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• Focus on pre-service teachers
• Full-time paid research at one of 21 lab sites for nine summer weeks
• Weekly education workshops translate lab culture and practices into classroom
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Memory

Add information 
to system Recover it later

Language for
• Dependence on initial conditions, history
• Nature of a system/material

Requirements for material
• Many degrees of freedom
• Changed by external driving (“learning”)
• Can’t relax to equilibrium
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• Cyclic driving is ubiquitous
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“Slow”
• Cyclic driving is ubiquitous

• Systems can change/learn gradually, over 
many cycles of driving

• Many cycles required to “learn”  
➔ chance to form multiple memories



How does cyclic driving 
change a system gradually?



Structure of Rubber

Polymer Science Learning Ctr/Chem Heritage Fdn

Polymer molecules Crosslinked rubber

Crosslinks are weaker 
than original molecules
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What happens after 
repeated stretching?

1. The rubber changes on the first cycle only

2. The rubber changes over many cycles

3. The rubber warms up but is otherwise 
unchanged

4. Things do not end well for the rubber
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What happens after 
repeated bending?

1. The metal changes on the first cycle only

2. The metal changes over many cycles

3. The metal warms up but is otherwise 
unchanged

4. Things do not end well for the metal



Experiment

This side:
Bend to 90° and 

back twice

Bend your wire cyclically!

This side:
Bend to 45°,

then 90° and back

How many cycles before failure?



What happens after 
repeated crumpling?

1. The sheet will keep reusing the creases I 
made the first time

2. Eventually I will stop making new creases

3. Crumping a sheet always makes new creases



Crumpling a Sheet:
A steady state*

*approximately
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Suspensions



Shear and shear strain

Take any material…



Shear it:

Shear stress σ

Shear and shear strain



Shear it:

Strain:

Shear stress σ

Shear and shear strain



Oscillatory (or cyclic) shear
� = �0 sin!t
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Cyclically sheared suspensions
Acrylic beads in viscous liquid
Diffusion negligible

Pine, Gollub, Brady, Leshansky, Nature 2005

Bead diameter: 0.6 mm
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Cyclically sheared suspensions
Acrylic beads in viscous liquid
Diffusion negligible

Pine, Gollub, Brady, Leshansky, Nature 2005

Top view:

Fixed outer cylinder
Oscillating inner cylinder
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Sheared Suspension Experiment

Image once per cycle
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Sheared Suspension Experiment

Image once per cycle

Pine, Gollub, Brady, Leshansky, Nature 2005

Acrylic beads in viscous liquid
Diffusion negligible

Top view:

30% particles by volume
(99.5% are transparent)



Why are the particles agitated?

Simple model that works:
1. Shear box with particles in it
2. If particles collide during shear, move them

3. Repeat ARTICLES

(i)

0 = a/bγ

a

b

(ii) (iii)

Figure 1 Schematic representation of one cycle of the collision model, in which
particles that collide when sheared are given small random displacements.
Each shear cycle is decomposed into three steps: (i) determine particle positions
(black dots); (ii) shear the system by a strain amplitude ⇥0 and find particle pairs that
collide (that is, come within a distance d of each other, indicated by overlapping red
circles of diameter d ); (iii) reset the initial positions and randomly displace particles
that collided (dashed red circles ⌅ blue circles). For each shear cycle, particles are
displaced as many times as they collide. The chance of particles colliding increases
with the strain amplitude ⇥0 and volume fraction ⇤.

are self-organized to avoid collisions, resulting from a process of
‘random organization’.

To gain some intuition, we first describe a one-dimensional
version of our model. To start, N point particles are randomly
distributed along a line of length L. Next, one of the particles
is displaced a distance l along the line, possibly encountering
other particles, and then returned to its initial position. For each
encounter, both the displaced particle and the one it encounters
are given random displacements of maximum amplitude ⇤ from
their initial positions, which can increase or decrease the distance
⌅x between them. This process is repeated cyclically for all
the particles.

According to these rules, particles in regions where ⌅x ⇥ l
receive random displacements and are active, and thus undergo
di�usive motion. In regions with ⌅x > l, particles do not
encounter each other and are inactive, with particles returning
after each cycle to their initial positions. Active regions can
activate neighbouring inactive regions and the process can
continue forever, provided there is always some region where
⌅x ⇥ l (see Supplementary Information, video S1). However, if a
configuration develops where ⌅x > l for all neighbouring particle
pairs, there are no more displacements and dynamics cease (see
Supplementary Information, video S2). The system has reached an
absorbing state.

It is clear that at l = L/N , the inverse density, there is a unique
absorbing state: all particles are equidistant with ⌅x = L/N . For
l > L/N , there are no absorbing states; motion can never cease
and particles di�use. For l < L/N , there is an infinite number
of absorbing states. Our simulations show that there is a phase
transition at a critical value lc ⇧ 0.91±0.01L/N characterized by
an order parameter, the steady-state fraction of active particles f ⌃

a ,
which for l ⌅ l+c scales as f ⌃

a ⇤ [(l � lc)/lc]� with � ⇧ 0.42±0.10.
Thus, there exist absorbing states for l > lc that are not found.

For l < lc the system finds an absorbing state in a finite time
t = ⇧ (number of cycles). For l ⌅ l�c the relaxation time ⇧ diverges
as ⇧ ⇤ [(lc � l)/lc]�⌅ with ⌅⇧2.48±0.10, and is independent of the
system size for large systems. For l > lc the time to establish a steady
state likewise shows power-law behaviour, ⇧ ⇤ [(l� lc)/lc]�⌅. Unlike
the ‘protein-folding problem’, where the time to search for a unique
folded state by a random walk diverges as the size increases21, here
the time to find one of the infinite number of absorbing states is
finite. The exponents � and ⌅, which characterize the asymptotic
critical behaviour of the order parameter f ⌃

a and the relaxation
time ⇧, do not correspond to those found for DP (�DP ⇧ 0.276
and ⌅DP ⇧ 1.73); therefore, our model does not belong to the DP
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Figure 2 Simulation results for the 2D model, showing particle activity above
and below the strain threshold. a,b, Snapshots of the particle distributions for two
strain amplitudes ⇥0 = 3.0 and 2.0, area fraction ⇤ = 0.2 and 1,000 particles. The
number of shear cycles that have passed is indicated below each snapshot. Filled
black circles indicate particles that will collide and thus be irreversibly displaced in
the next shear cycle; open circles indicate particles whose trajectories are reversible.
The shear flow direction is horizontal. c, Fraction of active particles per cycle fa as a
function of number of shear cycles for the two different strain amplitudes shown in a
and b: ⇥0 = 3.0 (red) and ⇥0 = 2.0 (blue). Full lines show fits to equation (1). Inset:
Fraction of active particles in steady state as a function of strain amplitude ⇥0. The
full line in the inset shows the scaling f ⌃

a ⇤ |⇥0 � ⇥ c
0|� where � = 0.45±0.02,

obtained by a fit to the data. The blue and red data points indicate the data below
(f ⌃
a = 0) and above (f ⌃

a > 0) the critical strain amplitude ⇥ c
0.

universality class, as expected, because the number of particles is
conserved in our model whereas in DP it is not22,23.

A 2D version of the model mimics a suspension of particles
subjected to periodic shear, as illustrated in Fig. 1. First, N = 1,000
discs are randomly distributed in a two-dimensional rectangular
box. The interaction distance d sets the unit of length and the area
of the box A is chosen to obtain the desired area (2D volume)
fraction ⌃ = N�d2/4A. The system is sheared with a strain
amplitude ⇥0, which causes some particles to encounter each other,
as illustrated in Fig. 1. As in the one-dimensional case, particles
that collide are given a random displacement from their initial
position. The net displacement of a particle after one cycle is
zero if it does not encounter any other particle. The direction of
the random displacements is uniformly distributed in the plane
and their amplitude is uniformly distributed between zero and a
maximum value ⇤, typically a fraction of a particle diameter d.

nature physics VOL 4 MAY 2008 www.nature.com/naturephysics 421

Diagram from Corté, Chaikin, Gollub, Pine, Nature Phys. 2008
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Image once per cycle
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Stroboscopic video of particle positions
Corté, Chaikin, Gollub & Pine, 2008

“Train” with oscillatory shear, constant amplitude



Stroboscopic video of particle positions
Corté, Chaikin, Gollub & Pine, 2008

“Train” with oscillatory shear, constant amplitude



“Learning” in sheared particles

γ0 = 3.0
Organizes: Configuration 

with no collisions

Start with random 
positions

Same behavior as in experiment
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Organization ➔ Memory

• System remembers the strain 
amplitude γ0  that was applied 
repeatedly

• To read out γ0: ramp up γ 
until particles begin to move Collisions only if  

γ > γ0 



Organization ➔ Memory
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• System remembers the strain 
amplitude γ0  that was applied 
repeatedly

• To read out γ0: ramp up γ 
until particles begin to move



reach a configuration where they retrace their paths exactly
during each cycle. To demonstrate single-memory forma-
tion, we shear an initially randomized suspension cyclically
between γ ¼ 0 and γ1 ¼ 1.2 for 200 cycles. A readout
consists of applying a series of back-and-forth rotations of
increasing strain amplitude, from γ ¼ 0 to γ ¼ 3 in incre-
ments of Δγ ¼ 0.2. Figures 1(c), 1(d) show how this
protocol detects a memory. In Fig. 1(c), the image taken
immediately before shearing by amplitude γ ¼ 1.2 is
subtracted from the one taken immediately after. The result
is approximately monotone, indicating that the particle
trajectories are nearly reversible. Figure 1(d) shows
the subtraction for the next shear, γ ¼ 1.4. The particles
are now clearly displaced, revealing a memory of ampli-
tude 1.2 ≤ γ < 1.4.
In order to isolate relative particle displacements as

opposed to uniform drifts, we track particles [12] to
measure the variance of their displacements in the x
direction after a cycle, normalized by the square of the
particle diameter: σ2x=d2. If the particle paths are completely
reversible, σ2x=d2 ¼ 0. The inset to Fig. 2(a) shows σ2x=d2

versus cycle number for an initially randomized system
that is sheared repeatedly to γ1 ¼ 1.6. To check that the
experiments are in the low Reynolds-number limit, we
repeated the experiments at two shear rates corresponding
to Re ¼ 0.007 and Re ¼ 0.001. The inset to Fig. 2(a)
shows that the behavior is the same at the two speeds.
We now examine the readout of a single memory, which

has been trained by applying 100 cycles of γ1 ¼ 1.6.
Figure 2(a) shows σ2x=d2 versus readout amplitude. To

increase resolution, we interleave the data from two experi-
ments (each with Δγ ¼ 0.2, but one starting at γ ¼ 0 and
the other starting at γ ¼ 0.1). There is a sharp increase in
σ2x=d2 at γ1 ¼ 1.6, thus identifying the memory formed
there. (The memory is present in the z component of the
variance as well, although the readout is more noisy.)
To highlight the memory, we define a signal S as

S≡ ðσ2xÞ00=σ2x; ð1Þ

where prime (0) denotes a derivative with respect to γ.
A sharp peak in S indicates a memory. To show that the
memory value can be freely chosen, in Fig. 2(b) we plot S
for systems that were trained over a range of strains:
γ1 ¼ 0.4, 0.8, 1.2, and 1.6.

(a)
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x
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FIG. 1 (color online). Experimental setup. (a) Top view of
the circular Couette cell containing a viscous suspension between
two concentric cylinders. A two-dimensional slice of the sus-
pension is imaged by shining a laser sheet into the fluorescently
dyed fluid. The emitted light is imaged through a long-pass filter.
(b) A small region of the imaged slice. (c),(d) Visual readout
of a memory formed at γ1 ¼ 1.2. Each image is the difference of
pictures taken before and after a single back-and-forth rotation
of amplitude (c) γ ¼ 1.2 and (d) γ ¼ 1.4. The subtractions show
that the particle trajectories are reversible at γ ¼ 1.2 but irrevers-
ible at γ ¼ 1.4.
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FIG. 2 (color online). Single memories. (a) Inset: σ2x=d2 versus
cycle number for γ1 ¼ 1.6. The system relaxes to a reversible
steady state in ∼30 cycles. Closed circles: Re ¼ 0.007. Open
circles: 20 cycles with Re ¼ 0.001. Main: memory readout.
σ2x=d2 versus readout strain, γ. Circles: readout after training
with 100 cycles of γ1 ¼ 1.6. The suspension is reversible up to γ1.
Triangles: readout for a randomized suspension shows no
memory. (b) S [defined by Eq. (1)] versus readout strain, for
systems trained for 100 cycles at γ1 ¼ 0.4, 0.8, 1.2, and 1.6. The
peaks identify the memory values. (c) Rheology of a single
memory showing the stress versus strain during a readout shear.
After training with 10 cycles of γ1 ¼ 1.44, the stress (τ, left axis)
on the inner cylinder is measured during a unidirectional constant
strain-rate shear (_γ ¼ 0.018 s−1). The stress sharply increases
at γ1 ¼ 1.44 (dashed line), where there is a peak in the slope
of the data (dτ=dγ, right axis), indicating the memory. Here,
Re ¼ 0.0002, d ¼ 90 to 106 μm, and the inner cylinder
radius ¼ 13.3 mm. (d) Two sides to a single memory: σ2x=d2

versus readout strain for single memories, showing readouts in
both the þ (clockwise) and − (anticlockwise) directions (with
ϕ ¼ 0.45). Suspensions were trained between γ ¼ 0 and γ1 ¼ 0.5
(circles), and between γ1− ¼ −0.3 and γ1þ ¼ 0.5 (triangles).
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reach a configuration where they retrace their paths exactly
during each cycle. To demonstrate single-memory forma-
tion, we shear an initially randomized suspension cyclically
between γ ¼ 0 and γ1 ¼ 1.2 for 200 cycles. A readout
consists of applying a series of back-and-forth rotations of
increasing strain amplitude, from γ ¼ 0 to γ ¼ 3 in incre-
ments of Δγ ¼ 0.2. Figures 1(c), 1(d) show how this
protocol detects a memory. In Fig. 1(c), the image taken
immediately before shearing by amplitude γ ¼ 1.2 is
subtracted from the one taken immediately after. The result
is approximately monotone, indicating that the particle
trajectories are nearly reversible. Figure 1(d) shows
the subtraction for the next shear, γ ¼ 1.4. The particles
are now clearly displaced, revealing a memory of ampli-
tude 1.2 ≤ γ < 1.4.
In order to isolate relative particle displacements as

opposed to uniform drifts, we track particles [12] to
measure the variance of their displacements in the x
direction after a cycle, normalized by the square of the
particle diameter: σ2x=d2. If the particle paths are completely
reversible, σ2x=d2 ¼ 0. The inset to Fig. 2(a) shows σ2x=d2

versus cycle number for an initially randomized system
that is sheared repeatedly to γ1 ¼ 1.6. To check that the
experiments are in the low Reynolds-number limit, we
repeated the experiments at two shear rates corresponding
to Re ¼ 0.007 and Re ¼ 0.001. The inset to Fig. 2(a)
shows that the behavior is the same at the two speeds.
We now examine the readout of a single memory, which

has been trained by applying 100 cycles of γ1 ¼ 1.6.
Figure 2(a) shows σ2x=d2 versus readout amplitude. To

increase resolution, we interleave the data from two experi-
ments (each with Δγ ¼ 0.2, but one starting at γ ¼ 0 and
the other starting at γ ¼ 0.1). There is a sharp increase in
σ2x=d2 at γ1 ¼ 1.6, thus identifying the memory formed
there. (The memory is present in the z component of the
variance as well, although the readout is more noisy.)
To highlight the memory, we define a signal S as

S≡ ðσ2xÞ00=σ2x; ð1Þ

where prime (0) denotes a derivative with respect to γ.
A sharp peak in S indicates a memory. To show that the
memory value can be freely chosen, in Fig. 2(b) we plot S
for systems that were trained over a range of strains:
γ1 ¼ 0.4, 0.8, 1.2, and 1.6.
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FIG. 1 (color online). Experimental setup. (a) Top view of
the circular Couette cell containing a viscous suspension between
two concentric cylinders. A two-dimensional slice of the sus-
pension is imaged by shining a laser sheet into the fluorescently
dyed fluid. The emitted light is imaged through a long-pass filter.
(b) A small region of the imaged slice. (c),(d) Visual readout
of a memory formed at γ1 ¼ 1.2. Each image is the difference of
pictures taken before and after a single back-and-forth rotation
of amplitude (c) γ ¼ 1.2 and (d) γ ¼ 1.4. The subtractions show
that the particle trajectories are reversible at γ ¼ 1.2 but irrevers-
ible at γ ¼ 1.4.
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σ2x=d2 versus readout strain, γ. Circles: readout after training
with 100 cycles of γ1 ¼ 1.6. The suspension is reversible up to γ1.
Triangles: readout for a randomized suspension shows no
memory. (b) S [defined by Eq. (1)] versus readout strain, for
systems trained for 100 cycles at γ1 ¼ 0.4, 0.8, 1.2, and 1.6. The
peaks identify the memory values. (c) Rheology of a single
memory showing the stress versus strain during a readout shear.
After training with 10 cycles of γ1 ¼ 1.44, the stress (τ, left axis)
on the inner cylinder is measured during a unidirectional constant
strain-rate shear (_γ ¼ 0.018 s−1). The stress sharply increases
at γ1 ¼ 1.44 (dashed line), where there is a peak in the slope
of the data (dτ=dγ, right axis), indicating the memory. Here,
Re ¼ 0.0002, d ¼ 90 to 106 μm, and the inner cylinder
radius ¼ 13.3 mm. (d) Two sides to a single memory: σ2x=d2

versus readout strain for single memories, showing readouts in
both the þ (clockwise) and − (anticlockwise) directions (with
ϕ ¼ 0.45). Suspensions were trained between γ ¼ 0 and γ1 ¼ 0.5
(circles), and between γ1− ¼ −0.3 and γ1þ ¼ 0.5 (triangles).

PRL 113, 068301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

8 AUGUST 2014

068301-2

Shear strain 𝛾

St
re

ss
 (

Pa
)

d stress
d strain

Train with 10 cycles of 𝛾0 = 1.44
Read out:



reach a configuration where they retrace their paths exactly
during each cycle. To demonstrate single-memory forma-
tion, we shear an initially randomized suspension cyclically
between γ ¼ 0 and γ1 ¼ 1.2 for 200 cycles. A readout
consists of applying a series of back-and-forth rotations of
increasing strain amplitude, from γ ¼ 0 to γ ¼ 3 in incre-
ments of Δγ ¼ 0.2. Figures 1(c), 1(d) show how this
protocol detects a memory. In Fig. 1(c), the image taken
immediately before shearing by amplitude γ ¼ 1.2 is
subtracted from the one taken immediately after. The result
is approximately monotone, indicating that the particle
trajectories are nearly reversible. Figure 1(d) shows
the subtraction for the next shear, γ ¼ 1.4. The particles
are now clearly displaced, revealing a memory of ampli-
tude 1.2 ≤ γ < 1.4.
In order to isolate relative particle displacements as

opposed to uniform drifts, we track particles [12] to
measure the variance of their displacements in the x
direction after a cycle, normalized by the square of the
particle diameter: σ2x=d2. If the particle paths are completely
reversible, σ2x=d2 ¼ 0. The inset to Fig. 2(a) shows σ2x=d2

versus cycle number for an initially randomized system
that is sheared repeatedly to γ1 ¼ 1.6. To check that the
experiments are in the low Reynolds-number limit, we
repeated the experiments at two shear rates corresponding
to Re ¼ 0.007 and Re ¼ 0.001. The inset to Fig. 2(a)
shows that the behavior is the same at the two speeds.
We now examine the readout of a single memory, which

has been trained by applying 100 cycles of γ1 ¼ 1.6.
Figure 2(a) shows σ2x=d2 versus readout amplitude. To

increase resolution, we interleave the data from two experi-
ments (each with Δγ ¼ 0.2, but one starting at γ ¼ 0 and
the other starting at γ ¼ 0.1). There is a sharp increase in
σ2x=d2 at γ1 ¼ 1.6, thus identifying the memory formed
there. (The memory is present in the z component of the
variance as well, although the readout is more noisy.)
To highlight the memory, we define a signal S as

S≡ ðσ2xÞ00=σ2x; ð1Þ

where prime (0) denotes a derivative with respect to γ.
A sharp peak in S indicates a memory. To show that the
memory value can be freely chosen, in Fig. 2(b) we plot S
for systems that were trained over a range of strains:
γ1 ¼ 0.4, 0.8, 1.2, and 1.6.
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FIG. 1 (color online). Experimental setup. (a) Top view of
the circular Couette cell containing a viscous suspension between
two concentric cylinders. A two-dimensional slice of the sus-
pension is imaged by shining a laser sheet into the fluorescently
dyed fluid. The emitted light is imaged through a long-pass filter.
(b) A small region of the imaged slice. (c),(d) Visual readout
of a memory formed at γ1 ¼ 1.2. Each image is the difference of
pictures taken before and after a single back-and-forth rotation
of amplitude (c) γ ¼ 1.2 and (d) γ ¼ 1.4. The subtractions show
that the particle trajectories are reversible at γ ¼ 1.2 but irrevers-
ible at γ ¼ 1.4.
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circles: 20 cycles with Re ¼ 0.001. Main: memory readout.
σ2x=d2 versus readout strain, γ. Circles: readout after training
with 100 cycles of γ1 ¼ 1.6. The suspension is reversible up to γ1.
Triangles: readout for a randomized suspension shows no
memory. (b) S [defined by Eq. (1)] versus readout strain, for
systems trained for 100 cycles at γ1 ¼ 0.4, 0.8, 1.2, and 1.6. The
peaks identify the memory values. (c) Rheology of a single
memory showing the stress versus strain during a readout shear.
After training with 10 cycles of γ1 ¼ 1.44, the stress (τ, left axis)
on the inner cylinder is measured during a unidirectional constant
strain-rate shear (_γ ¼ 0.018 s−1). The stress sharply increases
at γ1 ¼ 1.44 (dashed line), where there is a peak in the slope
of the data (dτ=dγ, right axis), indicating the memory. Here,
Re ¼ 0.0002, d ¼ 90 to 106 μm, and the inner cylinder
radius ¼ 13.3 mm. (d) Two sides to a single memory: σ2x=d2

versus readout strain for single memories, showing readouts in
both the þ (clockwise) and − (anticlockwise) directions (with
ϕ ¼ 0.45). Suspensions were trained between γ ¼ 0 and γ1 ¼ 0.5
(circles), and between γ1− ¼ −0.3 and γ1þ ¼ 0.5 (triangles).
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reach a configuration where they retrace their paths exactly
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FIG. 1 (color online). Experimental setup. (a) Top view of
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pension is imaged by shining a laser sheet into the fluorescently
dyed fluid. The emitted light is imaged through a long-pass filter.
(b) A small region of the imaged slice. (c),(d) Visual readout
of a memory formed at γ1 ¼ 1.2. Each image is the difference of
pictures taken before and after a single back-and-forth rotation
of amplitude (c) γ ¼ 1.2 and (d) γ ¼ 1.4. The subtractions show
that the particle trajectories are reversible at γ ¼ 1.2 but irrevers-
ible at γ ¼ 1.4.
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memory. (b) S [defined by Eq. (1)] versus readout strain, for
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memory showing the stress versus strain during a readout shear.
After training with 10 cycles of γ1 ¼ 1.44, the stress (τ, left axis)
on the inner cylinder is measured during a unidirectional constant
strain-rate shear (_γ ¼ 0.018 s−1). The stress sharply increases
at γ1 ¼ 1.44 (dashed line), where there is a peak in the slope
of the data (dτ=dγ, right axis), indicating the memory. Here,
Re ¼ 0.0002, d ¼ 90 to 106 μm, and the inner cylinder
radius ¼ 13.3 mm. (d) Two sides to a single memory: σ2x=d2

versus readout strain for single memories, showing readouts in
both the þ (clockwise) and − (anticlockwise) directions (with
ϕ ¼ 0.45). Suspensions were trained between γ ¼ 0 and γ1 ¼ 0.5
(circles), and between γ1− ¼ −0.3 and γ1þ ¼ 0.5 (triangles).
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FIG. 4: (color online). Forgetting and stabilization by noise.
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)00/�2
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versus readout strain with the training sequence
� = 1.6, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, which is repeated (a) 2 times,
(b) 3 times and (c) 12 times. As the peak at �2 = 1.6 becomes
stronger, the one at �1 = 0.8 gradually disappears. The peak
height in (c) is 2,500 and is located at � = 1.6. (d) Degrada-
tion of single memory by ambient noise. After training with
20 cycles of �1 = 1.2, the peak height of (�2

x

)00/�2
x

decreases
with increasing wait time between the final training cycle and
the readout. (e) An 8-minute pause was inserted between
each cycle of the training sequence used in (c). The pause
restores the smaller-amplitude memory that had been erased
by the repeated training sequence.

between cycles. In this case, (�2
x

)00/�2
x

versus � shows
bothmemories are again present: the addition of noise has
allowed the smaller memory to survive. Similar behavior
was found in the simulations where it was interpreted as
noise preventing the system from ever reaching a fixed
point with complete reversibility up to amplitude �2.

We do not yet know whether the forgetting is su�-
ciently gradual that one memory always erodes slowly
while another takes over. In the present experiments
with two strain amplitudes, we have not been able to
detect the memory at �1 if the larger shear, �2, was the
last one applied. This key point distinguishes multiple
transient memories from other classes of memory, such
as return-point memory. However, simulations of multi-
ple transient memories [13] show that if the kick given
to the particles during a collision is too large, then the
memory of the smaller shear, �1, can be very hard to dis-
cern, although it is still there and can be detected in very
large systems or when many averages are taken. Indeed,
our experiments appear to correspond to this behavior.
Further experiments should be able to elucidate this is-
sue.

Conclusion.—We have experimentally demonstrated
multiple memories in sheared non-Brownian suspensions.

These have many of the properties of multiple transient
memories in simplified simulations of sheared suspen-
sions [7, 13] and in traveling charge-density waves [5, 6]:
(i) the suspension can learn multiple memories, (ii) the
memory of the smaller input strain is erased even as that
input is continually applied and (iii) the memory of the
smaller input value is stabilized by the presence of noise.
Also, like charge-density waves, the sheared suspensions
remember the direction of the last applied deformation.
This work opens the way to look for multiple transient
memories in other contexts, such as in granular [19, 20]
and amorphous materials [21–24], where particles are in
constant contact, as well as under other forms of repeti-
tive driving, such as tapping.
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munications 57, 165 (1986), ISSN 0038-1098.

[10] S. N. Coppersmith and P. B. Littlewood, Phys. Rev. B
36, 311 (1987).

[11] K. Kurita and N. Fujii, Geophysical Research Letters 6,
9 (1979).

[12] K. M. Schmoller and A. R. Bausch, Nature Materials 12,
278 (2013).

[13] N. C. Keim, J. D. Paulsen, and S. R. Nagel, Phys. Rev.
E 88, 032306 (2013).

[14] D. J. Pine, J. P. Gollub, J. F. Brady, and A. M. Leshan-
sky, Nature 438, 997 (2005).
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[15] L. Corté, P. M. Chaikin, J. P. Gollub, and D. J. Pine,
Nature Physics 4, 420 (2008).

Repeat 2× 

Paulsen, Keim, Nagel, PRL 2014

M
em

or
y 

si
gn

al



4

10–2 10–1 100 101 102101

102

103

104

0 1 2

0

100

200

300

γwait time [s]

pe
ak

 h
ei

gh
t (e)

(d)

0 1 20 1 2

0

100

200

300

0 1 2

(a) (b) (c)

γ

(σ
x2 )''

/σ
x2

(σ
x2 )''

/σ
x2

FIG. 4: (color online). Forgetting and stabilization by noise.
(�2

x

)00/�2
x

versus readout strain with the training sequence
� = 1.6, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, which is repeated (a) 2 times,
(b) 3 times and (c) 12 times. As the peak at �2 = 1.6 becomes
stronger, the one at �1 = 0.8 gradually disappears. The peak
height in (c) is 2,500 and is located at � = 1.6. (d) Degrada-
tion of single memory by ambient noise. After training with
20 cycles of �1 = 1.2, the peak height of (�2

x

)00/�2
x

decreases
with increasing wait time between the final training cycle and
the readout. (e) An 8-minute pause was inserted between
each cycle of the training sequence used in (c). The pause
restores the smaller-amplitude memory that had been erased
by the repeated training sequence.

between cycles. In this case, (�2
x

)00/�2
x

versus � shows
bothmemories are again present: the addition of noise has
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was found in the simulations where it was interpreted as
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point with complete reversibility up to amplitude �2.

We do not yet know whether the forgetting is su�-
ciently gradual that one memory always erodes slowly
while another takes over. In the present experiments
with two strain amplitudes, we have not been able to
detect the memory at �1 if the larger shear, �2, was the
last one applied. This key point distinguishes multiple
transient memories from other classes of memory, such
as return-point memory. However, simulations of multi-
ple transient memories [13] show that if the kick given
to the particles during a collision is too large, then the
memory of the smaller shear, �1, can be very hard to dis-
cern, although it is still there and can be detected in very
large systems or when many averages are taken. Indeed,
our experiments appear to correspond to this behavior.
Further experiments should be able to elucidate this is-
sue.

Conclusion.—We have experimentally demonstrated
multiple memories in sheared non-Brownian suspensions.

These have many of the properties of multiple transient
memories in simplified simulations of sheared suspen-
sions [7, 13] and in traveling charge-density waves [5, 6]:
(i) the suspension can learn multiple memories, (ii) the
memory of the smaller input strain is erased even as that
input is continually applied and (iii) the memory of the
smaller input value is stabilized by the presence of noise.
Also, like charge-density waves, the sheared suspensions
remember the direction of the last applied deformation.
This work opens the way to look for multiple transient
memories in other contexts, such as in granular [19, 20]
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[15] L. Corté, P. M. Chaikin, J. P. Gollub, and D. J. Pine,
Nature Physics 4, 420 (2008).

Repeat 2× 3× 12×

Strain amplitudes 1.6, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, repeat…

Paulsen, Keim, Nagel, PRL 2014

M
em

or
y 

si
gn

al

Two memories



4

10–2 10–1 100 101 102101

102

103

104

0 1 2

0

100

200

300

γwait time [s]

pe
ak

 h
ei

gh
t (e)

(d)

0 1 20 1 2

0

100

200

300

0 1 2

(a) (b) (c)

γ

(σ
x2 )''

/σ
x2

(σ
x2 )''

/σ
x2

FIG. 4: (color online). Forgetting and stabilization by noise.
(�2

x

)00/�2
x

versus readout strain with the training sequence
� = 1.6, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, which is repeated (a) 2 times,
(b) 3 times and (c) 12 times. As the peak at �2 = 1.6 becomes
stronger, the one at �1 = 0.8 gradually disappears. The peak
height in (c) is 2,500 and is located at � = 1.6. (d) Degrada-
tion of single memory by ambient noise. After training with
20 cycles of �1 = 1.2, the peak height of (�2

x

)00/�2
x

decreases
with increasing wait time between the final training cycle and
the readout. (e) An 8-minute pause was inserted between
each cycle of the training sequence used in (c). The pause
restores the smaller-amplitude memory that had been erased
by the repeated training sequence.

between cycles. In this case, (�2
x

)00/�2
x

versus � shows
bothmemories are again present: the addition of noise has
allowed the smaller memory to survive. Similar behavior
was found in the simulations where it was interpreted as
noise preventing the system from ever reaching a fixed
point with complete reversibility up to amplitude �2.

We do not yet know whether the forgetting is su�-
ciently gradual that one memory always erodes slowly
while another takes over. In the present experiments
with two strain amplitudes, we have not been able to
detect the memory at �1 if the larger shear, �2, was the
last one applied. This key point distinguishes multiple
transient memories from other classes of memory, such
as return-point memory. However, simulations of multi-
ple transient memories [13] show that if the kick given
to the particles during a collision is too large, then the
memory of the smaller shear, �1, can be very hard to dis-
cern, although it is still there and can be detected in very
large systems or when many averages are taken. Indeed,
our experiments appear to correspond to this behavior.
Further experiments should be able to elucidate this is-
sue.

Conclusion.—We have experimentally demonstrated
multiple memories in sheared non-Brownian suspensions.

These have many of the properties of multiple transient
memories in simplified simulations of sheared suspen-
sions [7, 13] and in traveling charge-density waves [5, 6]:
(i) the suspension can learn multiple memories, (ii) the
memory of the smaller input strain is erased even as that
input is continually applied and (iii) the memory of the
smaller input value is stabilized by the presence of noise.
Also, like charge-density waves, the sheared suspensions
remember the direction of the last applied deformation.
This work opens the way to look for multiple transient
memories in other contexts, such as in granular [19, 20]
and amorphous materials [21–24], where particles are in
constant contact, as well as under other forms of repeti-
tive driving, such as tapping.
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bothmemories are again present: the addition of noise has
allowed the smaller memory to survive. Similar behavior
was found in the simulations where it was interpreted as
noise preventing the system from ever reaching a fixed
point with complete reversibility up to amplitude �2.

We do not yet know whether the forgetting is su�-
ciently gradual that one memory always erodes slowly
while another takes over. In the present experiments
with two strain amplitudes, we have not been able to
detect the memory at �1 if the larger shear, �2, was the
last one applied. This key point distinguishes multiple
transient memories from other classes of memory, such
as return-point memory. However, simulations of multi-
ple transient memories [13] show that if the kick given
to the particles during a collision is too large, then the
memory of the smaller shear, �1, can be very hard to dis-
cern, although it is still there and can be detected in very
large systems or when many averages are taken. Indeed,
our experiments appear to correspond to this behavior.
Further experiments should be able to elucidate this is-
sue.

Conclusion.—We have experimentally demonstrated
multiple memories in sheared non-Brownian suspensions.

These have many of the properties of multiple transient
memories in simplified simulations of sheared suspen-
sions [7, 13] and in traveling charge-density waves [5, 6]:
(i) the suspension can learn multiple memories, (ii) the
memory of the smaller input strain is erased even as that
input is continually applied and (iii) the memory of the
smaller input value is stabilized by the presence of noise.
Also, like charge-density waves, the sheared suspensions
remember the direction of the last applied deformation.
This work opens the way to look for multiple transient
memories in other contexts, such as in granular [19, 20]
and amorphous materials [21–24], where particles are in
constant contact, as well as under other forms of repeti-
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(b) 3 times and (c) 12 times. As the peak at �2 = 1.6 becomes
stronger, the one at �1 = 0.8 gradually disappears. The peak
height in (c) is 2,500 and is located at � = 1.6. (d) Degrada-
tion of single memory by ambient noise. After training with
20 cycles of �1 = 1.2, the peak height of (�2
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decreases
with increasing wait time between the final training cycle and
the readout. (e) An 8-minute pause was inserted between
each cycle of the training sequence used in (c). The pause
restores the smaller-amplitude memory that had been erased
by the repeated training sequence.
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versus � shows
bothmemories are again present: the addition of noise has
allowed the smaller memory to survive. Similar behavior
was found in the simulations where it was interpreted as
noise preventing the system from ever reaching a fixed
point with complete reversibility up to amplitude �2.

We do not yet know whether the forgetting is su�-
ciently gradual that one memory always erodes slowly
while another takes over. In the present experiments
with two strain amplitudes, we have not been able to
detect the memory at �1 if the larger shear, �2, was the
last one applied. This key point distinguishes multiple
transient memories from other classes of memory, such
as return-point memory. However, simulations of multi-
ple transient memories [13] show that if the kick given
to the particles during a collision is too large, then the
memory of the smaller shear, �1, can be very hard to dis-
cern, although it is still there and can be detected in very
large systems or when many averages are taken. Indeed,
our experiments appear to correspond to this behavior.
Further experiments should be able to elucidate this is-
sue.

Conclusion.—We have experimentally demonstrated
multiple memories in sheared non-Brownian suspensions.

These have many of the properties of multiple transient
memories in simplified simulations of sheared suspen-
sions [7, 13] and in traveling charge-density waves [5, 6]:
(i) the suspension can learn multiple memories, (ii) the
memory of the smaller input strain is erased even as that
input is continually applied and (iii) the memory of the
smaller input value is stabilized by the presence of noise.
Also, like charge-density waves, the sheared suspensions
remember the direction of the last applied deformation.
This work opens the way to look for multiple transient
memories in other contexts, such as in granular [19, 20]
and amorphous materials [21–24], where particles are in
constant contact, as well as under other forms of repeti-
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versus � shows
bothmemories are again present: the addition of noise has
allowed the smaller memory to survive. Similar behavior
was found in the simulations where it was interpreted as
noise preventing the system from ever reaching a fixed
point with complete reversibility up to amplitude �2.

We do not yet know whether the forgetting is su�-
ciently gradual that one memory always erodes slowly
while another takes over. In the present experiments
with two strain amplitudes, we have not been able to
detect the memory at �1 if the larger shear, �2, was the
last one applied. This key point distinguishes multiple
transient memories from other classes of memory, such
as return-point memory. However, simulations of multi-
ple transient memories [13] show that if the kick given
to the particles during a collision is too large, then the
memory of the smaller shear, �1, can be very hard to dis-
cern, although it is still there and can be detected in very
large systems or when many averages are taken. Indeed,
our experiments appear to correspond to this behavior.
Further experiments should be able to elucidate this is-
sue.

Conclusion.—We have experimentally demonstrated
multiple memories in sheared non-Brownian suspensions.

These have many of the properties of multiple transient
memories in simplified simulations of sheared suspen-
sions [7, 13] and in traveling charge-density waves [5, 6]:
(i) the suspension can learn multiple memories, (ii) the
memory of the smaller input strain is erased even as that
input is continually applied and (iii) the memory of the
smaller input value is stabilized by the presence of noise.
Also, like charge-density waves, the sheared suspensions
remember the direction of the last applied deformation.
This work opens the way to look for multiple transient
memories in other contexts, such as in granular [19, 20]
and amorphous materials [21–24], where particles are in
constant contact, as well as under other forms of repeti-
tive driving, such as tapping.
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Memory in Sheared 
Suspensions

• Can learn multiple values of strain

• After many cycles, forgets all but largest

• Noise helps it remember!

• Same rules apply for electrical pulses in 
charge density wave conductors!

• Other materials?

Coppersmith, S. N. et al. Phys. Rev. Lett. 1997
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Mayonnaise • many degrees of freedom
• changed by driving (soft)
• non-equilibrium

100 µm

“2D mayonnaise” 
at Cal Poly

Rules for memory are different!
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Air and water?
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Singularities

Sidney Nagel (experiment), 
Wendy Zhang, Laura Schmidt, 

Lipeng Lai (theory)
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• Curvature ~

• Surface tension pressure ~

• Fluid velocity

As neck radius ➔ 0,
physical quantities diverge:

Singularity





Upside-down 
pinch-off looks 

similar
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• Initial, boundary conditions irrelevant near singularity

• Separation of scales

– Initial conditions stay on large length scales

– Singularities create, control small scales



• Initial, boundary conditions irrelevant near singularity

• Separation of scales

– Initial conditions stay on large length scales

– Singularities create, control small scales

• Holds generally for pinch-offs

Superfluid He
Burton et al.

Viscous liq’s
Cohen et al.

Water in Air
Chen et al.

Glycerin in Air
Shi et al.

High-pressure
Xe in Water
Burton et al.

Universality
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Reason: For singularity to be 
universal, must influence parts 
above and below

– Fluid leaving neck 
“communicates” vertically

Water in air  
(universal)

Keim et al., PRL 2006

level  
nozzle tilted 2º

– When inner fluid insignificant,  
universality broken!

Tilting the nozzle
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• Theory by Laura Schmidt and Wendy Zhang

• Vibration modes n = 2, 3, 4…

• Considers 2D slice of water only

• No surface tension in model—only inertia of water

Model Predicts Memory Vibrations

n = 2 n = 3
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Measuring Vibrations

Measure shapes in experiment

Top view: Non-circular neck 
shapes

ca
me

ra 
2

camera 1

syringe pump

tank

slotnozzle

gas source



n = 2  Vibrations Observed

Neck size (µm)
time

n 
=

 2
 v

ib
ra

tio
n 

(µ
m

)



n = 2  Vibrations Observed

Neck size (µm)
time

n 
=

 2
 v

ib
ra

tio
n 

(µ
m

)



Vibrations Confirm Prediction
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No free parameters, except  
choice of starting point



Changing Initial Conditions
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Changing Initial Conditions
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Can observations just before pinch-off 
reveal the initial conditions?
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Non-axisymmetric impact creates
pineapple-shaped cavity

Oscar R. Enrı́quez,1 Ivo R. Peters,1 Stephan Gekle,1,2
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1University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands
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(Received 16 August 2011; published online 30 September 2011)
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We impact a disk on a free water surface at a controlled
speed of 1 m=s. The disk is round, with a superimposed
mode-20 azimuthal disturbance. The mean disk radius is 20
mm and the amplitude of the disturbance is 0.4 mm. Initially,
very close to the disk, the free surface is forced to match the
shape of the disk. During the void expansion and subsequent
collapse, however, the interface displays rich dynamics,
resulting eventually in a pineapple-shaped cavity.

If we made a cut-through of the cavity at one specific
depth, we would observe an oscillating behavior of the
water-air interface just like a standing wave coupled to the
fast decreasing mean radius of the cavity. The amplitude of
this oscillation remains constant, while the frequency

diverges towards the pinch-off—following the prediction
made by linear stability analysis of a disconnecting air bub-
ble.1 Since the absolute amplitude remains constant while
the mean radius of the cavity goes to zero, the relative ampli-
tude grows strongly towards the pinch-off; the disturbance
thus becomes much more pronounced closer to the pinch-off
(e.g., compare Fig. 1(b) with 1(c)).

Since the radial flow in this system is much larger than
the axial flow, we can approximate each horizontal layer of
fluid as being decoupled from the vertical direction. It is,
therefore, possible to solve the system at each layer by com-
bining the radial dynamics of an axisymmetric cavity2 with
the model for the oscillations.1 This was done by Enrı́quez
et al.,3 resulting in an almost perfect reproduction of the full
pineapple-shaped cavity.

1L. E. Schmidt, N. C. Keim, W. W. Zhang, and S. R. Nagel, “Memory-
encoding vibrations in a disconnecting air bubble,” Nature Phys. 5, 343
(2009).

2R. Bergmann, D. van der Meer, S. Gekle, A. van der Bos, and D. Lohse,
“Controlled impact of a disk on a water surface: cavity dynamics,” J. Fluid
Mech. 633, 381 (2009).

3O. R. Enrı́quez, I. R. Peters, S. Gekle, L. E. Schmidt, D. van der Meer, and
D. Lohse, “The collapse of a non-axisymmetric, impact-created air cavity
in water” (preprint, 2011).

FIG. 1. (Color) Seven snapshots of a cavity created when a round disk with an m¼ 20 azimuthal disturbance (shaped like a 20-petal daisy) impacts a water
surface with velocity v¼ 1 m=s. Clearly, the 2% initial disturbance is retained until the very end, and is seen to oscillate several times during expansion and
collapse. The diamond-shaped structure of the cavity near pinch-off (d), resembling the skin of a pineapple, reflects the history of these oscillations. (Time after
impact: a: 33 ms, b: 77 ms, c: 95 ms, d: 104 ms, e: 107 ms, f: 125 ms, g: 200 ms.)
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