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Finite dimensions
- Information is coded in domain orientations & in domain walls
- Evolution at fixed parameters proceeds via coarsening

Bulk control due to local randomization
- Switch between random (hierarchical) “landscapes”

- Randomness based on chaos - extreme sensitivity of landscape
to any bulk parameter (e.g., temperature)

Interrogate by spin, bond overlaps

- Expt: bulk susceptibility
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2D, 1D Ising spin glass, T=0

H(5) = = 2 cijs Jigsis;
Square/ linear /ladder lattice, index ¢ for spins,
Ising spins s; = *£1,

Gaussian distributed J;;, mean 0

Two global ground states
Two configurations denoted by A, A
Pictures: not s;, instead whether
s; aligned with A or A
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Start with random spins, ¢ is patch size

Dark = A phase, light = A phase.



Inspired by, compare with, other spin glass work:

Ye, Gheissari, Machta, Newman, Stein (2016):
Detailed study with of single spin flips
Dependence of local T' = 0 aging on dimensionality

Chanal and Krauth (2010):
Multi-scale coupling from the past in 2DISG T # 0
Found: final configuration not dependent on initial configuration at high T



Nature/environment,
Genesis/initial conditions,
Nurture/history of noise



Given
e cnvironment = J;;
e genesis = initial spins o;
e nurture = history of patch placements = random noise &

Find configurations s;(J;;, 0, &)
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Average over noise history &:
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&2 &3 e Average over noise history &:
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Two initial configs / Multiple noise histories
dark (light) bonds ="“floppy” (rigid) with respect to noise
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Noise-history-averaged bond correlations for two initial o,
(si85)(Jij, 02) vs. (si8;)(Jij, 01)

(all bonds s;s;, 50 samples .J;; with 2562 spins,
2 initial conditions o 2, 1000 noise histories &)
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Two noise histories / Multiple initial configs

dark (light) bonds ="“floppy” (rigid) with respect to initial spins
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Initial-configuration-averaged bond correlations for two noise histories &,

(5i85)(Jij,&2) vs. (si85)(Jij,81)

t=1 (=4 (=16 ¢ = 64

(all bonds s;s;, 50 samples J;; with 256 spins,
2 noise histories & 5, 1000 initial configurations o)



For “non-rigid” bonds, define

r = (sos1)(0) — (s0s1)(0”)

r = [sos1] (§) — [s051] (£)

(Fraction of non-rigid bonds ~

Edf—d)
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Noise, genesis, environment w/frustration

Both (...) and |[...]: same rigid domains, floppy walls, given J;,.
Average over histories &: floppiness independent of initial configuration o.
Average over starts o: floppiness depends on history &.

Even for [...|, domain walls not fixed by history.

... scale-invariant uncertainty arising from initial conditions.

Cf. partial-ordering/coupling-from-the-past: & — outcome.



Memory test

. Given J;;, set spins to global ground state s ({.J;;}).

. Scramble disorder - independent .J;..

Grow patches to scale ¢ under new landscape.

. Reset to J;;.
. Recover by growing patches to scale r.

. Track overlap ¢ = N~1 > s#s; all along.



1

0.1

0.01

0.001

2D aging, couplings |

®

® L—25 |
& L =512

10

100

q~t

—1.4



2D recovery, couplings |
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q = overlap with A for J;;

/ .
Jzy J: ng “time”
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Recovery length for 2D patches

Scaling argument:

Full recovery at

P, ~ 61'4/0'5 — ¢2.8

= Recovery at scales r. > than aging scale /¢

Why?
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|D recovery
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|D recovery

m =2
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~ 16 . .
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q = overlap with A for J;;

JZ] J!. JZJ “time”
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Scaling test
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