KITP Tutorial: An Introduction to Environmental Microbiology

Sebastian Lücker

Department of Microbiology Institute for Water and Wetland Research Radboud University, Nijmegen

- Introduction to cultivation-independent methods
- Metagenomics
- Activity assays
- Linking Function to Identity

Microbial Ecology: Who, when, where and why?

Microbial Diversity

One gram of soil >1,000,000,000 microbes >10,000 species

People on our planet: 7,847,645,500 (22 Feb 2021)

Traditional Microbiological Analysis

Sample is pipetted onto surface of agar plate (0.1 ml or less) © 2015 Pearson Education, Inc.

Sample is spread evenly over surface of agar using sterile glass spreader

Typical spread-plate results

Majority of Prokaryotes is Unculturable

Habitat	Cultured (%)
Seawater	0.001-0.1
Freshwater	0.25
Mesotrophic lakes	0.1-1
Estuarine waters	0.1-3
Activated sludge	1-15
Sediments	0.25
Soil	0.3

Cultivation Introduces Bias

What you think you study

What you actually study

Uniform Bacterial Morphology

Molecular phylogeny

Proc. Natl. Acad. Sci. USA Vol. 74, No. 11, pp. 5088–5090, November 1977 Evolution

Phylogenetic structure of the prokaryotic domain: The primary kingdoms

(archaebacteria/eubacteria/urkaryote/16S ribosomal RNA/molecular phylogeny)

CARL R. WOESE AND GEORGE E. FOX*

Department of Genetics and Development, University of Illinois, Urbana, Illinois 61801

Communicated by T. M. Sonneborn, August 18, 1977

ABSTRACT A phylogenetic analysis based upon ribosomal RNA sequence characterization reveals that living systems represent one of three aboriginal lines of descent: (*i*) the eubacteria, comprising all typical bacteria; (*ii*) the archaebacteria, containing methanogenic bacteria; and (*iii*) the urkaryotes, now represented in the cytoplasmic component of eukaryotic cells.

The biologist has customarily structured his world in terms of certain basic dichotomies. Classically, what was not plant was animal. The discovery that bacteria, which initially had been considered plants, resembled both plants and animals less than plants and animals resembled one another led to a reformulation of the issue in terms of a yet more basic dichotomy, that of eukaryote versus prokaryote. The striking differences between eukaryotic and prokaryotic cells have now been documented in endless molecular detail. As a result, it is generally taken for granted that all extant life must be of these two basic types.

Ribosomal RNA

Radboud University

16S rRNA as Phylogenetic Marker

Advantages :

- Functionally constant
- Ubiquitous in all organisms
- High information content
- Varying sequence conservation
- Large dataset available

Nature Reviews | Microbiology

Base conservation level across the 16S rRNA

VARIABLE REGIONS: group or species-specific applications

The rRNA Approach

The Discovery Phase of Microbial Ecology

The rRNA Approach is a Success Story

Growth of SSU ribosomal RNA databases (RDP II & SILVA) www.arb-silva.de

Functional Marker Genes for the Nitrogen Cycle

Nitrogen fixation *nif* - nitrogenase

Nitrification

amo - ammonia monooxygenase*hao* - hydroxylamine oxidoreductase*nxr* - nitrite reductase

Denitrification

nar - nitrate reductase
nir - nitrite reductase
nor - nitric oxide reductase
nos - nitrous oxide reductase

Anammox

hzs - hydrazine synthase *hdh* - hydrazine dehydrogenase

DNRA

nrf - pentaheme nitrite reductase

nod - NO dismutase

The rRNA Approach

Phylogenetic Stains: Ribosomal RNA-Based Probes for the Identification of Single Cells

Edward F. DeLong, Gene S. Wickham, Norman R. Pace

Rapid phylogenetic identification of single microbial cells was achieved with a new staining method. Formaldehyde-fixed, intact cells were hybridized with fluorescently labeled oligodeoxynucleotides complementary to 16S ribosomal RNA (rRNA) and viewed by fluorescence microscopy. Because of the abundance of rRNA in cells, the binding of the fluorescent probes to individual cells is readily visualized. Phylogenetic identification is achieved by the use of oligonucleotides (length 17 to 34 nucleotides) that are complementary to phylogenetic group-specific 16S rRNA sequences. Appropriate probes can be composed of oligonucleotide sequences that distinguish between the primary kingdoms (eukaryotes, eubacteria, archaebacteria) and between closely related organisms. The simultaneous use of multiple probes, labeled with different fluorescent dyes, allows the identification of different cell types in the same microscopic field. Quantitative microfluorimetry shows that the amount of an rRNA-specific probe that binds to *Escherichia coli* varies with the ribosome content and therefore reflects growth rate.

Science 243:1360-3 (1989)

All advantages of rRNA as phylogenetic marker apply.

rRNA is a naturally amplified target molecule.

Department of Microbiology

Radboud University

The Full Cycle rRNA Approach

FISH to Study Microorganisms in Environmental Samples

Nitrospira-like bacteria in nitrifying biofilm

Oligonucleotide probes:

- EUB338 probe mix (Domain *Bacteria*)
- Ntspa712 (Phylum *Nitrospirae*)
- Ntspa662 (Genus Nitrospira)

- Introduction to cultivation-independent methods
- Metagenomics
- Activity assays
- Linking Function to Identity

Genome = Parts list of a single species

How do we get microbial genomes?

Culturing Few microorganisms can be easily cultured (<<5%)

How do we get microbial genomes?

Culturing Few microorganisms can be easily cultured (<<5%)

Metagenomics

Analyses of microbial genomes directly from the environment

What is metagenomics?

Metagenome = Parts list of the community

The Environmental Genomics Approach

Amplicon sequencing

n 11 1 1 1 1

Metagenomics

(Meta)genomic Sequencing Timeline and Milestones

https://doi.org/10.3389/fgene.2015.00348

Sequencing Technologies | Short and long read sequencing

		C C C C C C C C C C C C C C C C C C C	
	Illumina MiSeq	Nanopore MinION	PacBio Sequel
DNA requirements	Low 1 ng – 50 ng	<mark>Moderate/high</mark> 10 ng – 1,500 ng	High 100 ng – 5,000 ng
Amplification	Yes PCR, Bridge amplification	No Single molecule sequencing	No Single molecule sequencing
Genome coverage	Biased	Some bias	Unbiased
Read length	Short 2 x 300 bp	Long 1 Kb to >100 Kb	Long Mean 30 Kb, up to 100 Kb
Throughput	High 15 Gb	High 10 – 30 Gb	High Up to 20 Gb
Accuracy	High <i>systematic</i> error rate: ~0.1%	Low <i>Random</i> and <i>systematic</i> error rate 5% — 10%	Low/high <i>Random</i> error rate: ~13% Consensus error rate: 0.001%
Other features	Paired-end sequencing	Portable, inexpensive, fast, real-time results	Detect DNA modifications

Pure Culture Genomics

Recovering Genomes from Metagenomes

Sequencing Assembly

Phylogenetic classification Who is there?

Bacterium A Bacterium B ... Bacterium X

Functional classification What can they do?

Gene A Gene B

Gene X

...

Metagenomics

Lion + Eagle ≠ Flying Lion

If you want to understand the ecosystem

you need to

understand the individual species

in the ecosystem

Who is there and what can every individual do?

Binning

Binning

Binning

Using Abundance Data for Binning

Using Abundance Data for Binning

Radboud University

Department of Microbiology

0

Sequence Composition-Based Binning

Abundance Sample 1

Environmental sample

Short term enrichment

Reduction of Diversity

Relative abundance

Species diversity

Albertsen et al., 2013 Nat. Biotech.

Advantages of Long-Read Sequencing

Concept | Long reads are more *specific* and significantly reduce complexity of *de novo* assembly

You get a bigger piece of the puzzle..

Long reads can:

- Span large repetitive regions
- Resolve low-complexity and homopolymer regions, big structural variants & polymorphisms
- Identify long palindromes, determine microsatellite lengths, tandem repeats

- Introduction to cultivation-independent methods
- Metagenomics
- Activity assays
- Linking Function to Identity

Measuring Direct Substrate Turnover

Not Always in Bottles

Stable Isotopes

- The number of protons in the nucleus defines an element
- The nucleus contains protons and neutrons
- Light isotopes *vs.* heavy isotopes

S. Montanari (2012)

Stable Isotopes Commonly Used in Environmental Microbiology

Activity Assays Using Stable Isotopes

- Feed labelled substrates
- Trace back the label
 - MS (mass spectrometry)
 - NMR (nuclear magnetic resonance)
- \rightarrow Which processes take place?

Mass Spectrometry

Sample is converted into ions lons are accelerated and go into the detector Mass-tocharge-ratio selection

Detecting Anaerobic Ammonium Oxidation (Anammox)

Detecting Anammox Activity

- Add ¹⁵N-labelled ammonium (or ¹⁵N-nitrite)
- Anoxic conditions
- Measure ²⁹N₂ in the headspace

Distinguish Processes that Have the Same End Product

- Introduction to cultivation-independent methods
- Metagenomics
- Activity assays
- Linking Function to Identity

Functional Analysis - Substrate Uptake/Utilization

- Uptake of radioactive substrate
 - FISH-MAR
- Uptake of substrate labeled with stable isotopes
 - SIP
 - FISH-Raman
 - FISH-SIMS / HISH-SIMS

Radioactive Isotopes

• **Isotope:** Atoms of the same element that have same numbers of protons, but different numbers of neutrons

stable (98.89%)

stable (1.11%)

instable (0.001%) half life: 5730 years β-decay into ¹⁴N

FISH-MAR

 combination of sample incubation with radioactively labeled substrate, FISH and microautoradiography

Appl Environ Microbiol 65: 1289-1297 (1999)

Radioisotope incorporation (FISH-MAR)

KITP Lecture: Complete Nitrification by a Single Microorganism

Sebastian Lücker

Department of Microbiology Institute for Water and Wetland Research Radboud University, Nijmegen

- Introduction
- Complete nitrification by Nitrospira
- Novel physiologies of comammox Nitrospira
- In situ detection of ammonia-oxidizing bacteria
- Ammonia oxidation kinetics of comammox Nitrospira

The biogeochemical nitrogen cycle

Nitrification essential for nitrogen removal from wastewater

Radboud University

Nitrification increases fertilizer runoff

Phylogeny of nitrifying bacteria

Redox schemes of inorganic electron donors

Department of Microbiology

Radboud University

Different mechanisms of nitrite oxidation

Radboud University

Respiratory chain of Nitrospira

Lücker et al., 2010

- Introduction
- Complete nitrification by Nitrospira
- Novel physiologies of comammox Nitrospira
- In situ detection of ammonia-oxidizing bacteria
- Ammonia oxidation kinetics of comammox Nitrospira

ELSEVIER

Why is metabolic labour divided in nitrification?

Engràcia Costa¹, Julio Pérez¹ and Jan-Ulrich Kreft²

¹Department of Chemical Engineering, Autonomous University of Barcelona, ETSE-Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain

²Theoretical Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany

Free energy in ammonia and nitrite oxidation

Ammonia oxidation:

 $NH_4^+ + 1.5 O_2 \rightarrow NO_2^- + H_2O + 2H^+$ ($\Delta G^{0} = -274.7 \text{ kJ} \cdot \text{mol}^{-1}$)

Nitrite oxidation

 $NO_2^- + 0.5 O_2 \rightarrow NO_3^-$ ($\Delta G^{0'} = -74.1 \text{ kJ} \cdot \text{mol}^{-1}$)

Complete nitrification

 $NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$ ($\Delta G^{0}' = -348.9 \text{ kJ} \cdot \text{mol}^{-1}$)

ELSEVIE

Full text provided by www.sciencedirect.com

Why is metabolic labour divided in nitrification?

Engràcia Costa¹, Julio Pérez¹ and Jan-Ulrich Kreft²

¹Department of Chemical Engineering, Autonomous University of Barcelona, ETSE-Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain ²Theoretical Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany

AOB: High growth rates, low yield

r strategist

Comammox: Low growth rates, high yield

K strategist

Bioreactor enrichment culture

- Inoculum:
 - Biofilm from aquaculture biofilter
- Medium:
 - Aquaculture water, supplemented with NH₄⁺, NO₂⁻, NO₃⁻
 - No extra carbon source
- Hypoxic conditions (\leq 3.1 µM O₂)

Maartje van Kessel

van Kessel et al. (2015) Nature 528: 555-9

Measuring anammox avtivity

van Kessel et al. (2015) Nature 528: 555-9

Anammox activity assays

• Formation of ²⁹N₂ in incubations with ¹⁵N-labelled NH₄⁺ confirms anammox activity

FISH on bioreactor enrichment

- Nitrospira are always present in flocs with anammox (Brocadia)
- Stable coculture

van Kessel et al. (2015) Nature 528: 555-9

red = anammox; green = Nitrospira; blue= all bacteria

Bioreactor metagenome sequencing

Recovery of two high quality Nitrospira genomes

16S rRNA phylogeny

Metagenomic analyses

Ammonia monooxygenase (amoA) phylogeny

van Kessel et al. (2015) Nature 528: 555-9

Ammonia monooxygenase (amoA) phylogeny

van Kessel et al. (2015) Nature 528: 555-9

Determining comammox activity via the anammox process

Anammox activity assays

• Formation of ${}^{30}N_2$ from ${}^{15}NH_4^+$ indicates ammonia oxidation

Aerobic batch incubation assays

Department of Microbiology

Radboud University

Ammonia-dependent carbon fixation

van Kessel et al. (2015) Nature 528: 555-9

red= Nitrospira; green = anammox; blue= all bacteria

Conclusions I

- Novel Nitrospira spp. are complete nitrifiers
- Cooperation between anammox and comammox possible

- Introduction
- Complete nitrification by Nitrospira
- Novel physiologies of comammox Nitrospira
- In situ detection of ammonia-oxidizing bacteria
- Ammonia oxidation kinetics of comammox Nitrospira

Original comammox/anammox enrichment culture

- Inoculum:
 - Biofilm from aquaculture biofilter
- Medium:
 - Aquaculture water, supplemented with
 - NH₄⁺, NO₂⁻, NO₃⁻
 - No extra carbon source
- Hypoxic conditions (≤3.1 µM O₂)

FISH on bioreactor enrichment

- Comammox Nitrospira are always present in flocs with anammox (Brocadia)
- Stable coculture

red = anammox; green = Nitrospira; blue= all bacteria

Interaction and competition between anammox and nitrifiers

Complete nitrification

 $NH_4^+ + 2 O_2 \rightarrow NO_3^- + H_2O + 2H^+ (\Delta G^{0}' = -348.9 \text{ kJ} \cdot \text{mol}^{-1})$

Alternative metabolisms of comammox under O₂ limitation

Anammox activity assays

• Formation of ³⁰N₂ from ¹⁵NH₄⁺ indicates ammonia oxidation under hypoxic conditions

Alternative metabolisms of comammox under O₂ limitation

Nitrite comproportionation

 $NH_4^+ + NO_3^- + O_2 \rightarrow 2NO_2^- + H_2O + 2H^+$ ($\Delta G^{0}' = -200.6 \text{ kJ} \cdot \text{mol}^{-1}$)

Simulate phenotype – metabolic modelling

-1

Aerobic, complete ammonia oxidation

NH₄⁺ limiting

Nitrite comproportionation in the presence of nitrate

O₂ limiting + NO₃⁻

 \rightarrow Maximizes O₂ flux to AMO and NO₂⁻ production

How does O₂ control comammox activity?

NO₂⁻ production and growth are maximized under O₂ limiting fluxes

Anammox/comammox coculture in synthetic medium

- Mineral medium:
 - [NH₄⁺] 100-200 μM
 - [NO₂-] 90-180 μM
 - [NO₃-] 250 μM
 - Carbon source CO₂
- Hypoxic

Maartje van Kessel

Stable anammox/comammox coculture

anammox, *Nitrospira*, all bacteria

Determining comammox/anammox interactions

³⁰N₂ production indicates ammonia oxidation

³⁰N₂ production

³⁰N₂ production indicates ammonia oxidation

³⁰N₂ production

²⁹N₂ production indicates nitrate reduction

²⁹N₂ production

Higher anammox activity in the presence of nitrate

total N2 production

Conclusions II

- Cooperation, not competition of anammox and comammox
- Comammox can supply anammox with nitrite
- Comammox performs nitrite comproportionation

- Introduction
- Complete nitrification by Nitrospira
- Novel physiologies of comammox Nitrospira
- In situ detection of ammonia-oxidizing bacteria
- Ammonia oxidation kinetics of comammox Nitrospira

Comammox and nitrite-oxidizing *Nitrospira* are indistinguishable based on 16S rRNA

Presence of unique ammonia monooxygenase

AMO as functional marker

JOURNAL OF BACTERIOLOGY, Apr. 1993, p. 2436–2444 0021-9193/93/082436-09\$02.00/0 Copyright © 1993, American Society for Microbiology

Sequence of the Gene Coding for Ammonia Monooxygenase in Nitrosomonas europaea

HUGH McTAVISH,^{1,2} JAMES A. FUCHS,³ AND ALAN B. HOOPER^{1*}

Department of Genetics and Cell Biology,¹ Graduate Program in Biochemistry,² and Department of Biochemistry,³ University of Minnesota, St. Paul, Minnesota 55108

Received 9 November 1992/Accepted 5 February 1993

- phylogenetic staining with FISH

Low staining efficiency

Fluorescein isothiocyanate and propargylamine are highly toxic

Vol. 175, No. 8

van Kessel et al. (2015)

ABPP-based AMO labeling

Applied and Environmental Microbiology

Activity-Based Protein Profiling of Ammonia Monooxygenase in *Nitrosomonas europaea*

Kristen Bennett,^a Natalie C. Sadler,^b Aaron T. Wright,^b Chris Yeager,^c Michael R. Hyman^a

In situ detection of ammonia monooxygenase (AMO)

AMO labeling of *Nitrosomonas europaea*

AMO, *Nitrosomonas*, all bacteria

AMO labeling of *Nitrospira inopinata*

AMO, Nitrospira

Subcellular localization of the AMO/MMO-derived signal

AMO/MMO-based staining, FISH-based staining

Linking function (AMO labeling) and identity (FISH)

AMO *Nitrospira* all bacteria

AMO labeling in combination with cell sorting

Fluorescence-activated cell sorting

https://www.tes.com/lessons/Wpg6sEfF7jdPgg/electrical-impedance

Targeted metagenomics – nitrifying enrichment culture

3 high quality MAGs >92% completeness <3.7% redundancy

Targeted metagenomics – activated sludge

Very low abundance of ammonia oxidizers in original sample (0.03% of total reads)

Nitrosomonas high quality MAG (188-fold enrichment)

5 MAGs → Competibacteraceae

Conclusions III

- ABPP-based protocol allows
 - specific detection of AMO (and PMO) containing bacteria
 - phylogenetic identification in combination with FISH
 - targeted retrieval of enriched metagenomes

+ 1,7-Octadiyne

- Introduction
- Complete nitrification by Nitrospira
- Novel physiologies of comammox Nitrospira
- In situ detection of ammonia-oxidizing bacteria
- Ammonia oxidation kinetics of comammox Nitrospira

Niche adaptations of complete and canonical nitrifiers

Niche adaptation of complete nitrifiers

Bioreactor for the enrichment of comammox Nitrospira

 ✓ Inoculated with an enrichment of Ca. N. nitrosa & Ca. N. nitrificans (as described in van Kessel et al., 2015)

Continuous flow membrane bioreactor

 ✓ Supplied with low concentrations of ammonium (80 µM - 2.5 mM NH₄+/day)

Influent	NOB medium
рН	7.5
Exchange rate	20-30%
Stirring	200 rpm
Temperature	20-24 (RT)
Oxygen supply	5%

Dimitra Sakoula

Enrichment of Nitrospira bacteria in the system

Nitrospira, general bacteria

~ 80% enrichment in *Nitrospira* bacteria Absence of canonical ammonia oxidizers

Enrichment of novel *Nitrospira*

✓ closed comammox *Nitrospira* genome

 ✓ high-quality draft canonical *Nitrospira* genome (5 contigs)

Ca. Nitrospira kreftii (comammox)

Ammonia affinity

Ammonia affinity

Surprising novel physiology – Ammonia inhibition

Surprising novel physiology – Nitrite affinity

Conclusions IV

- Comammox is adapted to highly limited ammonia concentrations
- Ammonia oxidation partially inhibited at increasing ammonia concentrations

Acknowledgements

Dimitra Sakoula Maartje van Kessel Hanna Koch Theo van Alen Huub Op den Camp Mike Jetten

Mads Albersen Per Halkjær Nielsen

Chris Lawson Katherine McMahon Daniel Amador-Noguez

Eva Spieck

Ш

H.

Holger Daims Michael Wagner

