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Plastic Deformation and Dislocations in Crystals
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Edge dislocations: Line defects oriented perpendicular to the plane



Dislocations and Strain Hardening

A “bird’s nest” of dislocations
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Real dislocations are extended line defects in crystals. Their chaotic
motions determine irreversible deformations. New dislocations are
created by externally applied stresses during strain. They become
entangled with each other and, at increasing densities, require
Increasing stresses to make them move. Thus the material becomes
harder and stronger as it deforms.
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Constant Strain Rate Measurements: Cu at high temperatures
Preston, Tonks and Wallace, LANL 2003
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The solid curves are PTW phenomenological fits to a wide range of data.



A.H. Cottrell (2002) In a volume of essays celebrating the
50’th anniversary of his 1952 book on dislocation theory:

“Strain hardening is the most difficult remaining problem in
classical physics. .... The statistical mechanical approach ...
fails because the behaviour of the whole system is governed
by that of weakest links ... and is thermodynamically
irreversible. ... The entire system behaves more like a single

object of extreme structural complexity and deformability ... a
bird's nest.

“[The theory of strain hardening] is still at the stage of being
merely interpretive, not predictive. ... It may never develop into
such a theory.”



Statistical Thermodynamics of Dislocations

Consider systems that are undergoing persistent deformation in
response to external driving forces. The dislocations are moving
very slowly on atomic time scales; but they are moving
chaotically. Therefore, we can assume that they are exploring
statistically significant fractions of their configuration spaces.

Accordingly, a macroscopically large system of dislocations must
be near its state of maximum probability — I.e. maximum entropy
— or else it must be moving toward that state.

This (sub-) system must obey some form of the second
law of thermodynamics.



Dislocation energies are vastly greater than kT. However, the energy U,
of a configuration of dislocations is well defined, and the number of such
configurations in an energy interval is countable. Thus, the
configurational entropy S is also well defined.

Maximize S at fixed U, that is, minimize the free energy
Fe=Ug -1

The Lagrange multiplier 7 = dU . [ 05, is an “effective” temperature. In
fact, it is a real temperature.

When the system is driven out of equilibrium, ¥ is very different from the
ambient temperature. It is a measure of configurational disorder. It is an
essential, memory-carrying, dynamical variable.



Steady-State Deformation

Measure the effective disorder temperature ¥ in units of some (very large)
characteristic dislocation energy. Minimizing the free energy tells us that the
steady-state density of dislocations is:
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where a is a length scale of the order of about 10 lattice spacings, and xs is

a function of the deformation (“stirring”) rate, but only for very large rates.
For rates slower than atomic relaxation rates, s = Yo = constant.
If p is the principal determinant of stress, then we understand why stress is

almost constant. An argument analogous to the Lindemann criterion for
melting implies that y, = 0.25, which is close to the observed value.



Deformation Rates

Start with Orowan’s relation (1930’s)

p = density of dislocations per unit area
= length of dislocation lines per unit volume =~
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Plastic shearrate  éP' =puv b

where V = average velocity of dislocations
b = length of Burgers vector ~ atomic spacing



— G. |. Taylor (1934)
(more or less)

Taylor stress:
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The edge dislocations that produce shear deformation
( | and T ) must move through a “forest” of perpendicular
dislocations and other defects that exert pinning forces.
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Fig. 1. Dislocation density vs flow stress for Cu at room temperature [12-21], normalized by

b = 0.256 nm, u = 42.1 GPa (decadic logarithms). Polycrysial (PX) tensile stresses were divided by 3.06

to convert to shear stress r. Volume dislocation densities measured by TEM were divided by 2 to

convert to intersection density p. For single slip (541, etch-pit data refer to forest density, TEM data to

dislocations with nonprimary Burgers vectors. From the low stresses, 0.12 MPa was subtracted [20]. The
lines show the relation o = aph,/p, with @ = 1 and 0.5.




Depinning model

thermally activated depinning rate

o

To =107'“sec. (microscopic time scale)
or(p)

AE(o) = kgTp exp [—

AE (o) is just a convenient smooth function with only one stress scale,
I.e. the Taylor stress. Assume (correctly) that a dislocation spends almost
all of its time in a pinned state, and occasionally jumps almost
instantaneously from one such state to another. Then, use the Orowan
relation with y-¢/7(g) to evaluate the dimensionless plastic strain rate :

-pl _
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We already have some important information. For all but very small
stresses g, we can solve for (positive) o as a function of g and p:

" T (bq—pj

Note the logarithms. The stress is proportional to the Taylor
stress, and the proportionality factor is an extremely slowly
varying function of its arguments.

The effective temperature analysis tells us that (3 is roughly
constant in steady state.



Theoretical fits to the
PTW data for copper.
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Steady-State Parameters

7, = 10712 sec Molecular vibration period
Xo = 0.25 Effective temperature at small strain rates
Tp= 40,800 K Pinning energy ~ 3eV
Uraylor = M/31 Q(T) = shear modulus ~ 50 GPa at 300 K

A=2 Determines crossover from low to high strain rates.

These are the only parameters needed in the steady-state theory for
small strain rates.

However, strain hardening is a transient phenomenon that involves a
few additional rate factors and physical mechanisms.



Equations of Motion

The crucial ingredients are equations of motion for p and Y that

describe how these quantities approach their steady-state values as
functions of time. These equations are:

- pl 1 : :
5 K, €t o [1 __Fk ] . pss() == e—1/x  Dislocation energy
YD Pss(X) a conservation

clTy -k éPlo (1 - XL) First law of thermodynamics
0]

vp = dislocation energy per unit length. The K’s are dimensionless
proportionality factors. Note that both rates are determined by the

rate at which work is done on the system by the applied stress 0.
Stress equation g = M(étoml — E‘Pl)



1023 K, 1800 sec.”

2

1173 K, 960 sec.”

@
o
=
ﬁ
&
=
75

& 8 B

1173 K, 0.066 sec.”

E

=

Stress-strain curves for copper at high temperatures, for constant (shear)
strain rates as shown. The theoretical curves are from LBL.



298 K, 2000 sec.”
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Stress-strain curves for copper at room temperature, for constant, very different,
(shear) strain rates as shown. The theoretical curves are from LBL .



Theoretical Experiment

Slowly hardento
then unload; then
reload rapidly. The
system remembers its
history in the form of
increased dislocation
density and increased
effective temperature
(disorder). Note yield
stress.
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Real experimental data. Shi et al (1997) results for Aluminum at 573 K,
at strain rates .25, 2.5 and 25 /sec. Analysis by Le, Tran and JSL (2017)
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Note sharp yielding transitions — the converse of the almost rate-
independent stresses. Also note thermal softening at large strains.



Coupling between thermal and mechanical effects

ca—TzﬁaéPl+DV2T
ot
) Is the Taylor-Quinney conversion ratio between input power
and heat generation. This coupling is especially dramatic in
adiabatic shear banding, which is often a precursor to fracture.
“Adiabatic” means that the shearing instability sets in faster than

the heat generated is conducted away.






Marchand and Duffy (1988)

Direct observation of shear
deformation near a shear

band
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Adiabatic shear banding in steel. Data from Marchand and Duffy.
Analysis by Le, Tran and JSL.
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Normalized shear rate as a function of position normal to the band. for a
sequence of strains during the banding transition. Note that the shear
rate collapses to zero outside the band.
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Sequence of temperature distributions near the failure point.



JSL PRE 96, 053005 (2017) is a summary of recent
progress. In addition to topics covered here, it includes
a theory of Hall-Petch grain size effects. (Smaller grains
increase the rate of dislocation production in the
equation of motion for the dislocation density.)

The next project on the agenda is a theory of fracture
toughness and brittle-ductile transitions.



