Learning and memory

Arvind Murugan Assistant Professor, Physics U Chicago Nov 2017

Associative memory

How do you keep multiple memories from interfering?

Learning and memory

Memory of examples vs learning from examples

Not for today

Temporal dynamics in biology

w/ Rust lab (U Chicago)

Kalman filter..

Temporal control of gene regulation, fate etc

w/ Tay lab (U Chicago) + others

Specificity, allostery/ cooperativity in time..

Initial Cond.

Retrieval by association

1. Correlations between memories reduce capacity

2. Complex learning rules can (slightly) increase capacity

Hopfield w/ linear Hebbian rule
$$J_{ij} = J_{ij} + J_{ij} + J_{ij} \qquad M_C = 0.14N$$

E. Gardner $M_C = 2N$ Optimal J_{ij}

3. Range of interactions is important

Fully connected (infinite dimensions) $J_{ij} = x_i x_j, \quad \vec{x} = \text{spider}$

 $M_C = 0.14N$

Finite dimensions

4. Nature of memories is important

Original model : Each memory = point attractor

Place cell model (spatial memories): Each memory = continuous attractor $M_C=O(1)$

Associative memory in materials

Zorana Zeravcic

Stanislas Leibler

Michael Brenner

PNAS 2015

J. Stat. Phy. 2017 - W Zhong, D. Schwab

Menachem Stern

Nat. Comm. 2017, PRX 2017 + in progress

DNA Brick assembly

Yin lab, Harvard Medical School

Exactly 1 partner for every binding site

Assembly mixtures

Assembly mixtures

• General model:

Colors represent bonds

Monte-Carlo Simulations

m=25 stored memories

Monomers not shown

Parameters:

N = 400 species (20x20), Bond energy = E, T = 0.15 E

Conc. = exp(1.8 E),

Phase diagram

N = 400 components (20x20)

Initial condition 1/1 **Paramagnetic Regime** 1/2 1/3 1/4 1/5 T/ϵ 1/6 **Recovery Regime Chimeric Regime** 1/7 Temperature 1/8 1/9 1/10 2 13 16 20 3 5 7 8 9 10 12 14 15 17 18 19 Δ 6 11 # of stored structures Capacity

Promiscuity balanced by frustration

The friend (12) of a friend (17) of a friend (6) .. may **not** be a friend (of 28).

Frustration

Promiscuity balanced by frustration

Patterns in concentrations

Selective assembly

7	9	15	5	24
10	22	11	2	3
8	1	17	20	25
21	23	12	6	19
14	13	4	18	16

Pattern recognizer

Patterns in concentrations

Selective assembly

2	20	25	22	8
4	14	19	21	3
24	11	5	23	18
12	1	7	15	10
17	13	6	9	16

Pattern recognizer

Associative memory

 $J_{ij} = J_{ij} + J_{ij} + J_{ij}$ Neural networks

Self-folding Bely Best Embling/Vechanical(Ribozymes, particlesnetworksDNA origami)(metamaterials)(Schultes et al 2000)(Rocks et al 2017)

Self-folding sheets (Origami) (Stern et al 2017)

Self-folding polymers

Associative memory in polymer folding

Promiscuous polymers

In how many ways can promiscuous polymers fold?

Specific kinetic simulations: Abkevich et al , JCP 1994 Isambert et al 2000s..

Equilibrium theory: Ball, Fink PRL 2001

DNA Origami experiments: Dunn et all, Nature 2015

One Sequence, Two Ribozymes: Implications for the Emergence of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

Science 2000

Useful evolutionary intermediate

Ligase fold

Cleaving fold (Hepatitis D Virus ribozyme)

Self-folding sheets

Tomohiro Tachi

Multiple folding modes

Multiple folding modes

No need to micromanage

Frustrated loops prevent chimeras

State of a crease = Mountain, Valley or Flat

of folding modes

= # of zero E ground states of disordered frustrated spin-1 system

 $E = \sum J^a x_{a1} x_{a2} x_{a3} \dots$

vertices a

Mechanical networks

Sparsity through springs

Given: Sufficient pairwise distances between N cities ... Reconstruct geography.

Complication: A few distances are *wrong*

- L2 minimization: Bad idea
- L1 minimization: Best idea

L0 minimization: Better idea

Compressed sensing

One pixel camera

Sparsity through springs

Learning vs memory

Training phase:

High plasticity

Show examples of inputs that should evoke output Other inputs should not evoke output

Test phase:

Try other inputs that should evoke output.

Learning vs memory

Black box w/ plastic elements

Restricted plasticity

Training phase:

Show examples of inputs that should evoke output Other inputs should not evoke output Higher training error Lower test error

Test phase:

Try other inputs that should evoke output.

Learning vs memory

Lines can shart shart sets of shart sets of four points.

$$\Pr\left(ext{test error}\leqslant ext{training error}+\sqrt{rac{1}{N}\left[D\left(\log\!\left(rac{2N}{D}
ight)+1
ight)-\log\!\left(rac{\eta}{4}
ight)
ight]}
ight)=1-\eta,$$

Conclusion:

Higher VC dim => low training error, high test error => more memorization/ less learning Lower VC dim => high training error, low test error => less memorization / more learning

How to force generalization

Noise ('Dropout')

Randomly turn off (and on) plasticity in different parts during learning.

Time during training ->

How to force generalization

Switching environments

S. Elongatus, Rust lab, eLife 2017 Small T Rapid changes in day length

Intermediate T

Genotypic mem: concept of seasons

Large T Slow changes in day length Genotypic mem. of day length (inflexible, memorized)

No fitness pressure to predict

Phenotypic mem: day length

How to force generalization

Switching environments

`Evolve' antibody specific to mugBut ignore handle

- All cups have handles

S. Wang et al, Cell 2015

Answer: Change mugs as a function of time

Time during training ->

VC dim of dynamical systems

Different time series:

Series 1

Series 2

Series 3

חר

Kyle Kawagoe Ambre Bourdier

Can a dynamical system map these to different fixed points?

How large a set of time series can be `shattered' by a dynamical system?