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Plastic Deformation and Dislocations in Crystals 

Edge dislocations: Line defects oriented perpendicular to the plane 



Dislocations and Strain Hardening 

Real dislocations are extended line defects in crystals. Their chaotic 

motions determine irreversible deformations. New dislocations are 

created by externally applied stresses during strain.  They become 

entangled with each other and, at increasing densities, require 

increasing stresses to make them move.  Thus the material becomes 

harder and stronger as it deforms.   

A “bird’s nest“ of dislocations 
              (Nabarro) 
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Note extremely slow 

variation of stress with 

strain rate. 



Constant Strain Rate Measurements: Cu at high temperatures 

                        Preston, Tonks and Wallace, LANL 2003 
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The solid curves are PTW phenomenological fits to a wide range of data. 

Strain hardening 



A.H. Cottrell (2002)  In a volume of essays celebrating the 

50’th anniversary of his 1952 book on dislocation theory: 

 

“Strain hardening is the most difficult remaining problem in 

classical physics.  …. The statistical mechanical approach … 

fails because the behaviour of the whole system is governed 

by that of weakest links … and is thermodynamically 

irreversible.  …  The entire system behaves more like a single 

object of extreme structural complexity and deformability … a 

bird's nest.  

 

“[The theory of strain hardening] is still at the stage of being 

merely interpretive, not predictive. … It may never develop into 

such a theory.” 



     Statistical Thermodynamics of Dislocations 
                                        

Consider systems that are undergoing persistent deformation in 

response to external driving forces. The dislocations are moving 

very slowly on atomic time scales; but they are moving 

chaotically.  Therefore, we can assume that they are exploring 

statistically significant fractions of their configuration spaces.   

 

Accordingly, a macroscopically large system of dislocations must 

be near its state of maximum probability – i.e. maximum entropy 

–  or else it must be moving toward that state.   

 

This (sub-) system must obey some form of the second 

law of thermodynamics. 
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Steady-State Deformation 

  



                       Deformation Rates 
 
Start with Orowan’s relation  (1930’s)   

= density of dislocations per unit area 
= length of dislocation lines per unit volume 
  

= average spacing between dislocations 

Plastic shear rate 
 
where 
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b’ ~ b/10 

 

The edge dislocations that produce shear deformation  

(     and     ) must move through a “forest” of perpendicular 

dislocations and other defects that exert pinning forces. 

Taylor stress: 

(more or less) 



Acta Metall., 1981 



Depinning model 

thermally activated depinning rate 

(microscopic time scale) 
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We already have some important information.  For all but very small 

stresses σ, we can solve for (positive) σ as a function of q and ρ: 

Note the logarithms.  The stress is proportional to the Taylor 

stress, and the proportionality factor is an extremely slowly 

varying function of its arguments.   

 

The effective temperature analysis tells us that  is roughly 

constant in steady state. 



Theoretical fits to the 
PTW data for copper.  



Steady-State Parameters 

Molecular vibration period 
 
Effective temperature at small strain rates 
 
Pinning energy ~ 3eV 
 

(T) = shear modulus ~ 50 GPa at 300 K 
 
Determines crossover from low to high strain rates. 

These are the only parameters needed in the steady-state theory for 
small strain rates. 

A=2 

However, strain hardening is a transient phenomenon that involves a 
few additional rate factors and physical mechanisms. 



Equations of Motion 

Dislocation energy 
conservation  

First law of thermodynamics 

Stress  equation  



Stress-strain curves for copper at high temperatures, for constant (shear) 

strain rates as shown.  The theoretical curves are from LBL. 



Stress-strain curves for copper at room temperature, for constant, very different, 

(shear) strain rates as shown.  The theoretical curves are from LBL . 



Theoretical Experiment 

Slowly harden to       ; 
then unload;  then 
reload rapidly.  The 
system remembers its 
history in the form of 
increased dislocation 
density and increased 
effective temperature 
(disorder).  Note yield 
stress.  
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Real experimental data.  Shi et al (1997) results for Aluminum at 573 K, 
at strain rates .25, 2.5 and 25 /sec.  Analysis by Le, Tran and JSL (2017) 

Note sharp yielding transitions – the converse of the almost rate-
independent stresses.  Also note thermal softening at large strains. 
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Coupling between thermal and mechanical effects 

 Is the Taylor-Quinney conversion ratio between input power 
and heat generation.  This coupling is especially dramatic in 
adiabatic shear banding, which is often a precursor to fracture.  
“Adiabatic” means that the shearing instability sets in faster than 
the heat generated is conducted away.   



Adiabatic Shear Banding 



Marchand and Duffy (1988) 
 
Direct observation of shear 
deformation near a shear 
band 
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Adiabatic shear banding in steel.  Data from Marchand and Duffy. 
Analysis by Le, Tran and JSL.   
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Normalized shear rate as a function of position normal to the band. for a 
sequence of strains during the banding transition.  Note that the shear 
rate collapses to zero outside the band.  
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JSL PRE 96, 053005 (2017)  is a summary of recent 
progress.  In addition to topics covered here, it includes 
a theory of  Hall-Petch grain size effects.  (Smaller grains 
increase the rate of dislocation production in the 
equation of motion for the dislocation density.)  
 
The next project on the agenda is a theory of fracture 
toughness and brittle-ductile transitions.   


