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Learning and memory 



Associative memory 
 
How do you keep multiple 
memories from interfering? 

Learning and memory 
 
Memory of examples vs  
learning from examples 
 



Temporal dynamics in biology 

Circadian clocks w/ Rust lab (U Chicago) 

Not for today 

Temporal control of gene regulation, fate etc w/ Tay lab (U Chicago) + others 

Purvis/Lahav 2014 

Metabolism 

Kalman filter.. 

Specificity, allostery/ 
cooperativity in time..  



Associative memory in neural networks 

spurious  
memories 

Under capacity 
(Hopfield 1982) 

Above capacity 

Retrieval by association 

Initial Cond. 



Associative memory in neural networks 

. . .  
Initial  
Cond. 

Final state 

Success 

Failure 

Hopfield 1982 
Amit et al 1985 
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Associative 

Spin Glass 

Paramagnetic 



Associative memory in neural networks 

1. Correlations between memories reduce capacity 

Ideally: 

2. Complex learning rules can (slightly) increase capacity 

Hopfield w/ linear Hebbian rule 

E. Gardner  

Optimal  



Associative memory in neural networks 

3. Range of interactions is important 

Finite dimensions 

Fully connected 
(infinite dimensions) 

4. Nature of memories is important 

Original model :   
Each memory = point attractor  

Place cell model (spatial memories): 
  Each memory = continuous attractor  



Michael Brenner Zorana Zeravcic 

Menachem Stern 

Nat. Comm. 2017, 
PRX 2017  
+ in progress 

J. Stat. Phy. 2017   
- W Zhong, D. Schwab 

Stanislas Leibler 

PNAS 2015 

Associative memory in materials 



DNA Brick assembly 
Yin lab,  
Harvard Medical School 
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Assembly mixtures 

• We ask: 

 

Cue A Cue B 

Cue C 
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Promiscuity 



Assembly mixtures 

• General model: 

 

Colors represent bonds 

‘m=3’ stored structures 
 (or ‘memories’) 
 
‘N=25’ species 



Monte-Carlo Simulations 

N = 400 species (20x20),  
Bond energy = E,   Conc. = exp(1.8 E),  
T = 0.15 E 

Parameters: 

m=5 stored memories m=25 stored memories 

Monomers not shown 



Phase diagram 
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 Recovery Regime 

# of stored structures 

Chimeric Regime 

Paramagnetic Regime 

Initial condition 

Capacity 

N = 400 components (20x20) 



Promiscuity balanced by frustration 

Total of ‘N’ species 

‘m’ stored memories 

‘m’ local choices 

Promiscuity: ‘m’ local choices 

Memory 1 Memory 2 Memory 3 

The friend (12) of a 
friend (17) of a 
friend (6) .. may not 
be a friend (of 28). 

Frustration 



‘m’ choices that bind 
strongly to 12 

‘m’ choices that 
bind strongly to 6 

Promiscuity balanced by frustration 

Sizeable 
intersection when  

N species 

z = coordination number 



Phases 
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replot 

Selective assembly 

Pattern recognizer 
Patterns in  
concentrations 



replot 

Selective assembly 

Pattern recognizer 
Patterns in  
concentrations 



Pattern recognizer 



Associative memory 

Neural networks 

Self-assembling  
particles 

Self-folding polymers 
(Ribozymes,   
DNA origami) 
(Schultes et al 2000) 

Self-folding 
sheets 

   (Origami) 
(Stern et al 2017) 

Mechanical  
networks 

   (metamaterials) 
(Rocks et al 2017) 



Self-folding polymers 

Contacts in desired structure 

Fold Fold 

     Design 
(find sequence) 

Programmed  
interactions Seq. A Seq. B 

Examples: 
• DNA origami (dots = stapling region) 
• RNA secondary structure  
      (dots = stem regions) 



Associative memory in polymer folding 

               Design 
(find common sequence) 

Union of  
interactions 

Contacts in desired structure 

Seq. C 



Promiscuous polymers 

In how many ways can promiscuous polymers fold? 

Specific kinetic simulations: 
Abkevich et al , JCP 1994 
Isambert et al 2000s.. 
 
Equilibrium theory: 
Ball, Fink PRL 2001 
 
DNA Origami experiments: 
Dunn et all, Nature 2015 

Entropically 
unfavorable 

Chimeric structure 



Science 2000 
 

Ligase fold Cleaving fold 
(Hepatitis D Virus 
 ribozyme) 

Useful evolutionary 
intermediate  



Self-folding sheets 

Tomohiro Tachi 



Multiple folding modes 



Multiple folding modes 

No need to micromanage 



Frustrated loops prevent chimeras 
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# of folding modes  
= # of zero E ground states of disordered frustrated spin-1 system 
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State of a crease = Mountain, Valley or Flat 



Mechanical networks 

One memory 

Two memories 
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# of memories 

Non-linearity of springs 

Non-linearity parameter 
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Sparsity through springs 
Given: Sufficient pairwise distances between N cities …  
Reconstruct geography. 

Complication:  A few distances are *wrong* 

L2 minimization:  Bad idea 

L0 minimization:  Better idea 

L1 minimization:  Best idea 

Compressed sensing 

One pixel camera 

L0 L1 L2 

  Sparsity emphasized        

Non-convex               Convex                 .      



Sparsity through springs 

Non-linearity parameter 
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Learning vs memory 

Input -> Output 

Black box w/ plastic elements 

Training phase: 
Show examples of inputs that should evoke output 
Other inputs should not evoke output 

Test phase: 
Try other inputs that should evoke output. 

High plasticity 

Input space 
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Learning vs memory 

Input -> Output 

Black box w/ plastic elements 

Training phase: 
Show examples of inputs that should evoke output 
Other inputs should not evoke output 

Test phase: 
Try other inputs that should evoke output. 

Restricted plasticity 

Higher training error 
Lower test error 



Learning vs memory 

Vapnik–Chervonenkis (VC) dimension:  

Size of largest set of inputs that 
can always be `shattered’. 

Conclusion: 
 
Higher VC dim => low training error, high test error => more memorization/ less learning 
 
Lower VC dim => high training error, low test error => less memorization / more learning 

Lines can shatter `any’ set of three points.. 
but not sets of four points. 

Rectangles can shatter sets of four points.. 



Noise  (‘Dropout’) 

Randomly turn off (and on) plasticity  
in different parts during learning. 

Full network Random dropout 

How to force generalization 

Time during training ->  



How to force generalization 
Switching environments 

Seasonal variation of photo period 

Large T 
Slow changes in day length 

Genotypic mem. of day length 
(inflexible, memorized) 

Small T 
Rapid changes in day length 

No fitness pressure 
to predict 

Intermediate T 

Genotypic mem: concept of 
seasons 
 
Phenotypic mem: day length 

Predict dawn/dusk Predict dawn/dusk 

S. Elongatus,  Rust lab, eLife 2017 



S. Wang et al, Cell 2015 

How to force generalization 

`Evolve’ antibody specific to mug  

- But ignore handle 

- All cups have handles 

Time during training  ->  

Answer: Change mugs as a function of time 

Switching environments 



VC dim of dynamical systems 

Different time series:  

Series 1 

Series 2 

Series 3 

Can a dynamical system map these 
to different fixed points? 

How large a set of time series can be `shattered’ by a dynamical system?  

Kyle Kawagoe 
Ambre Bourdier 


