Dilute gel, � = 0.05, cP = 1.76⇥10�4, showing percolating LFSs. Particles are colour-coded as follows: grey, free (not in any cluster), shown
0.4 actual size; white, m= 5, shown 0.6 actual size; yellow, crystalline, shown 0.8 actual size. Other particles are members of LFSs of size m given by the colours, shown
0.8 actual size.

global potential-energy minima for clusters interacting via the
Morse potential (with range parameter ⇢0 = 30) to be LFSs24.
Furthermore, we use the Morse potential in our brownian
dynamics simulations, and find a very similar behaviour (see the
Supplementary Information). To identify these structures in the
bulk system, we have developed a novel topological method, TCC,
that identifies LFSs in terms of their bond network. We begin with
the bond network between all of the particles. The bond length
is equated with the interaction range, that is, the polymer size,
0.18�, where � = 2.4 µm is the colloid diameter25,26, leading to
percolation in both the colloidal gel and the liquid for � = 0.35.
All of the shortest path three-, four- and five-membered rings in
the bond network are identified. These rings are then classified in
terms of those with an extra particle bonded to all of the particles
in the ring and those that have two or no such extra particles.
We term these the basic LFSs, into which many of the larger LFSs
can be decomposed. A given particle may be a member of more
than one basic LFS, that is, basic LFSs may overlap. We use this
strategy to identify all of the LFSs with 13 or less particles. The LFSs
we consider are shown in Supplementary Information, Fig. S1. In
addition, we identify the f.c.c. and hexagonal close-packed (h.c.p.)
13-particle structures in terms of a central particle and its 12 nearest
neighbours. If a particle was found to be part of more than one LFS
size, it was labelled as part of the larger size, and the association
with the smaller ignored. For more details, see ref. 28.

Having outlined our method, we proceed to the results.
Real-space confocal microscope images are shown in Fig. 1a–c.
At low polymer concentrations, a colloidal liquid is seen
(Fig. 1a,b); higher concentrations lead to a dynamically arrested
network, or gel, (Fig. 1c), with large-scale structure consistent
with arrested spinodal decomposition4. The radial distribution
function illustrates the change in structure resulting from the
increasing levels of attraction, with a rise in the first-, and higher
order maxima, accompanied by a shift to smaller separations,
shown in Supplementary Information, Fig. S3. The mean squared
displacement (MSD) is shown in Fig. 1f. This shows typical
characteristics of dynamical arrest, and leads us to a definition
of the polymer concentration cP required for gelation cPG. At low
polymer concentration, cP/cPG < 1, we find a diVusive liquid;
higher polymer concentration, cP/cPG > 1, leads to dynamical
arrest, where only very local displacements are observed.

Figure 1d shows the distribution of the bond-orientational
order parameter W6. These exhibit little change, only a fractional
shift to negative values, consistent with a slight increase in five-fold
symmetry, for moderate polymer concentrations. Our data are in
line with that of ref. 23 in that W6 may not change greatly on arrest.
However, dynamical arrest certainly occurs (Fig. 1f).

We now consider direct measurement of LFSs using the
topological cluster classification. Figure 2a shows LFSs in a liquid,
cP/cPG = 0.73 ± 0.04. The LFSs are readily identified, but, at
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C. Patrick Royall, S. R. Williams, T. Ohtsuka, 
H. Tanaka, Nat. Mater. 7, 556 (2008)

creation of local “global 
minima” leads to gel 
formation

nucleation, phase transitions, glass transition, gel formation, jamming, etc

F.C. Frank, Proc. R. Soc. Lond. A Math. 
Phys. Sci. 215, 43 (1952)

44 F. C. Frank (Discussion Meeting) 
That the facts are otherwise had been shown by Mendenhall & Ingersoll (I908). 

They observed particles of molten metal on a Nernst glower. Once melted, the 
particles stayed molten when cooled well below the melting-point. When they 
froze they emitted flashes of light (liberating the latent heat of fusion and rising 
up to the melting point again), and their surfaces changed from smoothly spherical 
to a rough corrugated form. Their rhodium and platinum with melting-points 
about 1910 and 1745? C were observed to supercool sometimes down to 1540 and 
1370? C-about 370? C in each case. Though they give no more figures, they 
report the same general behaviour with gold, palladium, silicon, iridium and silver. 

The theoretical argument is misleading also. Consider the question: 'In how 
many different ways can one put twelve billiard balls in simultaneous contact with 
one, counting as different the arrangements which cannot be transformed into 
each other without breaking contact with the centre ball?' The answer is three. Two 
which come to the mind of any crystallographer occur in the face-centred cubic 
and hexagonal close-packed lattices. The third comes to the mind of any good 
schoolboy, and is to put one at the centre of each face of a regular dodecahedron. 
That body has five-fold axes, which are abhorrent to crystal symmetry: unlike 
the other two packings, this one cannot be continuously extended in three 
dimensions. You will find that the outer twelve in this packing do not touch each 
other. If we have mutually attracting deformable spheres, like atoms, they will 
be a little closer to the centre in this third type of packing; and if one assumes they 
are argon atoms (interacting in pairs with attractive and repulsive energy terms 
proportional to r-6 and r1-2) one may calculate that the binding energy of the 
group of thirteen is 84 00 greater than for the other two packings. This is 40 % of 
the lattice energy per atom in the crystal. I infer that this will be a very common 
grouping in liquids, that most of the groups of twelve atoms around one will be in 
this form, that freezing involves a substantial rearrangement, and not merely an 
extension of the same kind of order from short distances to long ones; a rearrange- 
ment which is quite costly of energy in small localities, and only becomes 
economical when extended over a considerable volume, because unlike the other 
packing it can be so extended without discontinuities. 

I think it is in the light of these considerations that Turnbull's theory becomes 
a sensible and natural one. 

In the first place, Turnbull's experimental work confirms that of Mendenhall 
& Ingersoll, and extends it to a representative selection of seventeen different 
metals. They can all be supercooled by about 15 to 25 % of the absolute melting- 
point. The general experimental principle is to subdivide the metal into many small 
particles, so that when one freezes it does not affect the others. For the low- 
melting metals they are shaken up with a colloid stabilizer in some kind of oil, 
and for the high-melting metals little chips are heated on a thin foil of quartz glass. 
Mercury was studied particularly intensively. The freezing temperature was found 
to be only slightly dependent on droplet size in the range 1 to 100 It, but to be 
very dependent on the stabilizing film. For example, with sulphide on the surface 
they froze at 100 C of supercooling, with sodium oleate at 350 C, with mercury 
acetate at 450 C, with stearate at 60? C and with laurate or benzoate at 80? C. 
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Fig. 2 Zero temperature “phase diagramÏ showing the variation of
the lowest-energy structure with N and The data points are theo0 .
values of at which the global minimum changes. The lines joiningo0the data points divide the phase diagram into regions where the
global minima have similar structures. The solid lines denote the
boundaries between the four main structural types : icosahedral, deca-
hedral, close-packed and those associated with low (L) and theo0dashed lines are internal boundaries within a structural type, e.g.
between icosahedra with Mackay and anti-Mackay overlayers, or
between decahedra with di†erent length decahedral axes.

structure is greater than or equal to that for the lowest energy
decahedron.

Sizes for which a morphology is the lowest in energy for a
particularly large range of indicate that the structure iso0especially stable. Another indicator of special stability is pro-
vided by Peaks in*2E(N) \ E(N ] 1) ] E(N [ 1) [ 2E(N).

have been found to correlate well with the magic*2E
numbers (sizes at which clusters are particularly abundant)
observed in mass spectra.63 Plots of are shown in Fig. 3*2E
for a number of values of Unsurprisingly, the plot foro0 .

is very similar to that for LJ clusters with peaks due too0 \ 6
especially stable icosahedral clusters. At higher values of o0 ,
peaks corresponding to close-packed and decahedral clusters
begin to occur. The plot at is very similar to thato0 \ 14
recently obtained for clusters using the Girifalco intermo-C60lecular potential.64 If the energy is “normalizedÏ by subtrac-
ting a suitable function of N, particularly stable sizes again
stand out (Fig. 4).

In the following subsections we will look at the growth
sequences for each morphology in more detail. Only the more
important structures are illustrated. We also examine the
unusual structures that occur for the larger clusters at low o0which, as we will see, involve a mixture of order and disorder.

Icosahedral clusters

Many small clusters are polytetrahedral, in the sense that the
whole of the cluster can be divided into tetrahedra. This cate-
gory includes the 13-atom icosahedron, which can be decom-
posed into 20 tetrahedra sharing a common vertex. Addition
of atoms to the icosahedron can occur in two ways and the
two types of overlayer that result are illustrated in Fig. 5. One
growth mode (fcc-like) continues the fcc packing of the 20
strained tetrahedra making up the icosahedron, and leads to
the 55-atom Mackay icosahedron. This scheme introduces
octahedral interstices, and so the resulting structures are no
longer polytetrahedral. The other “anti-MackayÏ (hcp-like)
growth mode involves sites which are hexagonal close-packed
(hcp) with respect to the tetrahedra. For growth on the
13-atom icosahedron, this overlayer preserves polytetrahedral
character. Each of the vertices of the original icosahedron
becomes icosahedrally coordinated, and the structure that

as a function of N for (a) (b) (c)Fig. 3 *2E o0 \ 3, o0 \ 6, o0 \ 10
and (d) o0 \ 14

results from the completion of this overlayer, 45A, is a
rhombic tricontahedron ; it is an icosahedron of interpene-
trating icosahedra. In previous studies, the anti-Mackay over-
layer has been referred to as the polyicosahedral1 or the
face-capping overlayer.6 Such names are reasonable for
growth on the 13-atom icosahedron, but are confusing for
growth on larger Mackay icosahedra.

Fig. 4 Comparison of the energies of icosahedral decahedral()),
(]) and close-packed clusters at The energy zero is(K) MN o0 \ 6.

the interpolated energy of Mackay icosahedra.EMI , EMI \ 3.0354
] 0.2624N1@3 ] 8.8400N2@3 [ 6.8381N and was obtained by Ðtting to
the Ðrst four Mackay icosahedra (N \ 13, 55, 147 and 309).
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FIG. 1. (a) Particle packing in two dimensions: equilateral triangles are preferred locally 
and pack naturally to form a close-packed triangular lattice. (b) Particle packing in three 
dimensions: although tetrahedra are preferred locally and combine with slight distortions to 
form a regular icosahedron, the fivefold symmetry axes of the icosahedron preclude a 
simple space-filling lattice. 

For identical particles interacting with simple pair potentials, liquids 
would have the same short-range order as crystals, crystals would always 
form a triangular lattice, and undercooling liquids fast enough to form a 
glass would be virtually impossible. The reason for this state of affairs lies 
in the geometry of 2-D particle packings: As shown in Fig. l a ,  triplets of 
particles will tend to form equilateral triangles to minimize the energy or 
maximize the density. Six such triangles pack naturally to form a 
hexagon, which should be the dominant motif characterizing short-range 
order in a dense liquid. Such a hexagon can be extended very easily to 
form a triangular (i.e., hexagonal close-packed) lattice, which is the 
expected ground state for classical particles with a wide variety of pair 
potentials. A liquid with hexagonal short-range order automatically 
contains many nuclei of the stable crystal, which prevents the undercool- 
ing necessary to form a glass. 

The situation is quite different in three dimensions, again for elemen- 
tary geometrical reasons: Four hard spheres form a dense tetrahedral 
packing, in which each sphere is in contact with the three others. 
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bilities of these packings at finite temperature,
which allows us to map the free-energy land-
scape (18, 19, 11). All of the observed cluster
structures agree with the theoretical predictions.
For example, for N < 6, we observed one unique
structure for each N: a dimer for N = 2, trimer for
N = 3, tetrahedron for N = 4, and triangular
dipyramid for N = 5. The optical micrographs in
Fig. 1 show the structures of the smallest clusters.

The first interesting case is N = 6. We ob-
served two structures (Fig. 2 and fig. S2), both
with C = 12 contacts and therefore equivalent
potential energy. The first is the octahedron, a
Platonic solid. The second, we call a “polytetra-
hedron.” It consists of a triangular dipyramid with
a third tetrahedron added to one of the faces. We
observed transitions between the two states on
time scales of minutes, indicating that the system
is at equilibrium (movie S1).

Although these two structures have the same
potential energies, the polytetrahedron occurs
about 20 times more often than the octahedron,
implying a free-energy difference of about 3kBT.
This difference can be attributed only to entropy.
As shown in Fig. 2, the measured probabilities
for the two structures agree well with theoretical
calculations based on standard approximations
for the rotational and vibrational entropies in the
classical limit (14).

The rotational entropy makes the largest con-
tribution to the free-energy difference between
the two structures (fig. S2). The rotational partition
function is related to two geometrical quantities:
the number of orientations, which is proportional
to the moment of inertia, and the rotational sym-
metry of the cluster, or, alternatively, the number
of ways one can assemble the same cluster by
permuting particle labels (20). Formally, the ra-
tio of the permutational degeneracies of two
clusters is inversely proportional to the ratio of
their symmetry numbers (21). This permutation-
al degeneracy accounts for a factor of 12 in the
polytetrahedron:octahedron probability ratio.
The remaining factor of 2 comes from the differ-
ences in the moments of inertia and the vibra-
tional entropies.

This result illustrates a general rule for clus-
ters with short-range attractions: among clusters
with the same potential energy, highly symmetric
structures are extremely unfavorable at equilibri-
um. By contrast, for the longer-ranged Lennard-
Jones 6-12 potential, the octahedron has lower
potential energy than the polytetrahedron does
(17), so that the dominant structure depends on
temperature. The dominance of the polytetrahe-
dron in our system may have consequences for
nucleation; the equilibrium phase of attractive
hard spheres is a face-centered cubic (FCC) crys-
tal (15), which contains octahedral, not polytet-
rahedral, subunits.

At N = 7, the first chiral structures arise. We
observed six cluster structures, two of which are
chiral enantiomers. The experimental measure-
ments agree well with the theoretical values for
the probabilities of each structure (Fig. 2). For

these small clusters, the most pronounced influ-
ence on the probabilities comes from symmetry.
At N = 8, 3 of the 16 different possible sphere
packings never occur in the experiments. These
three structures have the highest symmetry num-
bers, s = 4, 6, and 12.

A few structures differ by such small changes
in particle spacing that we cannot differentiate
between them using our microscope. All of these
are variants of pentagonal dipyramids. In a pen-
tagonal dipyramid of seven spheres, the top and
bottom spheres of the pyramid are separated by a
small gap of ≈ 0.05d, where d is the sphere di-
ameter. If these two spheres are brought togeth-
er, a gap of ≈ 0.09d opens between two of the

spheres on the pentagon. Because we cannot re-
solve this gap in our experiments, we have binned
these structures together at bothN = 7 and N = 8.
The one statistically significant discrepancy be-
tween experiment and theory occurs at N = 8; it
arises because the experimental potential has a
range that is comparable to the gap distance. Al-
though we account for this extra potential energy
in the probability calculations, the probabilities
are sensitive to the magnitude of the potential at
the gap distance. If the interaction energy differs
from our estimated value by only 0.1kBT in the
gap, the theoretical calculation falls within error
of the experimental value. This difference could
be due to polydispersity in either the depletant

C Oh

0

20

40

60

80

100

N = 6

C2v D5h C3v C2 C2 C3v

0

5

10

15

20

25

30

35

N= 7

C1 C1 C1 C1 Cs Cs Td Cs Cs C1 C1 C2v C2v D3d Cs D2d
0

10

20

30

40

50

60

70

80

N= 8
P

ro
ba

bi
lit

y 
(%

)
P

ro
ba

bi
lit

y 
(%

)

2v

poly-
tetrahedron

octahedron

Fig. 2. Comparison of experimental and theoretical (14) cluster probabilities P at N = 6, 7, and 8.
Structures that are difficult to differentiate experimentally have been binned together atN = 7 and 8 to
compare to theory. The calculated probabilities for the individual states are shown as light gray bars, and
binned probabilities are dark gray. Orange dots indicate the experimental measurements, with 95%
confidence intervals given by the error bars (14) (table S1). Renderings and point groups in Schönflies
notation are shown for each structure. The number in the subscript of each symbol indicates the order of
the highest rotational symmetry axis, and the letter indicates the symmetry group. The highest symmetry
structures are those in D, T, and O groups. Structures in C1 and C2 groups occur in chiral pairs.
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The Free-Energy Landscape of
Clusters of Attractive Hard Spheres
Guangnan Meng,1 Natalie Arkus,2 Michael P. Brenner,2 Vinothan N. Manoharan1,2*

The study of clusters has provided a tangible link between local geometry and bulk condensed
matter, but experiments have not yet systematically explored the thermodynamics of the smallest
clusters. Here we present experimental measurements of the structures and free energies of
colloidal clusters in which the particles act as hard spheres with short-range attractions. We found
that highly symmetric clusters are strongly suppressed by rotational entropy, whereas the most
stable clusters have anharmonic vibrational modes or extra bonds. Many of these clusters are
subsets of close-packed lattices. As the number of particles increases from 6 to 10, we observe
the emergence of a complex free-energy landscape with a small number of ground states and many
local minima.

Anisolated system of 10 interacting atoms
or molecules will generally adopt a struc-
ture that differs in symmetry and average

energy from that of a bulk liquid, solid, or even a
system containing 100 particles. Yet the study of
such small clusters has shed light on a wide va-
riety of phenomena that are observed in the fields
of condensed-matter physics and physical chem-
istry. Since Frank first predicted (1) that icosahe-
dral short-range order would be a hallmark of
liquid structure, the study of small-cluster geom-
etry has provided key insights into the frustration
underlying nonequilibrium phenomena such as
nucleation and the glass transition (2–4). Exper-
imental studies (5, 6) have confirmed this ap-
proach through the discovery of local cluster-like
order in bulk liquids and glasses, with recent re-
sults (7) suggesting that structural arrest in con-
densed phases may be related to geometrical
constraints at the scale of a few particles.

There remain many unresolved questions
about cluster geometry and its connection to bulk
behavior. Although experiments and simulations
have determined the minimum potential-energy
clusters for various interactions (8–10), the like-
lihood of observing a particular cluster structure
depends on its free energy (11, 12). What cluster
structures are favored by entropy? How does the
competition between potential energy and entropy
evolve as the number of particles N approaches
the bulk limit? Experiments on atomic clusters
have not systematically explored these questions;
they are limited by short cluster lifetimes, non-
equilibrium conditions, and the difficulties of ob-
taining real-space structures of individual clusters
in free space (13).

Here we report experimental results for the
structures and free energies of small equilibrium
clusters as a function of N, with N ≤ 10. The
experimental system is described in Fig. 1. We
use colloidal particles rather than atoms, because

we can precisely control the interactions and di-
rectly observe the three-dimensional (3D) struc-
tures of the clusters using optical microscopy. To
a good approximation, our particles act as “sticky”
hard spheres, arguably the simplest nontrivial
interaction that leads to clustering. The attraction
arises from a depletion interaction with a range of
about 1.05 times the particle diameter and a depth
of about 4kBT, where kB is Boltzmann’s constant
and T is temperature. Because the pair potential
is short-ranged, the total potential energyU of a
given structure is well approximated by U =
CUm, where C is the number of contacts or de-
pletion bonds and Um is the depth of the pair po-
tential (14). Although these particles form a gel

in bulk, the range and depth of the interaction are
consistent with an equilibrium phase diagram
showing a fluid-to-crystal transition (15).

We created clusters by isolating small numbers
of polystyrene (PS) microspheres in cylindri-
cal microwells filled with water and poly(N-
isopropylacrylamide) (polyNIPAM) nanoparticles,
which cause the depletion interaction. We chem-
ically functionalized the microwells so that par-
ticles could not stick to the surfaces. This allows
3D clusters to form in the middle of the wells,
unaffected by the boundaries. After the clusters
reached equilibrium, we used optical microscopy
to observe the cluster structures, and we collected
statistics by scanning through the microwell plate,
which contains thousands of isolated clusters.
Although the number of particles per well is not
controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
frequencies. We then determined the free ener-
gies from the ensemble statistics through the
Boltzmann distribution, DF = −kBTlnP, where
P is the probability of observing a given cluster.

We classified our clusters by comparing them
to finite sphere packings. A previous theoretical
study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-

1Department of Physics, Harvard University, Cambridge, MA
02138, USA. 2Harvard School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed. E-mail:
vnm@seas.harvard.edu

20 µm
y

x

x

y

30 µm

30
 µ

m

U

Um~ 4kBT

r
80 nm

1.0 µmr

1.0 µm Polystyrene 80 nm Poly(NIPAM)

N=2 N=3

N=4 N=5

A

D

B C

EMicrowells

Cluster

1 µm

Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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Fig. S2. Comparison of polytetrahedral and octahedral clusters at N = 6. Top shows optical micrographs
and renderings of the two structures with point groups indicated in Schönflies notation, and bottom the en-
tropic contributions to the probability of each. Zr is the rotational partition function and Zv the vibrational
partition function. The predicted probability of formation is calculated from the product ZvZr. The main
contribution to the probability comes from the rotational partition function through the symmetry num-
ber. The calculated ratio of probabilities is 24 : 1, which agrees well with the experimental data (see also
Table S1).
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unaffected by the boundaries. After the clusters
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which contains thousands of isolated clusters.
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controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
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gies from the ensemble statistics through the
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study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-
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Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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What about frustration in colloids?

bilities of these packings at finite temperature,
which allows us to map the free-energy land-
scape (18, 19, 11). All of the observed cluster
structures agree with the theoretical predictions.
For example, for N < 6, we observed one unique
structure for each N: a dimer for N = 2, trimer for
N = 3, tetrahedron for N = 4, and triangular
dipyramid for N = 5. The optical micrographs in
Fig. 1 show the structures of the smallest clusters.

The first interesting case is N = 6. We ob-
served two structures (Fig. 2 and fig. S2), both
with C = 12 contacts and therefore equivalent
potential energy. The first is the octahedron, a
Platonic solid. The second, we call a “polytetra-
hedron.” It consists of a triangular dipyramid with
a third tetrahedron added to one of the faces. We
observed transitions between the two states on
time scales of minutes, indicating that the system
is at equilibrium (movie S1).

Although these two structures have the same
potential energies, the polytetrahedron occurs
about 20 times more often than the octahedron,
implying a free-energy difference of about 3kBT.
This difference can be attributed only to entropy.
As shown in Fig. 2, the measured probabilities
for the two structures agree well with theoretical
calculations based on standard approximations
for the rotational and vibrational entropies in the
classical limit (14).

The rotational entropy makes the largest con-
tribution to the free-energy difference between
the two structures (fig. S2). The rotational partition
function is related to two geometrical quantities:
the number of orientations, which is proportional
to the moment of inertia, and the rotational sym-
metry of the cluster, or, alternatively, the number
of ways one can assemble the same cluster by
permuting particle labels (20). Formally, the ra-
tio of the permutational degeneracies of two
clusters is inversely proportional to the ratio of
their symmetry numbers (21). This permutation-
al degeneracy accounts for a factor of 12 in the
polytetrahedron:octahedron probability ratio.
The remaining factor of 2 comes from the differ-
ences in the moments of inertia and the vibra-
tional entropies.

This result illustrates a general rule for clus-
ters with short-range attractions: among clusters
with the same potential energy, highly symmetric
structures are extremely unfavorable at equilibri-
um. By contrast, for the longer-ranged Lennard-
Jones 6-12 potential, the octahedron has lower
potential energy than the polytetrahedron does
(17), so that the dominant structure depends on
temperature. The dominance of the polytetrahe-
dron in our system may have consequences for
nucleation; the equilibrium phase of attractive
hard spheres is a face-centered cubic (FCC) crys-
tal (15), which contains octahedral, not polytet-
rahedral, subunits.

At N = 7, the first chiral structures arise. We
observed six cluster structures, two of which are
chiral enantiomers. The experimental measure-
ments agree well with the theoretical values for
the probabilities of each structure (Fig. 2). For

these small clusters, the most pronounced influ-
ence on the probabilities comes from symmetry.
At N = 8, 3 of the 16 different possible sphere
packings never occur in the experiments. These
three structures have the highest symmetry num-
bers, s = 4, 6, and 12.

A few structures differ by such small changes
in particle spacing that we cannot differentiate
between them using our microscope. All of these
are variants of pentagonal dipyramids. In a pen-
tagonal dipyramid of seven spheres, the top and
bottom spheres of the pyramid are separated by a
small gap of ≈ 0.05d, where d is the sphere di-
ameter. If these two spheres are brought togeth-
er, a gap of ≈ 0.09d opens between two of the

spheres on the pentagon. Because we cannot re-
solve this gap in our experiments, we have binned
these structures together at bothN = 7 and N = 8.
The one statistically significant discrepancy be-
tween experiment and theory occurs at N = 8; it
arises because the experimental potential has a
range that is comparable to the gap distance. Al-
though we account for this extra potential energy
in the probability calculations, the probabilities
are sensitive to the magnitude of the potential at
the gap distance. If the interaction energy differs
from our estimated value by only 0.1kBT in the
gap, the theoretical calculation falls within error
of the experimental value. This difference could
be due to polydispersity in either the depletant
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Fig. 2. Comparison of experimental and theoretical (14) cluster probabilities P at N = 6, 7, and 8.
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the highest rotational symmetry axis, and the letter indicates the symmetry group. The highest symmetry
structures are those in D, T, and O groups. Structures in C1 and C2 groups occur in chiral pairs.
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The Free-Energy Landscape of
Clusters of Attractive Hard Spheres
Guangnan Meng,1 Natalie Arkus,2 Michael P. Brenner,2 Vinothan N. Manoharan1,2*

The study of clusters has provided a tangible link between local geometry and bulk condensed
matter, but experiments have not yet systematically explored the thermodynamics of the smallest
clusters. Here we present experimental measurements of the structures and free energies of
colloidal clusters in which the particles act as hard spheres with short-range attractions. We found
that highly symmetric clusters are strongly suppressed by rotational entropy, whereas the most
stable clusters have anharmonic vibrational modes or extra bonds. Many of these clusters are
subsets of close-packed lattices. As the number of particles increases from 6 to 10, we observe
the emergence of a complex free-energy landscape with a small number of ground states and many
local minima.

Anisolated system of 10 interacting atoms
or molecules will generally adopt a struc-
ture that differs in symmetry and average

energy from that of a bulk liquid, solid, or even a
system containing 100 particles. Yet the study of
such small clusters has shed light on a wide va-
riety of phenomena that are observed in the fields
of condensed-matter physics and physical chem-
istry. Since Frank first predicted (1) that icosahe-
dral short-range order would be a hallmark of
liquid structure, the study of small-cluster geom-
etry has provided key insights into the frustration
underlying nonequilibrium phenomena such as
nucleation and the glass transition (2–4). Exper-
imental studies (5, 6) have confirmed this ap-
proach through the discovery of local cluster-like
order in bulk liquids and glasses, with recent re-
sults (7) suggesting that structural arrest in con-
densed phases may be related to geometrical
constraints at the scale of a few particles.

There remain many unresolved questions
about cluster geometry and its connection to bulk
behavior. Although experiments and simulations
have determined the minimum potential-energy
clusters for various interactions (8–10), the like-
lihood of observing a particular cluster structure
depends on its free energy (11, 12). What cluster
structures are favored by entropy? How does the
competition between potential energy and entropy
evolve as the number of particles N approaches
the bulk limit? Experiments on atomic clusters
have not systematically explored these questions;
they are limited by short cluster lifetimes, non-
equilibrium conditions, and the difficulties of ob-
taining real-space structures of individual clusters
in free space (13).

Here we report experimental results for the
structures and free energies of small equilibrium
clusters as a function of N, with N ≤ 10. The
experimental system is described in Fig. 1. We
use colloidal particles rather than atoms, because

we can precisely control the interactions and di-
rectly observe the three-dimensional (3D) struc-
tures of the clusters using optical microscopy. To
a good approximation, our particles act as “sticky”
hard spheres, arguably the simplest nontrivial
interaction that leads to clustering. The attraction
arises from a depletion interaction with a range of
about 1.05 times the particle diameter and a depth
of about 4kBT, where kB is Boltzmann’s constant
and T is temperature. Because the pair potential
is short-ranged, the total potential energyU of a
given structure is well approximated by U =
CUm, where C is the number of contacts or de-
pletion bonds and Um is the depth of the pair po-
tential (14). Although these particles form a gel

in bulk, the range and depth of the interaction are
consistent with an equilibrium phase diagram
showing a fluid-to-crystal transition (15).

We created clusters by isolating small numbers
of polystyrene (PS) microspheres in cylindri-
cal microwells filled with water and poly(N-
isopropylacrylamide) (polyNIPAM) nanoparticles,
which cause the depletion interaction. We chem-
ically functionalized the microwells so that par-
ticles could not stick to the surfaces. This allows
3D clusters to form in the middle of the wells,
unaffected by the boundaries. After the clusters
reached equilibrium, we used optical microscopy
to observe the cluster structures, and we collected
statistics by scanning through the microwell plate,
which contains thousands of isolated clusters.
Although the number of particles per well is not
controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
frequencies. We then determined the free ener-
gies from the ensemble statistics through the
Boltzmann distribution, DF = −kBTlnP, where
P is the probability of observing a given cluster.

We classified our clusters by comparing them
to finite sphere packings. A previous theoretical
study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-
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02138, USA. 2Harvard School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA.
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Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)Contacts
Symmetry number
Moment of inertia 1/2
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Fig. S2. Comparison of polytetrahedral and octahedral clusters at N = 6. Top shows optical micrographs
and renderings of the two structures with point groups indicated in Schönflies notation, and bottom the en-
tropic contributions to the probability of each. Zr is the rotational partition function and Zv the vibrational
partition function. The predicted probability of formation is calculated from the product ZvZr. The main
contribution to the probability comes from the rotational partition function through the symmetry num-
ber. The calculated ratio of probabilities is 24 : 1, which agrees well with the experimental data (see also
Table S1).
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The study of clusters has provided a tangible link between local geometry and bulk condensed
matter, but experiments have not yet systematically explored the thermodynamics of the smallest
clusters. Here we present experimental measurements of the structures and free energies of
colloidal clusters in which the particles act as hard spheres with short-range attractions. We found
that highly symmetric clusters are strongly suppressed by rotational entropy, whereas the most
stable clusters have anharmonic vibrational modes or extra bonds. Many of these clusters are
subsets of close-packed lattices. As the number of particles increases from 6 to 10, we observe
the emergence of a complex free-energy landscape with a small number of ground states and many
local minima.

Anisolated system of 10 interacting atoms
or molecules will generally adopt a struc-
ture that differs in symmetry and average

energy from that of a bulk liquid, solid, or even a
system containing 100 particles. Yet the study of
such small clusters has shed light on a wide va-
riety of phenomena that are observed in the fields
of condensed-matter physics and physical chem-
istry. Since Frank first predicted (1) that icosahe-
dral short-range order would be a hallmark of
liquid structure, the study of small-cluster geom-
etry has provided key insights into the frustration
underlying nonequilibrium phenomena such as
nucleation and the glass transition (2–4). Exper-
imental studies (5, 6) have confirmed this ap-
proach through the discovery of local cluster-like
order in bulk liquids and glasses, with recent re-
sults (7) suggesting that structural arrest in con-
densed phases may be related to geometrical
constraints at the scale of a few particles.

There remain many unresolved questions
about cluster geometry and its connection to bulk
behavior. Although experiments and simulations
have determined the minimum potential-energy
clusters for various interactions (8–10), the like-
lihood of observing a particular cluster structure
depends on its free energy (11, 12). What cluster
structures are favored by entropy? How does the
competition between potential energy and entropy
evolve as the number of particles N approaches
the bulk limit? Experiments on atomic clusters
have not systematically explored these questions;
they are limited by short cluster lifetimes, non-
equilibrium conditions, and the difficulties of ob-
taining real-space structures of individual clusters
in free space (13).

Here we report experimental results for the
structures and free energies of small equilibrium
clusters as a function of N, with N ≤ 10. The
experimental system is described in Fig. 1. We
use colloidal particles rather than atoms, because

we can precisely control the interactions and di-
rectly observe the three-dimensional (3D) struc-
tures of the clusters using optical microscopy. To
a good approximation, our particles act as “sticky”
hard spheres, arguably the simplest nontrivial
interaction that leads to clustering. The attraction
arises from a depletion interaction with a range of
about 1.05 times the particle diameter and a depth
of about 4kBT, where kB is Boltzmann’s constant
and T is temperature. Because the pair potential
is short-ranged, the total potential energyU of a
given structure is well approximated by U =
CUm, where C is the number of contacts or de-
pletion bonds and Um is the depth of the pair po-
tential (14). Although these particles form a gel

in bulk, the range and depth of the interaction are
consistent with an equilibrium phase diagram
showing a fluid-to-crystal transition (15).

We created clusters by isolating small numbers
of polystyrene (PS) microspheres in cylindri-
cal microwells filled with water and poly(N-
isopropylacrylamide) (polyNIPAM) nanoparticles,
which cause the depletion interaction. We chem-
ically functionalized the microwells so that par-
ticles could not stick to the surfaces. This allows
3D clusters to form in the middle of the wells,
unaffected by the boundaries. After the clusters
reached equilibrium, we used optical microscopy
to observe the cluster structures, and we collected
statistics by scanning through the microwell plate,
which contains thousands of isolated clusters.
Although the number of particles per well is not
controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
frequencies. We then determined the free ener-
gies from the ensemble statistics through the
Boltzmann distribution, DF = −kBTlnP, where
P is the probability of observing a given cluster.

We classified our clusters by comparing them
to finite sphere packings. A previous theoretical
study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-

1Department of Physics, Harvard University, Cambridge, MA
02138, USA. 2Harvard School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed. E-mail:
vnm@seas.harvard.edu

20 µm
y

x

x

y

30 µm

30
 µ

m

U

Um~ 4kBT

r
80 nm

1.0 µmr

1.0 µm Polystyrene 80 nm Poly(NIPAM)

N=2 N=3

N=4 N=5

A

D

B C

EMicrowells

Cluster

1 µm

Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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Symmetry number explained the huge discrepancy!



(1)  Colloids are different from atoms  
 
Colloids: asymmetric states 
Atoms: symmetric states.  
Lennard-Jones potential: octahedron is ~8% lower in energy  

(2)  Small groups of colloids behave  
differently from large ones  
 
Small: disordered  
Large: crystals 
 
 
 

Hoare & Pal, Adv. Phys. (1971)

Frustration = competition between asymmetric/disordered, and crystalline state.  



(1)  Colloids are different from atoms  
 
Colloids: asymmetric states 
Atoms: symmetric states.  
Lennard-Jones potential: octahedron is ~8% lower in energy  

(2)  Small groups of colloids behave  
differently from large ones  
 
Small: disordered  
Large: crystals 
 
 
 

Hoare & Pal, Adv. Phys. (1971)

but…. these systems were small. 

Goal: show a different kind of competition for higher N ( N ≥ 10 )  
show symmetry is not that important  

Frustration = competition between asymmetric/disordered, and crystalline state.  



Data for N=9

G. Meng, N. Arkus, M. P. Brenner, V. N. 
Manoharan, Science 327 (2010)

One cluster dominated — probability = 11%!  (out of 52 clusters total)

It has a fair amount of symmetry —> symmetry cannot be that important…

Seems to be “floppy” — has an infinitesimal zero mode. 

Important property — it’s not actually floppy — it’s rigid!



What is rigid? 

Each adjacency matrix corresponds to a system of quadratic equations and 
inequalities (xi ∊ℝ3):

0

BBBBBB@

0 0 1 1 1 1
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

1

CCCCCCA

adjacency matrix A

|xi � xj |2 = d

2 if Aij = 1

|xi � xj |2 � d

2 if Aij = 0

Generically, expect 3N-6 contacts: from 3N variables, 6 dof in SE(3).  

A cluster (x,A) with x = (x1, x2, …, xN) is rigid if it is an isolated solution to this 
system of equations (modulo translations, rotations)     (e.g. Asimow&Roth 1978)  
⟺ There is no finite, continuous deformation of the cluster that preserves all edge 
lengths.

It is first order rigid if it is rigid and the equations above are linearly independent 
⟺ rigid and there are no infinitesimal zero-modes in the above equations 
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Figure 11. New Seeds. The octahedron is an example of a new seed. (a) The
‘base’ of an octahedron has a continuous degree of freedom through which a 5 particle
polytetrahedron can form, and thus is not a packing. The continuous degrees of
freedom are shown as dashed lines; bringing either of the pairs of particles connected
by these dashed lines into contact forms the 5 particle polytetrahedron. (Note that
the 5 particle structure shown in (a) is not minimally-rigid as it has fewer than
3n� 6 = 9 contacts.) (b) Once a 6th particle is added, the octahedral structure can
be stabilized, thereby forming a new seed. This ‘new seed’ is an inherently new
structure.
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3n� 6 = 9 contacts.) (b) Once a 6th particle is added, the octahedral structure can
be stabilized, thereby forming a new seed. This ‘new seed’ is an inherently new
structure.
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Figure 11. New Seeds. The octahedron is an example of a new seed. (a) The
‘base’ of an octahedron has a continuous degree of freedom through which a 5 particle
polytetrahedron can form, and thus is not a packing. The continuous degrees of
freedom are shown as dashed lines; bringing either of the pairs of particles connected
by these dashed lines into contact forms the 5 particle polytetrahedron. (Note that
the 5 particle structure shown in (a) is not minimally-rigid as it has fewer than
3n� 6 = 9 contacts.) (b) Once a 6th particle is added, the octahedral structure can
be stabilized, thereby forming a new seed. This ‘new seed’ is an inherently new
structure.
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Figure 11. New Seeds. The octahedron is an example of a new seed. (a) The
‘base’ of an octahedron has a continuous degree of freedom through which a 5 particle
polytetrahedron can form, and thus is not a packing. The continuous degrees of
freedom are shown as dashed lines; bringing either of the pairs of particles connected
by these dashed lines into contact forms the 5 particle polytetrahedron. (Note that
the 5 particle structure shown in (a) is not minimally-rigid as it has fewer than
3n� 6 = 9 contacts.) (b) Once a 6th particle is added, the octahedral structure can
be stabilized, thereby forming a new seed. This ‘new seed’ is an inherently new
structure.

rigid (R3) 
not first-order rigid (R3) 

Singular: rigid but NOT first-order rigid

Regular: rigid AND first-order rigid

Quiz!



N=10

Singular 21%, Hyperstatic 12%, > 250 total clusters!

Singular clusters:

or large spheres or to another interaction such as
van der Waals forces.

The probability distributions in Fig. 2 are
“field guides” to the free-energy landscapes at
N = 6, 7, and 8. Each structure represents a
local free-energy minimum, the depth of which
is proportional to the probability. We note two
topographical features besides the trend toward
structures with low symmetry: first, the number
of local minima increases dramatically with N;
and second, the landscape is relatively flat forN =
7 and 8. In other words, there are many shallow
minima, but no one minimum has a free energy
much larger than any other.

The landscape undergoes a qualitative change
for N ≥ 9. Theoretically we expect someW = 77
structures at N = 9 and W = 393 at N = 10, too
many to catalog experimentally.We thereforemea-
sured only a subset of structures identified by our
theoretical study (16). The subset we choose con-
sists of clusters that fall into either of two cate-
gories: nonrigid structures, in which one of the
vibrational modes is a large-amplitude, anhar-
monic shear mode; and structures with more than
3N − 6 bonds. Nonrigidity arises when a cluster
contains half-octahedra that share at least one
vertex, allowing the cluster to twist over a finite
distance without breaking or forming another
bond. We expect these packings to have high
vibrational entropy. Structures with more than
3N − 6 bonds can occur forN ≥ 10. These are the
expected ground states.

Indeed, these special packings do occur with
high frequency (Fig. 3 and table S2). Because
most clusters atN = 9 and 10 have equal potential
energy, low symmetry, and therefore comparable
rotational entropy, we expect the average proba-
bility of any one structure in a set of W possible
clusters to be of order 1/W. At N = 9, we expect
an average probability of about 1%, and at N =
10, about 0.25%.

By contrast, the one nonrigid structure atN =
9 occurs with P ≈ 10%. By using the theoretical
W and the experimental P, we estimate that the
free energy of the nonrigid structure is about 2kBT
lower than that of an average structure at N = 9
(14). Thus the structure is highly stable by nearly
half the free energy of an extra bond. The stabi-
lization comes from the vibrational entropy asso-
ciated with the nonrigid mode (movie S3). Our
theoretical calculations (14) predict P ≈ 3%,
which is lower than the observed probability but
higher than all other clusters at N = 9. The dis-
crepancy is due to the sensitive dependence of
the vibrational partition function on the curvature
of the pair potential near the minimum, a conse-
quence of the nonrigid mode. A more precise
calculation requires an accurate measurement of
electrostatic effects in the experimental pair po-
tential near the depletion well.

At N = 10, only 3 of the 393 theoretically
possible clusters have 3N − 5 = 25 contacts, yet
these occur about 10% of the time. Although we
have only limited statistics for higherN, we con-

tinue to observe the prevalence of a few packings
with 3N − 5 or more bonds. The structures with
extra bonds have combined probabilities of 20
to 30% at N = 11 and 12 (table S2). Again these
probabilities are large compared to 1/W, even
though, in several cases, the clusters have high
symmetry. The potential-energy gain is therefore
large enough to overcome the deficiency in ro-
tational entropy.

Perhaps the most striking feature of these clus-
ters is that many are subsets of lattice packings,
and in particular of the hexagonally close packed
(HCP) lattice. The lattice packings are marked
in Fig. 3. The underlying reason appears to be
that both nonrigidity and extra bonds require
the clusters to have octahedral subunits. The pro-
pensity for icosahedra (8, 22) in longer-range
systems is absent in ours. We observed no icosa-
hedra at eitherN = 12 or 13, presumably because
neither 12-sphere or 13-sphere icosahedra are spe-
cial clusters for short-range interactions; neither
are nonrigid, neither have more than 3N − 6
bonds, and both have very high symmetry num-
bers (s = 60).

By using the same statistical mechanical ap-
proximations that were used to estimate probabil-
ities for N ≤ 8, we can calculate the free energies
of all mechanically stable sphere packings that
have been enumerated (16) up to N = 10. This
yields the free-energy landscape shown in Fig. 4.
We see that, in general, the locus of states is cor-
related with the rotational entropy, which is pro-
portional to kBln(

ffiffi

I
p

/s), where I is the moment of
inertia. The only states that lie below this locus
occur atN = 9 and 10. These correspond to either
nonrigid structures or structures with extra bonds,
both of which appear as deeper minima.

The diagram also reveals some new features.
First, low-symmetry polytetrahedral states prolif-
erate as N increases. At N = 10, where clusters
with extra bonds first appear, the absolute prob-
ability of observing these ground states is low
because of the large number of low-symmetry
states that lie at slightly higher free energy.

Second, the highest free-energy structures for
N = 6 to 10 are convex deltahedra (23), polyhedra
with a long history in the field of condensed-
matter physics (24, 3). These are not always the
most symmetric structures; at N = 8 the highest
free-energy state is the deltahedron, a snub di-
sphenoid that has lower symmetry than an eight-
sphere tetrahedral cluster. The convex deltahedra
also happen to be the same “minimal-moment”
structures that are formed in capillary-driven as-
sembly of colloidal particles (25). The optimal
packings under these nonequilibrium conditions
therefore correspond to the least-optimal pack-
ings at equilibrium.

Our results suggest that nucleation barriers
and structural motifs in attractive hard-sphere
systems such as colloidal suspensions will be
different from those in systems with longer-range
potentials, which tend to favor symmetric struc-
tures at sufficiently low temperatures. ForN < 9,
all of our clusters have nearly equivalent potential

A

1.0 µmHCP
C2v

P=11%

P=21%B

HCP
Cs

HCP
C1

C1

P=12%C

HCP

C2v

FCC/HCP
D2h

HCP
Cs

non-rigid, N=9 

non-rigid, N=10 

25 bond, N=10

Fig. 3. (A) Optical micrographs and renderings of
nonrigid structures at N = 9 (see also movies S2 and
S3) and (B)N= 10 (movies S4 to S6). (C) Structures of
3N − 5 = 25 bond packings at N = 10 (movies S7 to
S9). The anharmonic vibrationalmodes of the nonrigid
structures are shown by red arrows. Experimentally
measured probabilities are listed at top. Annotations
in micrographs indicate clusters corresponding to
subsets of HCP or FCC lattices. Scale bars, 1 mm.

29 JANUARY 2010 VOL 327 SCIENCE www.sciencemag.org562

REPORTS

 o
n

 J
a

n
u

a
ry

 1
7

, 
2

0
1

1
w

w
w

.s
c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 

or large spheres or to another interaction such as
van der Waals forces.

The probability distributions in Fig. 2 are
“field guides” to the free-energy landscapes at
N = 6, 7, and 8. Each structure represents a
local free-energy minimum, the depth of which
is proportional to the probability. We note two
topographical features besides the trend toward
structures with low symmetry: first, the number
of local minima increases dramatically with N;
and second, the landscape is relatively flat forN =
7 and 8. In other words, there are many shallow
minima, but no one minimum has a free energy
much larger than any other.

The landscape undergoes a qualitative change
for N ≥ 9. Theoretically we expect someW = 77
structures at N = 9 and W = 393 at N = 10, too
many to catalog experimentally.We thereforemea-
sured only a subset of structures identified by our
theoretical study (16). The subset we choose con-
sists of clusters that fall into either of two cate-
gories: nonrigid structures, in which one of the
vibrational modes is a large-amplitude, anhar-
monic shear mode; and structures with more than
3N − 6 bonds. Nonrigidity arises when a cluster
contains half-octahedra that share at least one
vertex, allowing the cluster to twist over a finite
distance without breaking or forming another
bond. We expect these packings to have high
vibrational entropy. Structures with more than
3N − 6 bonds can occur forN ≥ 10. These are the
expected ground states.

Indeed, these special packings do occur with
high frequency (Fig. 3 and table S2). Because
most clusters atN = 9 and 10 have equal potential
energy, low symmetry, and therefore comparable
rotational entropy, we expect the average proba-
bility of any one structure in a set of W possible
clusters to be of order 1/W. At N = 9, we expect
an average probability of about 1%, and at N =
10, about 0.25%.

By contrast, the one nonrigid structure atN =
9 occurs with P ≈ 10%. By using the theoretical
W and the experimental P, we estimate that the
free energy of the nonrigid structure is about 2kBT
lower than that of an average structure at N = 9
(14). Thus the structure is highly stable by nearly
half the free energy of an extra bond. The stabi-
lization comes from the vibrational entropy asso-
ciated with the nonrigid mode (movie S3). Our
theoretical calculations (14) predict P ≈ 3%,
which is lower than the observed probability but
higher than all other clusters at N = 9. The dis-
crepancy is due to the sensitive dependence of
the vibrational partition function on the curvature
of the pair potential near the minimum, a conse-
quence of the nonrigid mode. A more precise
calculation requires an accurate measurement of
electrostatic effects in the experimental pair po-
tential near the depletion well.

At N = 10, only 3 of the 393 theoretically
possible clusters have 3N − 5 = 25 contacts, yet
these occur about 10% of the time. Although we
have only limited statistics for higherN, we con-

tinue to observe the prevalence of a few packings
with 3N − 5 or more bonds. The structures with
extra bonds have combined probabilities of 20
to 30% at N = 11 and 12 (table S2). Again these
probabilities are large compared to 1/W, even
though, in several cases, the clusters have high
symmetry. The potential-energy gain is therefore
large enough to overcome the deficiency in ro-
tational entropy.

Perhaps the most striking feature of these clus-
ters is that many are subsets of lattice packings,
and in particular of the hexagonally close packed
(HCP) lattice. The lattice packings are marked
in Fig. 3. The underlying reason appears to be
that both nonrigidity and extra bonds require
the clusters to have octahedral subunits. The pro-
pensity for icosahedra (8, 22) in longer-range
systems is absent in ours. We observed no icosa-
hedra at eitherN = 12 or 13, presumably because
neither 12-sphere or 13-sphere icosahedra are spe-
cial clusters for short-range interactions; neither
are nonrigid, neither have more than 3N − 6
bonds, and both have very high symmetry num-
bers (s = 60).

By using the same statistical mechanical ap-
proximations that were used to estimate probabil-
ities for N ≤ 8, we can calculate the free energies
of all mechanically stable sphere packings that
have been enumerated (16) up to N = 10. This
yields the free-energy landscape shown in Fig. 4.
We see that, in general, the locus of states is cor-
related with the rotational entropy, which is pro-
portional to kBln(

ffiffi

I
p

/s), where I is the moment of
inertia. The only states that lie below this locus
occur atN = 9 and 10. These correspond to either
nonrigid structures or structures with extra bonds,
both of which appear as deeper minima.

The diagram also reveals some new features.
First, low-symmetry polytetrahedral states prolif-
erate as N increases. At N = 10, where clusters
with extra bonds first appear, the absolute prob-
ability of observing these ground states is low
because of the large number of low-symmetry
states that lie at slightly higher free energy.

Second, the highest free-energy structures for
N = 6 to 10 are convex deltahedra (23), polyhedra
with a long history in the field of condensed-
matter physics (24, 3). These are not always the
most symmetric structures; at N = 8 the highest
free-energy state is the deltahedron, a snub di-
sphenoid that has lower symmetry than an eight-
sphere tetrahedral cluster. The convex deltahedra
also happen to be the same “minimal-moment”
structures that are formed in capillary-driven as-
sembly of colloidal particles (25). The optimal
packings under these nonequilibrium conditions
therefore correspond to the least-optimal pack-
ings at equilibrium.

Our results suggest that nucleation barriers
and structural motifs in attractive hard-sphere
systems such as colloidal suspensions will be
different from those in systems with longer-range
potentials, which tend to favor symmetric struc-
tures at sufficiently low temperatures. ForN < 9,
all of our clusters have nearly equivalent potential
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Fig. 3. (A) Optical micrographs and renderings of
nonrigid structures at N = 9 (see also movies S2 and
S3) and (B)N= 10 (movies S4 to S6). (C) Structures of
3N − 5 = 25 bond packings at N = 10 (movies S7 to
S9). The anharmonic vibrationalmodes of the nonrigid
structures are shown by red arrows. Experimentally
measured probabilities are listed at top. Annotations
in micrographs indicate clusters corresponding to
subsets of HCP or FCC lattices. Scale bars, 1 mm.
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Hyperstatic clusters:



Question:
Is there a competition between singular &  hyperstatic 

clusters as N increases? 
What can we say about this competition mathematically? 

Strategy: 

• Look at all local minima on energy landscape of N sticky spheres

• Evaluate their partition functions

• Compare them

Fr
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Sticky: interacting with 
infinitestimally short-ranged 
(&deep) pair potential  
i.e.  
range —> 0 
depth—> ∞

The Free-Energy Landscape of
Clusters of Attractive Hard Spheres
Guangnan Meng,1 Natalie Arkus,2 Michael P. Brenner,2 Vinothan N. Manoharan1,2*

The study of clusters has provided a tangible link between local geometry and bulk condensed
matter, but experiments have not yet systematically explored the thermodynamics of the smallest
clusters. Here we present experimental measurements of the structures and free energies of
colloidal clusters in which the particles act as hard spheres with short-range attractions. We found
that highly symmetric clusters are strongly suppressed by rotational entropy, whereas the most
stable clusters have anharmonic vibrational modes or extra bonds. Many of these clusters are
subsets of close-packed lattices. As the number of particles increases from 6 to 10, we observe
the emergence of a complex free-energy landscape with a small number of ground states and many
local minima.

Anisolated system of 10 interacting atoms
or molecules will generally adopt a struc-
ture that differs in symmetry and average

energy from that of a bulk liquid, solid, or even a
system containing 100 particles. Yet the study of
such small clusters has shed light on a wide va-
riety of phenomena that are observed in the fields
of condensed-matter physics and physical chem-
istry. Since Frank first predicted (1) that icosahe-
dral short-range order would be a hallmark of
liquid structure, the study of small-cluster geom-
etry has provided key insights into the frustration
underlying nonequilibrium phenomena such as
nucleation and the glass transition (2–4). Exper-
imental studies (5, 6) have confirmed this ap-
proach through the discovery of local cluster-like
order in bulk liquids and glasses, with recent re-
sults (7) suggesting that structural arrest in con-
densed phases may be related to geometrical
constraints at the scale of a few particles.

There remain many unresolved questions
about cluster geometry and its connection to bulk
behavior. Although experiments and simulations
have determined the minimum potential-energy
clusters for various interactions (8–10), the like-
lihood of observing a particular cluster structure
depends on its free energy (11, 12). What cluster
structures are favored by entropy? How does the
competition between potential energy and entropy
evolve as the number of particles N approaches
the bulk limit? Experiments on atomic clusters
have not systematically explored these questions;
they are limited by short cluster lifetimes, non-
equilibrium conditions, and the difficulties of ob-
taining real-space structures of individual clusters
in free space (13).

Here we report experimental results for the
structures and free energies of small equilibrium
clusters as a function of N, with N ≤ 10. The
experimental system is described in Fig. 1. We
use colloidal particles rather than atoms, because

we can precisely control the interactions and di-
rectly observe the three-dimensional (3D) struc-
tures of the clusters using optical microscopy. To
a good approximation, our particles act as “sticky”
hard spheres, arguably the simplest nontrivial
interaction that leads to clustering. The attraction
arises from a depletion interaction with a range of
about 1.05 times the particle diameter and a depth
of about 4kBT, where kB is Boltzmann’s constant
and T is temperature. Because the pair potential
is short-ranged, the total potential energyU of a
given structure is well approximated by U =
CUm, where C is the number of contacts or de-
pletion bonds and Um is the depth of the pair po-
tential (14). Although these particles form a gel

in bulk, the range and depth of the interaction are
consistent with an equilibrium phase diagram
showing a fluid-to-crystal transition (15).

We created clusters by isolating small numbers
of polystyrene (PS) microspheres in cylindri-
cal microwells filled with water and poly(N-
isopropylacrylamide) (polyNIPAM) nanoparticles,
which cause the depletion interaction. We chem-
ically functionalized the microwells so that par-
ticles could not stick to the surfaces. This allows
3D clusters to form in the middle of the wells,
unaffected by the boundaries. After the clusters
reached equilibrium, we used optical microscopy
to observe the cluster structures, and we collected
statistics by scanning through the microwell plate,
which contains thousands of isolated clusters.
Although the number of particles per well is not
controlled, we generated enough clusters at each
value of N ≤ 10 to measure their occurrence
frequencies. We then determined the free ener-
gies from the ensemble statistics through the
Boltzmann distribution, DF = −kBTlnP, where
P is the probability of observing a given cluster.

We classified our clusters by comparing them
to finite sphere packings. A previous theoretical
study (16) enumerated the mechanically stable
clusters of idealized hard spheres with infini-
tesimally short-ranged interactions, revealing the
minima of the potential-energy landscape as a
function ofN. All of the minima at each value of
N ≤ 9 have the same potential energy, which is
a result not observed with longer-ranged poten-
tials (17). We explored the structures and proba-

1Department of Physics, Harvard University, Cambridge, MA
02138, USA. 2Harvard School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed. E-mail:
vnm@seas.harvard.edu
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Fig. 1. (A) Diagram of experimental system (14). We used lithography to make microwells with depth
and diameter of 30 mm (see also fig. S1). These are filled with a suspension of 1.0-mm-diameter PS
spheres and 80-nm polyNIPAM microgel particles, which induce a depletion attraction as illustrated in
(B). The number of PS particles per well varies, but the average is about 10. (C) Pair potential as
estimated from the Vrij approximation to the Asakura-Oosawa potential (28, 29). Because the range of
the depletion attraction is less than 1/10 of the PS sphere diameter, the interaction is strictly pairwise
additive. (D) Optical micrograph of microwells with assembled colloidal clusters suspended inside. The
circles highlight individual clusters in different microwells. There are about 104 microwells per slide.
Scale bar, 20 mm. (E) High-magnification optical micrographs of colloidal clusters in microwells with
N = 2, 3, 4, and 5 particles. These are the only structures that form for N ≤ 5. Scale bar, 1 mm.
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What do local minima look like?

Spheres are either touching, or not

Energy of cluster of N spheres ∝ # of contacts

Lowest-energy clusters = those with maximal number of contacts

These are (typically) rigid: they cannot be continuously deformed without 
breaking a contact (=crossing an energy barrier.)

More generally: energetic local minima have a locally maximal number of 
contacts, so are (typically) rigid.
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(a) (b)

!"

#

$

%&'('

Figure 4. Example of an Unphysical Adjacency Matrix. (a) An adjacency
matrix that is unphysical because it implies more than 2 intersections of intersection
circles. The blue highlights show that particles 4,5,6 make up a trimer. The purple
highlighted part shows that particles 1, 2, and 3 all touch the same trimer, 4,5,6.
(b) A sphere packing corresponding to this unphysical adjacency matrix (shown in
both sphere and point/line representations). For it to be realized, 2 particles must
occupy the same point in space.

3.2.2. Rule 2. A trimer, a configuration of 3 spheres forming an equilateral triangle, is associated
with 3 mutually intersecting intersection circles (Fig. 5a). These 3 intersection circles intersect at
2 points (shown in red). Here we calculate the distance between these 2 intersection points.
Note that a particle lying at one of the intersection points forms the 4-particle packing (the

tetrahedron). And that 2 particles, lying at each intersection point, form the 5-particle packing
(the 5-point polytetrahedron). The distance between these 2 intersection points, h, is the only
distance that is greater than R in the 5-particle packing (Fig. 6).
To calculate this distance, we note that the trimer and its associated intersection circles form

the set of triangles shown in figure 5b (where the dashed line indicates an out-of-plane triangle).
We calculate a by considering the right triangle with sides

p
3/2R � a, a, 1/2R. Trigonometry

then implies that a = R/(2
p
3), and h = 2

p
2/3R.

This implies that the solution to an adjacency matrix corresponding to the 5-particle packing
is

0

BBBB@

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 0 0

1

CCCCA
�!

0

BBBBBB@

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

1 1 1 0 2
q

2
3

1 1 1 2
q

2
3 0

1

CCCCCCA

where the right matrix is the corresponding distance matrix, D, and without loss of generality we
have let R = 1. For n = 5, there is only 1 non-isomorphic minimally-rigid A.

We can formalize this construction as a distance rule, which can be used whenever a submatrix
of some A has the same structure as the 5-particle packing. Such submatrices can be identified
with the following pattern: A

ij

= A
ik

= A
kj

= 1, and there exist 2 points p for which A
pi

=
A

pj

= A
pk

= 1. Whenever this pattern exists, the distance submatrix between the associated
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6 Particle Packings

Packing 1 (Graph 2):
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Packing 2 (Graph 4):
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6 Particle Packings

Packing 1 (Graph 2):
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Packing 2 (Graph 4):
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Local minima are rigid clusters:



What do local minima look like?

Spheres are either touching, or not

Energy of cluster of N spheres ∝ # of contacts

Lowest-energy clusters = those with maximal number of contacts

These are (typically) rigid: they cannot be continuously deformed without 
breaking a contact (=crossing an energy barrier.)

More generally: energetic local minima have a locally maximal number of 
contacts, so are (typically) rigid.
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(a) (b)

!"

#

$

%&'('

Figure 4. Example of an Unphysical Adjacency Matrix. (a) An adjacency
matrix that is unphysical because it implies more than 2 intersections of intersection
circles. The blue highlights show that particles 4,5,6 make up a trimer. The purple
highlighted part shows that particles 1, 2, and 3 all touch the same trimer, 4,5,6.
(b) A sphere packing corresponding to this unphysical adjacency matrix (shown in
both sphere and point/line representations). For it to be realized, 2 particles must
occupy the same point in space.

3.2.2. Rule 2. A trimer, a configuration of 3 spheres forming an equilateral triangle, is associated
with 3 mutually intersecting intersection circles (Fig. 5a). These 3 intersection circles intersect at
2 points (shown in red). Here we calculate the distance between these 2 intersection points.
Note that a particle lying at one of the intersection points forms the 4-particle packing (the

tetrahedron). And that 2 particles, lying at each intersection point, form the 5-particle packing
(the 5-point polytetrahedron). The distance between these 2 intersection points, h, is the only
distance that is greater than R in the 5-particle packing (Fig. 6).
To calculate this distance, we note that the trimer and its associated intersection circles form

the set of triangles shown in figure 5b (where the dashed line indicates an out-of-plane triangle).
We calculate a by considering the right triangle with sides

p
3/2R � a, a, 1/2R. Trigonometry

then implies that a = R/(2
p
3), and h = 2

p
2/3R.

This implies that the solution to an adjacency matrix corresponding to the 5-particle packing
is

0

BBBB@

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 0 0

1

CCCCA
�!

0

BBBBBB@

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

1 1 1 0 2
q

2
3

1 1 1 2
q

2
3 0

1

CCCCCCA

where the right matrix is the corresponding distance matrix, D, and without loss of generality we
have let R = 1. For n = 5, there is only 1 non-isomorphic minimally-rigid A.

We can formalize this construction as a distance rule, which can be used whenever a submatrix
of some A has the same structure as the 5-particle packing. Such submatrices can be identified
with the following pattern: A

ij

= A
ik

= A
kj

= 1, and there exist 2 points p for which A
pi

=
A

pj

= A
pk

= 1. Whenever this pattern exists, the distance submatrix between the associated
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6 Particle Packings

Packing 1 (Graph 2):
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Packing 2 (Graph 4):
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6 Particle Packings

Packing 1 (Graph 2):
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Packing 2 (Graph 4):
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2 rigid clusters for N=6

Local minima are rigid clusters:



What are all the rigid clusters of N identical spheres? 

H.-C. (2016)  SIAM Review



Algorithms to find rigid clusters

 List all adjacency matrices with 3N-6 contacts; for each adjacency matrix, solve 
(analytically or with computer) for the positions of the particles, or argue that 
no solution exists.  
 
 
 
 
Analytical: to N=10 
Computer: to N=13 (though many were missed)

Move from cluster to cluster dynamically, via one-dimensional transition paths 
H.-C., SIAM Review (2016)

• N. Arkus, V. N. Manoharan, M. P. Brenner. Phys. Rev. Lett., 103 (2009)
• N. Arkus, V. N. Manoharan, M. P. Brenner. SIAM J. Disc. Math., 25 (2011)
• R. S. Hoy, J. Harwayne-Gindansky, C. O’Hern, Phys. Rev. E, 85 (2012)
• R. S. Hoy, Phys. Rev. E, 91 (2015)



Algorithms to find rigid clusters

 List all adjacency matrices with 3N-6 contacts; for each adjacency matrix, solve 
(analytically or with computer) for the positions of the particles, or argue that 
no solution exists.  
 
 
 
 
Analytical: to N=10 
Computer: to N=13 (though many were missed)

Move from cluster to cluster dynamically, via one-dimensional transition paths 
H.-C., SIAM Review (2016)

• N. Arkus, V. N. Manoharan, M. P. Brenner. Phys. Rev. Lett., 103 (2009)
• N. Arkus, V. N. Manoharan, M. P. Brenner. SIAM J. Disc. Math., 25 (2011)
• R. S. Hoy, J. Harwayne-Gindansky, C. O’Hern, Phys. Rev. E, 85 (2012)
• R. S. Hoy, Phys. Rev. E, 91 (2015)



N = 2:

N = 3:

N = 4:

N = 5:

N = 6:

N = 7:

2 packings

5  packings 
(+1 chiral)



N = 8:

13 packings 
3 chiral pairs



N = 9:



52 packings 
28 chiral pairs



Total number of clusters computed
4 TEX PRODUCTION

n number of contacts
3n� 9 3n� 8 3n� 7 3n� 6 3n� 5 3n� 4 3n� 3 3n� 2 Total

5 1 1
6 2 2
7 5 5
8 13 13
9 52 52
10 1 259 3 263
11 2 18 1618 20 1 1659
12 11 148 11,638 174 8 1 11,980
13 87 1221 95,810 1307 96 8 98,529
14 1 707 10,537 872,992 10,280 878 79 4 895,478

3n� 4 3n� 3 3n� 2 3n� 1 3n 3n+ 1 3n+ 2
15 7675 782 55 6 (9⇥ 106 est.)
16 7895 664 62 8 (1⇥ 108 est.)
17 7796 789 85 6 (1.2⇥ 109 est.)
18 9629 1085 91 5 (1.6⇥ 1010 est.)
19 13,472 1458 95 7 (2.2⇥ 1011 est.)

Table 1
Number of clusters found for each n, organized by number of contacts in each cluster. For

n � 15 only clusters with a minimum number of contacts were enumerated.

where R(x) is the Jacobian of (2.1), called the rigidity matrix. If the right null space
of R(x) is empty, we cannot solve for p0(0) so the cluster is infinitestimally rigid, or
first-order rigid. This is su�cient for rigidity [13].

This is a linear criterion, so we will sometimes say “linearly rigid” or “linearly
floppy.” A cluster that is linearly floppy may or may not be rigid. The right null
space of the rigidity matrix gives the linear deformations of the cluster, and to check
whether these are extendable to finite deformations we must continue the expansion
to higher order.

Taking two derivatives of (2.1) gives

(2.3) R(x)p00|t=0 = �R(p0)p0|t=0.

By the Fredholm alternative, we can solve for p00(0) if and only if there exists v 2 V
such that wTR(v)v = 0 for all w 2 W, where V,W are the right and left null spaces
of R(x). When this condition does not hold, the cluster is second-order rigid and this
is also su�cient for rigidity [13]. Finding a w for each v to make the inner product
non-zero is a challenge, but sometimes it is possible to find a single w that works for
all v. This happens when wTR(v)v is sign-definite for v 2 V , and then the cluster
is pre-stress stable. It is possible to find such a w by semi-definite programming
methods, for example. See Supplementary Information (SI) for details about how we
implement this.

To compute the number of internal degrees of freedom of a cluster when it is
not pre-stress stable, we use a numerical method that estimates the dimension of the
solution set by taking small steps in each of the candidate tangent directions. See SI
for more details.

2.2. Enumeration algorithm. We search for rigid clusters by following all
the one-dimensional transition paths between clusters. We begin with a single rigid
cluster of n spheres. This is easy to obtain, for example by gluing a sphere with
three contacts to a cluster of n� 1 spheres. Next we break a contact on this cluster,
by deleting a single equation in (2.1). Typically, this makes a cluster with a single
internal degree of freedom, i.e. the set of solutions to the reduced system of equations

H.-C. (2016)  SIAM Review

(N=20,21 also; data not shown)
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3n� 9 3n� 8 3n� 7 3n� 6 3n� 5 3n� 4 3n� 3 3n� 2 Total

5 1 1
6 2 2
7 5 5
8 13 13
9 52 52
10 1 259 3 263
11 2 18 1618 20 1 1659
12 11 148 11,638 174 8 1 11,980
13 87 1221 95,810 1307 96 8 98,529
14 1 707 10,537 872,992 10,280 878 79 4 895,478

3n� 4 3n� 3 3n� 2 3n� 1 3n 3n+ 1 3n+ 2
15 7675 782 55 6 (9⇥ 106 est.)
16 7895 664 62 8 (1⇥ 108 est.)
17 7796 789 85 6 (1.2⇥ 109 est.)
18 9629 1085 91 5 (1.6⇥ 1010 est.)
19 13,472 1458 95 7 (2.2⇥ 1011 est.)

Table 1
Number of clusters found for each n, organized by number of contacts in each cluster. For

n � 15 only clusters with a minimum number of contacts were enumerated.

where R(x) is the Jacobian of (2.1), called the rigidity matrix. If the right null space
of R(x) is empty, we cannot solve for p0(0) so the cluster is infinitestimally rigid, or
first-order rigid. This is su�cient for rigidity [13].

This is a linear criterion, so we will sometimes say “linearly rigid” or “linearly
floppy.” A cluster that is linearly floppy may or may not be rigid. The right null
space of the rigidity matrix gives the linear deformations of the cluster, and to check
whether these are extendable to finite deformations we must continue the expansion
to higher order.

Taking two derivatives of (2.1) gives

(2.3) R(x)p00|t=0 = �R(p0)p0|t=0.

By the Fredholm alternative, we can solve for p00(0) if and only if there exists v 2 V
such that wTR(v)v = 0 for all w 2 W, where V,W are the right and left null spaces
of R(x). When this condition does not hold, the cluster is second-order rigid and this
is also su�cient for rigidity [13]. Finding a w for each v to make the inner product
non-zero is a challenge, but sometimes it is possible to find a single w that works for
all v. This happens when wTR(v)v is sign-definite for v 2 V , and then the cluster
is pre-stress stable. It is possible to find such a w by semi-definite programming
methods, for example. See Supplementary Information (SI) for details about how we
implement this.

To compute the number of internal degrees of freedom of a cluster when it is
not pre-stress stable, we use a numerical method that estimates the dimension of the
solution set by taking small steps in each of the candidate tangent directions. See SI
for more details.

2.2. Enumeration algorithm. We search for rigid clusters by following all
the one-dimensional transition paths between clusters. We begin with a single rigid
cluster of n spheres. This is easy to obtain, for example by gluing a sphere with
three contacts to a cluster of n� 1 spheres. Next we break a contact on this cluster,
by deleting a single equation in (2.1). Typically, this makes a cluster with a single
internal degree of freedom, i.e. the set of solutions to the reduced system of equations

hyperstatic

H.-C. (2016)  SIAM Review

(N=20,21 also; data not shown)
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17 7796 789 85 6 (1.2⇥ 109 est.)
18 9629 1085 91 5 (1.6⇥ 1010 est.)
19 13,472 1458 95 7 (2.2⇥ 1011 est.)

Table 1
Number of clusters found for each n, organized by number of contacts in each cluster. For

n � 15 only clusters with a minimum number of contacts were enumerated.

where R(x) is the Jacobian of (2.1), called the rigidity matrix. If the right null space
of R(x) is empty, we cannot solve for p0(0) so the cluster is infinitestimally rigid, or
first-order rigid. This is su�cient for rigidity [13].

This is a linear criterion, so we will sometimes say “linearly rigid” or “linearly
floppy.” A cluster that is linearly floppy may or may not be rigid. The right null
space of the rigidity matrix gives the linear deformations of the cluster, and to check
whether these are extendable to finite deformations we must continue the expansion
to higher order.

Taking two derivatives of (2.1) gives

(2.3) R(x)p00|t=0 = �R(p0)p0|t=0.

By the Fredholm alternative, we can solve for p00(0) if and only if there exists v 2 V
such that wTR(v)v = 0 for all w 2 W, where V,W are the right and left null spaces
of R(x). When this condition does not hold, the cluster is second-order rigid and this
is also su�cient for rigidity [13]. Finding a w for each v to make the inner product
non-zero is a challenge, but sometimes it is possible to find a single w that works for
all v. This happens when wTR(v)v is sign-definite for v 2 V , and then the cluster
is pre-stress stable. It is possible to find such a w by semi-definite programming
methods, for example. See Supplementary Information (SI) for details about how we
implement this.

To compute the number of internal degrees of freedom of a cluster when it is
not pre-stress stable, we use a numerical method that estimates the dimension of the
solution set by taking small steps in each of the candidate tangent directions. See SI
for more details.

2.2. Enumeration algorithm. We search for rigid clusters by following all
the one-dimensional transition paths between clusters. We begin with a single rigid
cluster of n spheres. This is easy to obtain, for example by gluing a sphere with
three contacts to a cluster of n� 1 spheres. Next we break a contact on this cluster,
by deleting a single equation in (2.1). Typically, this makes a cluster with a single
internal degree of freedom, i.e. the set of solutions to the reduced system of equations

H.-C. (2016)  SIAM Review

(N=20,21 also; data not shown)
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Table 1
Number of clusters found for each n, organized by number of contacts in each cluster. For

n � 15 only clusters with a minimum number of contacts were enumerated.

where R(x) is the Jacobian of (2.1), called the rigidity matrix. If the right null space
of R(x) is empty, we cannot solve for p0(0) so the cluster is infinitestimally rigid, or
first-order rigid. This is su�cient for rigidity [13].

This is a linear criterion, so we will sometimes say “linearly rigid” or “linearly
floppy.” A cluster that is linearly floppy may or may not be rigid. The right null
space of the rigidity matrix gives the linear deformations of the cluster, and to check
whether these are extendable to finite deformations we must continue the expansion
to higher order.

Taking two derivatives of (2.1) gives

(2.3) R(x)p00|t=0 = �R(p0)p0|t=0.

By the Fredholm alternative, we can solve for p00(0) if and only if there exists v 2 V
such that wTR(v)v = 0 for all w 2 W, where V,W are the right and left null spaces
of R(x). When this condition does not hold, the cluster is second-order rigid and this
is also su�cient for rigidity [13]. Finding a w for each v to make the inner product
non-zero is a challenge, but sometimes it is possible to find a single w that works for
all v. This happens when wTR(v)v is sign-definite for v 2 V , and then the cluster
is pre-stress stable. It is possible to find such a w by semi-definite programming
methods, for example. See Supplementary Information (SI) for details about how we
implement this.

To compute the number of internal degrees of freedom of a cluster when it is
not pre-stress stable, we use a numerical method that estimates the dimension of the
solution set by taking small steps in each of the candidate tangent directions. See SI
for more details.

2.2. Enumeration algorithm. We search for rigid clusters by following all
the one-dimensional transition paths between clusters. We begin with a single rigid
cluster of n spheres. This is easy to obtain, for example by gluing a sphere with
three contacts to a cluster of n� 1 spheres. Next we break a contact on this cluster,
by deleting a single equation in (2.1). Typically, this makes a cluster with a single
internal degree of freedom, i.e. the set of solutions to the reduced system of equations

hypostatic

H.-C. (2016)  SIAM Review

(N=20,21 also; data not shown)



A cluster “missing” one contact, N=10



cluster missing three 
contacts, N=14

clusters missing two contacts, 
N=11



# of contacts ~ 2N  when N large

cluster missing arbitrarily many contacts



# of contacts ~ 2N  when N large

cluster missing arbitrarily many contacts



DOES THE ALGORITHM FIND EVERYTHING?

Nooooo..........

Here’s a cluster which can’t be reached by one-dimensional
transition paths:

....... but these are probably rare?

....... is a subset complete (eg regular clusters)?

No………  here’s an example:

Does the algorithm find everything?

N=11
hypostatic 

3N-7 contacts
hcp fragment

Cluster landscape looks like: 
Question: 
Is the landscape ever 
connected (by 1 dof 
motions), under additional 
assumptions?  
e.g. clusters are regular, 
isostatic, have random 
diameters, …. 



What is the partition function of a rigid cluster in the sticky-sphere limit? 

Y. Kallus and M. H.-C., Phys Rev E (2017).



Interactions short-ranged (compared to diameter of particles) :

r

U(r)

d d+ε

U(d)

Range ε ≪ d

Depth U(d) ≫ 1

energy of a cluster of N spheres = V(x) =  
X

i 6=j

U(|xi � xj |)

Sticky-sphere limit:

energy of a pair = U(|xi-xj|),     xi=center of ith sphere, x = (x1, x2, . . . , xN )

 β = 1/kBT  
     =  inverse temperature  

What is partition function in the sticky-sphere limit?

N(x) = neighbourhood of x, including translations, rotations, permutations,           
             and bonds with lengths ∊ (d - ε, d + ε)

Z

x

=

Z

N(x)
e

��V (x0)
dx

0

—> Really stiff springs



“Geometry” of the calculation

evaluate asymptotically 
as ε —> 0

“Fatten” constraint surfaces by amount ε on either side

Look at volume of intersection region, as ε —> 0

Pull out Boltzmann factor

Write yk(x) = |xik � xjk |� 1

{x : yk(x) = 0} is hypersurface where sphere ik touches sphere jk

exponential function just 
introduces a pre-factor

Z

x

⇠ e

��BU(d)

Z

{�✏yk(x)✏}B
k=1

dx

B = # of bonds



Example (regular)

x∊R2

y1(x) = v1·x

y2(x) = v2·x

Vol  =   4| v1 ╳ v2 |-1 ε2

“Regular” constraints should have volumes that scale as  
εdimension of intersection set
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Vol  =   4| v1 ╳ v2 |-1 ε2

“Regular” constraints should have volumes that scale as  
εdimension of intersection set



Example (singular)

x∊R2

y1(x) = x2

y2(x) = (x1)2 - x2

@Y

@x

= 2✏�3/2
p
Y1 + Y2

blows up as (Y1,Y2)—>(0,0), but in 
an integrable way

Y1 = y1/ε  
Y2 = y2/ε1/2

Vol = ✏3/2
ZZ

1Y11
1Y21
Y1+Y2�0

1

2

p
Y1 + Y2

dY1dY2 = ✏3/2 ·O(1)
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an integrable way
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Vol(Example 2)

Vol(Example 1)

⇠ 1

✏1/2
% 1 as ✏ ! 0

—> Equilibrium probability of singular clusters should dominate that of regular 
clusters (with the same number of contacts), in the sticky-sphere limit.

Physically, they have more entropy. 



Example (hyperstatic)

x∊R2

y1(x) = v1·x

y2(x) = v2·x

y3(x) = v3·x

Vol  ∝  ε2 Z
x

/ e�3�U(d)✏2

Z
x

(hyperstatic example)

Z
x

(regular example)

/ e��U(d) ! 1 as U(d) ! �1

—> Free energy of hyperstatic clusters should dominate that of regular clusters, 
in the sticky-sphere limit.  
Physically, they have lower energy. 
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Example (hyperstatic)

x∊R2

y1(x) = v1·x

y2(x) = v2·x

y3(x) = v3·x

Vol  ∝  ε2 Z
x

/ e�3�U(d)✏2

Z
x

(hyperstatic example)

Z
x

(regular example)

/ e��U(d) ! 1 as U(d) ! �1

—> Free energy of hyperstatic clusters should dominate that of regular clusters, 
in the sticky-sphere limit.  
Physically, they have lower energy. 

Who wins: singular clusters or hyperstatic clusters?



General case

Algebraic geometry: 

Vol ⇠ ✏q(log ✏)k, q 2 Q, k 2 Z

q,k related to the algebraic nature of the singularity, i.e. what it looks like 
once it is “resolved”
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1. Introduction

The study of rational and integral points on algebraic varieties defined over a num-
ber field often leads to considerations of volumes of real, p-adic or adelic spaces. A
typical problem in arithmetic geometry is to establish asymptotic expansions, when
B → ∞, for the number Nf(B) of solutions in rational integers smaller than B of
a polynomial equation f(x) = 0.

When applicable, the circle method gives an answer in terms of a “singular
integral” and a “singular series”, which itself can be viewed as a product of p-adic
densities. The size condition is only reflected in a parameter in the singular integral,
whose asymptotic expansion therefore governs that of Nf (B).

More generally, one considers systems of polynomial equations, i.e. algebraic
varieties over a number field or schemes of finite type over rings of integers, together
with embedding into a projective or affine space. Such an embedding induces
a height function (see, e.g. [34, 43, 30]) such that there are only finitely many
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How does the free energy of singular clusters scale with ε?
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How does the free energy of singular clusters scale with ε?



Our approach

Taylor-expand the potential V(x) =  
 
 
 
 
 

Evaluate integral using Laplace asymptotics

Asymptotically the same scaling as square-well potential:  
log(Zsquare) ~ log(Zx)    as ε→0, U(d)→∞                    (Kallus & H.-C., Phys Rev E (2017))

X

i 6=j

U(|xi � xj |)

Z

x

=

Z

N(x)
e

��V (x0)
dx

0

@1@2@3V =
X

hi,ji

U 000
0 (@1r@2r@3r) + U 00

0 (@13r@2r + @23r@1r + @12r@3r)

@1@2@3@4V =
X

hi,ji

U 0000
0 (@1r@2r@3r@4r)

+ U 000
0 (@14r@2r@3r + @13r@2r@4r + @12r@3r@4r + @24r@1r@3r + @23r@1r@4r + @34r@1r@1r)

+ U 00
0 (@123r@4r + @124r@2r + @234r@1r + @12r@34r + @13r@24r + @14r@24r)



Partition function for second-order rigid cluster

where the geometrical part is

parameters are geometry-dependent variables are

Y. Kallus and M. H.-C., Phys. Rev. E (2017).

z

x

= (const) ·
p

I(x)

�

Y

�i 6=0

�

�1/2

i

(x)

Z

X

e

�Q(x̃)
d

˜

x

Z
x

= (const) · ��B↵dX z
x

� = e��U(d)

⇡ exp(depth)

↵ = (U 00
(d)�d2)1/4

⇡ width

�1/2

�B = B � (3N � 6)
= # of bonds beyond isostatic

dX = # of singular directions
I(x) = determinant of moment of inertia tensor

� = symmetry number
�i(x) = eigenvalues of Hessian rrV = R(x)RT (x)
Q(x) = quartic function on subspace of

singular directions



Partition function for second-order rigid cluster

Only TWO parameters needed! 

where the geometrical part is

parameters are geometry-dependent variables are

Y. Kallus and M. H.-C., Phys. Rev. E (2017).

z

x

= (const) ·
p

I(x)

�

Y

�i 6=0

�

�1/2

i

(x)

Z

X
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�Q(x̃)
d

˜

x

Z
x

= (const) · ��B↵dX z
x

� = e��U(d)

⇡ exp(depth)

↵ = (U 00
(d)�d2)1/4

⇡ width

�1/2

�B = B � (3N � 6)
= # of bonds beyond isostatic

dX = # of singular directions
I(x) = determinant of moment of inertia tensor

� = symmetry number
�i(x) = eigenvalues of Hessian rrV = R(x)RT (x)
Q(x) = quartic function on subspace of

singular directions



Comparing hyperstatic & singular clusters



N ≤ 8

All rigid clusters are first-order rigid

Symmetry number is most important factor: more asymmetric —> more 
probable.

Contacts
Symmetry number
Moment of inertia 1/2

Zr
Zv
Predicted P
ObservedP

12
24
2.8
0.12

0.034

4.0%
4.3%

Octahedron

1.0 μm

Oh

12
2

3.2
1.6

0.061

96.0%
95.7%

Polytetrahedron

1.0 μm

C2v

(rotational)
(vibrational)

Fig. S2. Comparison of polytetrahedral and octahedral clusters at N = 6. Top shows optical micrographs
and renderings of the two structures with point groups indicated in Schönflies notation, and bottom the en-
tropic contributions to the probability of each. Zr is the rotational partition function and Zv the vibrational
partition function. The predicted probability of formation is calculated from the product ZvZr. The main
contribution to the probability comes from the rotational partition function through the symmetry num-
ber. The calculated ratio of probabilities is 24 : 1, which agrees well with the experimental data (see also
Table S1).

9

poly octa ratio

𝝹B 𝝹12 𝝹12 1

I1/2 3.2 2.8 1.1

Zvibr 0.061 0.034 1.8

σ-1 2-1 24-1 12

Ptheory 96.0% 4.0% 24

Pobs 95.7% 4.3% 22.3

Z
x

= B

p
I

�

3N�6Y

i=1

��1/2
i

G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)



N = 9

1 singular cluster, 51 regular clusters

P (singular) =
↵

235 + ↵
↵ = (U 00(d)�d2)1/4 ⇠ width�1/2

Agrees with simulations for 
large α (small width)

For small α, no robust way 
to identify clusters 
—> likely due to non-nearest 
neighbour interactions, since 
gaps are small. 

Experiments: P1=11% 
(4%-27%), α ≈ 10. 

experiments



N ≥ 10: group by type

z�B,dX = sum of geometric contributions of all clusters with

�B extra bonds and dX singular directions

↵ ⇠ width

�1/2, log � ⇠ depth

Total partition function of all rigid clusters Z

Z /
X

�B,dX

↵dX��Bz�B,dX



N ≥ 10: group by type

z�B,dX = sum of geometric contributions of all clusters with

�B extra bonds and dX singular directions

↵ ⇠ width

�1/2, log � ⇠ depth

Total partition function of all rigid clusters Z

Z /
X

�B,dX

↵dX��Bz�B,dX



N ≥ 10: group by type

z�B,dX = sum of geometric contributions of all clusters with

�B extra bonds and dX singular directions

Which term is largest as a function of 𝛾, 𝜶 ? 

↵ ⇠ width

�1/2, log � ⇠ depth

Total partition function of all rigid clusters Z

Z /
X

�B,dX

↵dX��Bz�B,dX



N = 10

log γ
(depth)

log α   
-½log(width)

regular
hyperstatic

hypostatic

singular
κ=10

κ=103



N = 11-14



N = 11-14

regular regular

regularregular

κ=10

κ=10

κ=103

κ=103

maximum bonds maximum bonds

maximum bondsmaximum bonds

maximum bonds 
+ singular

fewest bonds, 
most singular

fewest bonds, 
most singular

fewest bonds, 
most singular

fewest bonds, 
not as singular

fewest bonds, 
most singular

hyperstatic, 
singular

hyperstatic, 
singular

isostatic, 
most singular

hypostatic, 
singular

hypostatic, 
singular
isostatic, 
singular

hypostatic, 
singular

hyperstatic, 
singular

hypostatic, 
singular

hypostatic, 
singular

hypostatic, 
singular



N=15-21
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… back to frustration ….

✤ Symmetry (or lack thereof) doesn’t seem to be particularly important
✤ Competition is between 

energy (of extra bonds),   and  “singular” entropy (of 0-frequency modes):  
 
 
 
 
 

and combinatorial entropy (total number of states)  
(also global entropy term — neglected here)  

✤ For identical spheres,  energy beats “singular entropy”:  
Max-bond, crystalline states win for N ≥ 10, strong enough bonds  
 
                 —> Sticky spheres do not appear to be frustrated!   

✤ Question: Are there systems where “singular entropy” dominates?  
(non-identical spheres, ellipsoids, …?)

Z
x

= (const) · ��B↵dX z
x

energy entropy

Thanks to:  Steven Gortler, Yoav Kallus, John Ryan, Louis Theran,  US DOE, NSF-FRG



Why do the landscapes look so similar?
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Why do the landscapes look so similar?

Why all these exponential scaling laws?  
Do the exponents approach a common value as N→∞ ?

3 4 5 6

10-4

10-2

100

102
∝ -3.89

N = 16

∆ B
3 4 5 610-8

10-4

100

104 ∝ -2.3

∝ -1.59

∝ -1.19

4 5 6 7

10-4

10-2

100

102

∝ -3.9

N = 17

∆ B
4 5 6 710-8

10-4

100

104 ∝ -2.37

∝ -1.53

∝ -1.24

5 6 7 8

10-4

10-2

100

102

∝ -4.01

N = 18

∆ B
5 6 7 810-8

10-4

100

104 ∝ -2.52

∝ -1.49

∝ -1.21

6 7 8 9

10-4

10-2

100

102

∝ -4.11

N = 19

∆ B
6 7 8 910-8

10-4

100

104 ∝ -2.54

∝ -1.57

∝ -1.14

7 8 9 10

10-4

10-2

100

102

∝ -4.25

N = 20

∆ B
7 8 9 1010-8

10-4

100

104 ∝ -2.83

∝ -1.41

∝ -1.14

8 9 10 11

10-4

10-2

100

102

∝ -4.35

N = 21

z∆B

∆ B
8 9 10 1110-8

10-4

100

104 ∝ -2.96

∝ -1.39

∝ -1.11

n∆B

z̄∆B

v̄∆B



Why do the landscapes look so similar?

Why all these exponential scaling laws?  
Do the exponents approach a common value as N→∞ ?

can explain using geometry, combinatorics, random matrix theory, …?
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Two-dimensional rigid clusters
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Back to memory

1. Colloids could be programmed to contain memories
• realize memories in physical system
• make multi-function devices
• requires quantitative computation & optimization on free energy landscape 

(tools under development), to account for real & important constraints 
imposed by geometry  

2. Link to continuous attractor
• Folding experiment…. 
• entropy may help stabilize (states & memories),  

via kinetics — but memory is a kinetic phenomenon  

3. Observed colloidal crystals contain memory (J. Crocker, GRC 2017)
• colloids have “slow” kinetics (c.f. atomic vibrational timescales, for e.g.)
• how can we predict which structures will form? Given that it is not only 

the lowest free-energy structure, but also one which favours growth? 


