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Microbial growth can be characterized by a limited set of

macroscopic parameters such as growth rate, biomass yield

and substrate affinity. Different culturing protocols for

laboratory evolution have been developed to select mutant

strains that have one specific macroscopic growth parameter

improved. Some of those mutant strains display tradeoffs

between growth parameters and changed metabolic

strategies, for example, a shift from respiration to fermentation.

Here we discuss recent studies suggesting that metabolic

strategies and growth parameter tradeoffs originate from a

common set of physicochemical and cellular constraints,

associated with the allocation of intracellular resources over

biosynthetic processes, mostly protein synthesis. This

knowledge will give insight in ecological and biological

concepts and can be used for metabolic and evolutionary

engineering strategies.
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Bacterial growth laws
One of the major achievements  of microbiology has been

the identification of species-independent relations be-

tween macroscopic parameters of microbial growth, such

as growth rate, cell yield, nutrient affinity and mainte-

nance requirements (for definitions see Box 1). Monod’s

equation relates the growth rate of a microorganism to the

concentration of the growth-limiting nutrient by two

such parameters: its maximal growth rate on the specific
www.sciencedirect.com 
nutrient and its affinity for it [1]. Similarly the Herbert–
Pirt equation relates the specific uptake rate of a nutrient

to the rates of the formation of new cells, excretion of

products and maintenance processes [2]. The Monod and

Herbert–Pirt equation can also be combined to relate

nutrient concentrations to the formation rate of new cells

and cellular products. Alternatively, stoichiometric anal-

ysis of metabolism allows for yield predictions [3,4].

The Monod and Herbert–Pirt relations contain macro-

scopic, phenomenological parameters that ‘emerge’ from

molecular properties. Physics would consider these rela-

tions as ‘laws’. The ideal gas law, for example, is phenom-

enological and its mechanistic explanation is given by

statistical mechanics in terms of kinetic energies and

collisions of (idealized) gas molecules. What statistical

mechanics did for physics is similar to what molecular

systems biology is aiming to do for microbiology, which is

to explain phenomenological macroscopic parameters in

terms of molecular properties.

Systems biology uses mathematical models of molecular

networks in cells to achieve this aim. Recently, models of

microbial growth have been introduced that explain

changes in growth rate and nutrient yield, in terms of

re-allocation of intracellular resources, such as cellular

building blocks, energy, and biosynthetic machinery

[5,6,7,8�].

One important aspect of understanding microbial growth,

which seems to have no analogy in physics, relates to the

evolutionary origin of biological systems: how do macro-

scopic growth parameters (co-)evolve under different

selective forces? How can we explain their values in

terms of the underlying molecular circuits, their con-

straints and the environmental selective pressures? This

can be addressed with laboratory evolution-experiments,

where the major control variable is the availability of the

growth substrate (Box 2; Figure 1). Such experiments can

then be followed up by studies of intracellular constraints,

and how they limit macroscopic growth parameters, for

example, by the analysis of the fixed mutations.

In this review, we will combine recent findings on growth

and partitioning of intracellular resources by microorgan-

isms, with those of laboratory evolution experiments, in

which either growth rate, cell yield, or nutrient affinity

were selected for. Such a synthesis creates a framework to

understand microbial growth properties that emerge un-

der various selective forces.
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Box 1 Definitions

Biomass: is defined as the total of materials synthesized by a living

organism. In microbiology, due to the methods of measurement

(optical density, cell counts, dry weight), material that is not an

integral part of an organism, like excreted material, is excluded.

Specific growth rate: is defined as the instantaneous relative rate of

increase of the number of organisms (rate of increase of the number

per number of the organism), or mathematically:

mðtÞ ¼ 1

N
�dN

dt

where m(t) is the growth rate at time t, and N is the number of

organisms. When this rate is constant in time m(t) = m, we speak of

balanced growth [50]. During balanced growth, metabolism is at

steady state and all extrinsic cellular properties increase exponentially

over time, including total cell volume, cell mass and cell number in the

culture.

Public and private goods: We speak of private goods when in a

population of cells, due to limited diffusion or barriers, each individual

has a fixed quantity of substrate available for growth of itself and its

immediate offspring. Under conditions of unlimited diffusion, for

example, shaking or stirring, all cells in a population share, and

compete for, the same substrate pool — we speak of public goods.

Resource allocation: When internal resources, like substrate

internalized by transport, total amount of protein etc., are limited, an

allocation problem exists for an organism. That is, it can synthesize

more of one protein only at the cost of making less of other proteins,

or it can use substrate for the synthesis of one cellular component

only at the cost of other components. The regulation of gene

expression is one way by which an organism can intervene in the

allocation of its resources.

Tradeoff: When internal resources are limited, certain functions can

only be performed at the expense of other functions. In addition to

limitations in amounts of resources in the form of molecules, physical

and biochemical limitations, like a restricted amount of volume,

maximal rates of molecular diffusion or transport, a maximal amount

of protein that can be dissolved in a membrane etc., are forms of

limited resources, and lead to resource allocation problems.

Affinity: A measure of the concentration of particular substrate

needed to let an organism grow at a certain rate, when other

substrates are supplied in excess. Often defined as the inverse of the

concentration at which half the maximal growth rate is reached.

Fitness: A relative measure of the success of replication of

organisms that compete for the same external resources. Measured

as a consistent change of the ratio of these organisms over a period

of several generations.

Serial batch propagations in liquid medium, at low cell densities, in

which a fraction of the population is used to seed a subsequent one,

tends to select for fast growing populations provided that the

population is harvested during mid-exponential growth phase.

Otherwise, selection pressure may be a myriad of factors besides

growth rate, such as resistance to nutrient starvation, varying pH, or

oxygen limitation, amongst others.

Serial propagations in emulsion, begin each round with individual

cells being isolated in droplets and allowed to grow on the set of

nutrients made available to them without having to compete with

neighboring cells. Cells with an increased number of viable offspring

will grow to higher cell numbers in their respective droplet and increase

in overall frequency upon serial propagation (Figures 1 and 2) [37��].

Continuous cultivation experiments provide several advantages

despite being more laborious and difficult to maintain for prolonged

periods (typically weeks to months by contrast to months to years as

in serial propagations). For instance, first, populations can be made

to grow at specific growth rates by setting the dilution rate [51]; and

second, evolutionary bottlenecks are kept to a minimum, enabling

the sequence landscape to be explored in greater depth, that is,

more combinations of mutations are given a chance to emerge and

compete for taking over the population. Although there exist several

types of continuous cultivation methods, by far the most used one,

also for laboratory evolution experiments, is the chemostat. In this

case the selective pressure is acting on the lowest concentration of

limiting nutrient that can still support growth at the fixed dilution rate

[52]. In practice, this results in evolved populations with, either

transporters with higher affinity (lower KS), and/or increased

transporting ability (higher Vmax). Note that the affinity KS is a whole-

cell property and is therefore not the same as the KM of the

transporter; KS tends to be lower because transport activity changes

with growth rate [6].
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Resource allocation to maximize fitness
The generation of new cellular material, like protein,

relies on the synthesis and allocation of intracellular

resources, such as free energy and building blocks, over

biosynthetic processes.

Resource re-allocation is illustrated by the shifts from

respiratory to fermentative metabolism by different

organisms such as Saccharomyces cerevisiae and Escherichia
coli [6]. Likewise, the onset of the Warburg effect in

cancer cells serves as an example [6]. This so-called

overflow metabolism is observed at high substrate con-

centrations and fast growth rates. The occurrence of

overflow metabolism seems counterintuitive, as cells

switch from efficient to inefficient use of substrate,

thereby wasting extracellular resources. A metabolic shift

to a fast and inefficient growth does however confer a

fitness advantage when cells are selected for a high

growth rate.

It is becoming increasingly evident that the maximization

of growth rate can be achieved by optimal allocation of

resources [6,8�,9,10,11,12]. However, it remains challeng-

ing to verify this experimentally, but ample circumstan-

tial evidence does exist. A study with E. coli did recently

quantify that at high substrate concentration the protein

cost for energy generation through respiration exceeds

that by fermentation [13��]. So overflow metabolism

indeed appears to be the result of a tradeoff between

energy yield and synthesis-rate of alternative pathways.

Attempts to prevent fermentative acetate-production by

fast growing E. coli is therefore likely failing, because

respiratory metabolism is accompanied by a low growth

rate [14–16].

Modeling resource allocation during
metabolism adaptations
Mathematical models of metabolism have been devel-

oped to better understand how fitness parameters, such as

growth rate and nutrient yield, are determined by under-

lying molecular circuits. They consider the allocation of

intracellular resources over cellular processes and range in

scale from highly simplified to genome-scale [5,6,7,8�].
www.sciencedirect.com
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Box 2 Relations between macroscopic parameters of bacterial

growth: affinity for growth-substrate, biomass yield on

substrate, and growth rate

The growth of unicellular organisms can be described by several

mathematical models that take into account different levels of

physiological and molecular detail. The goal of such models is to

relate the growth properties of an organism, like rate and yield, to

environmental, physiological and molecular properties. Perhaps the

earliest and simplest model is the Monod model of growth that

describes the growth rate as a function of the concentration of the

limiting substrate in the medium [1]. It is an empirical relation,

described by a hyperbola:

mðSÞ ¼ mmaxS

K S þ S

where KS is the concentration at which half the maximal growth rate

mmax is reached. The empirical affinity constant (the inverse of KS) is

expected to bear some relation to the affinity constant of the first

enzyme consuming the substrate (the transporter), although it will not

be equal to it [1]. This equation, or modifications of it, is still used as

part of models describing growth in chemostats, for example. Monod

also described the empirical relation between growth yield and

limiting substrate consumed, which was later adapted as

dX

dS
¼ Y S

where X is the concentration of biomass, S the concentration of

limiting substrate consumed and YS a constant yield. Later, Pirt (1965)

modified this relation for the case that S is the energy-yielding

substrate, based on the hypothesis that organisms consume a

constant amount of free energy per time unit, independent of whether

they grow or not [2]. This was termed the maintenance rate, because it

was thought to reflect the consumption of energy by processes that

maintain cellular integrity. This energy substrate consumption, in-

dependent of growth, is proportional to the biomass concentration

with a proportionality constant m, yielding for the total consumption of

substrate:

dS

dt
¼ dS

dX
�dX

dt
þ m�X ¼ 1

Y S

�dX

dt
þ m�X

Dividing both sides by X yields the Pirt formula:

1

X

dS

dt
¼ m

Y S

þ m

which states that the specific rate of consumption of the energy-

substrate is a linear function of the growth rate with slope 1/YS and

offset m.
Genome-scale stoichiometric models predict fluxes

through metabolism from reaction stoichiometries, flux

constraints and fitness objectives. Recent developments

consider the allocation of limited resources to protein

synthesis [7,17,18]. Such models are mostly restricted to

yield calculations, as they usually do not consider enzyme

kinetics.

Simplified models, which generally do consider kinetics,

have mostly focused on explaining observed, linear

phenomenological relations between cellular protein-

fractions and growth rate [6,13��,19]. The most famous

relation, known since the 1950s, is that the ribosomal

protein-fraction increases linearly with specific growth
www.sciencedirect.com 
rate. Similar relations appear to exist with other protein

sectors, such as processes associated with cellular stress

and catabolism [9,20,21].

Environmental effects on optimal resource
allocation
Switching between metabolic strategies [22–25], such as

from respiration to fermentation, occurs when conditions

change from glucose limitation to excess. This indicates

that environmental conditions greatly influence how

resources are allocated.

Fitness optimization  using mathematical models can

help us finding explanations that can be tested experi-

mentally. A recent mathematical model, linking gene

expression and cell growth, considered tradeoffs in cel-

lular energy, free ribosomes and proteins [26]. This

provides explanations of growth-rate dependent regula-

tion, and how (dynamic) nutrient availability determines

evolutionary-stable strategies.

An experimental study [27��] investigated the response of

different yeast strains to dynamic environments. It was

found that some strains adapted quickly to the new

conditions while others were much slower. Subsequent

experimental evolution of those strains, in stable and

dynamic environments, resulted in mutants with differ-

ent catabolite repression properties. Evolution in dynam-

ic regimes lead to the simultaneous expression of

catabolic enzymes for multiple carbon sources, at the

cost of a high growth rate on one carbon source and

vice versa [27��]. Those ‘generalist’ strains turned out

to be the strains that adapted quickly to new conditions, at

the cost of growing slower in stable environments.

Besides dedicated experiments in dynamic conditions,

the majority of studies using experimental evolution

adapt microbial strains to growth in one particular envi-

ronment. These studies usually find improved pheno-

types on the medium in which strains were evolved and

several of them showed that such specialization results in

tradeoffs when cells are switched to other environments

[27��,28,29].

A tradeoff related to growth on limited substrate con-

centrations appears associated with the observation

that microorganisms encode multiple transporters for

the same carbon source. These transporters typically

have different substrate affinities and fitness optimiza-

tion is associated with transporter expression that is

substrate concentration dependent [30]. This suggests

a tradeoff between transporter affinity and substrate

levels, and is consistent with resource allocation

models [31].

Summarizing, evidence is accumulating that highlights

the importance of tradeoffs associated with how cells
Current Opinion in Microbiology 2016, 31:109–115
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Figure 1
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Selective forces in different culturing systems. During serial propagation in suspension the fastest growing cell will outcompete slower ones

(assuming propagation during exponential growth). Internal resources will be allocated for fast metabolism such as fermentation. Prolonged

cultivation in a chemostat selects for cells with a high substrate affinity. Serial propagation in an emulsion like system favors cells with an

increased number of offspring, which can be achieved by decreasing the cell size but also through using substrate efficiently.
allocate their resources and that they do this in an

environment-dependent manner, presumably to maxi-

mize their fitness [26,32–35]. Understanding of meta-

bolic strategies therefore requires a perspective on what

the fitness objective likely is for the organism. This

includes how it is cultivated and whether the environ-

ment is stable or not, what fitness value it can attain,

given intracellular constraints associated with resource

allocation, and which metabolic strategies attain those

fitness values.

Public and private goods: selecting for rate or
yield
Different culturing systems were developed over the

years for the selection of macroscopic growth parameters

such as growth rate, cell yield and substrate affinity.

These protocols differ in how the external resources

are made available such as carbon or nitrogen sources.

In batch cultivation, for instance, the concentration of

nutrients will vary, while in a chemostat their concentra-

tion is essentially constant.
Current Opinion in Microbiology 2016, 31:109–115 
Batch and chemostat culturing methods have in common

that the external resources are available to all cells in the

culture — they are a public good — and individual cells

compete for it [36]. Any mutant cell that is able to grow

faster at saturating nutrient conditions (batch) or can

attain a preset growth rate at a lower limiting nutrient

concentration (chemostat) will outcompete the other

cells, even if it comes at the cost of, for example, de-

creased metabolic efficiency [37��,38]. The Monod equa-

tion (Box 2) indicates that the growth rate is proportional

to mmax/KS when the substrate concentration is low and

hence either macroscopic growth parameter can be chan-

ged to achieve outgrowth of competitors. In practice,

transport processes are often up-regulated in chemostat

evolution experiments [39], suggesting that the KS is

lowered in many cases — although up-regulation of

transport under nutrient limitation can equally affect

mmax.

If cells can benefit from each others activities, competi-

tion between them can lead to more counterintuitive
www.sciencedirect.com
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outcomes. Examples are the extracellular breakdown of

macromolecules into growth precursors, by proteases or

glucosidases [40,41], or the secretion of siderophores to

capture poorly soluble iron [42,43]. In such cases, cheater

cells can profit from the work of cooperating cells. There-

by cheaters safe resources and can grow faster. A number

of laboratory evolution studies indicate that cheaters can

take over the population at the cost of the overall fitness of

the population. Both yield and rate can drop in such cases.

By contrast to well-mixed suspension cultures, where

resource competition occurs, the culturing of cells in

spatially structured environments such as emulsion dro-

plets allows for ‘privatization’ of external resources. In

such an emulsion based system [37��] a single cell is

allowed to establish a population in a droplet. Generally,

populations grown to the full carrying capacity of the

medium do not exceed 100 cells per droplet. The small

population sizes ensure a negligible likelihood of mutants

arising and competing for external resources within a

droplet. On the other hand, the millions of droplets in

an emulsion ensure the supply of mutants that have an

increased number of offspring. They will increase in

overall frequency upon serial propagation. Serial propa-

gation of cells, when external resources are privatized,
Figure 2
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Effects of medium availability as public or private good. Assuming a

yield/rate tradeoff inefficient, fast growing cells compete against

efficient, slow growing cells. In a suspension where the external

resources are a public good cell-cell competition occurs and the fast

growing population will deplete external resources before the slow

growing population reaches high cell densities (left panel). In the case

of resource privatization (e.g. in emulsion droplets) no cell-cell

competition occurs and the two types of cells grow undisturbed to the

maximum carrying capacity of this medium for each cell. Slow but

efficient cells increase in frequency during such a cultivation step.

Figure adapted from [37��].
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therefore selects for mutants that can produce a higher

number of viable offspring (Figure 2), which is likely

associated with efficient metabolic strategies. This was

shown by selecting lactococci that increased their biomass

yield by shifting from homolactic to mixed acid fermen-

tation [37��].

It is important to realize that during rate selection in

suspension a cell with a faster growth rate increases in

frequency with each generation. This is not the case in an

emulsion-based propagation regime. The number of gen-

erations within a droplet does not matter to the increase in

frequency of a variant cell with a higher yield. It is the

number of serial transfers in emulsion that determines the

rate at which a mutant with a higher cell yield increases in

frequency. Only if the emulsion-culture would be propa-

gated before the slowest individuals have reached their

full carrying capacity, selection would favor cells that

reach the highest cell yield within the given growth

period. Such timing would put the selection pressure

on rate and cell yield simultaneously.

There is an increasing appreciation that in nature the

difference between private and public goods is not a strict

one and that the metabolic competitions in such environ-

ments drive the evolution of microbial interactions [44].

Conclusions: fitness tradeoffs between yield,
growth-rate and substrate affinity selection
arise from a common mechanism
Microbial fitness and speciation is shaped by physico-

chemical, physiological and ecological constraints [44,45].

The consideration of the constraints associated with the

allocation of limited resources and usage of novel selec-

tion protocols or macroscopic growth properties deepens

our understanding of microbial evolution. A final, elegant

example to illustrate this is the overexpression of a useless

protein in E. coli which reduces the proteome fraction

available for energy production and thereby leads to a

shift toward acetate formation at lower growth rates than

normally observed [13��]. This effect was shown to

be dose dependent and it suggests, that a metabolic route

that consists of fewer enzymes compensates for the space

taken by the useless protein.

Yet, in recent work with B. subtilis [46] and L. lactis [47], it

was shown that the expression of many proteins in core

metabolism does not change appreciably with the flux.

From a resource allocation perspective, it appears there-

fore that at low growth rate, there is an apparent enzyme

overcapacity. This does not mean that resource allocation

is not always a dominant strategy but indicates that other

aspects of fitness, such as robustness [48] or readiness

[27��] also required the investment of resources. It is

furthermore conceivable that some suggested tradeoffs

are rather observed correlations that can potentially be

overcome given the right selective pressure. Yet, even if
Current Opinion in Microbiology 2016, 31:109–115
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such correlations could be altered by selection the question

if the resulting organism would perform worse in a different

environment remains.

This illustrates that despite the described progress, our

current knowledge on intracellular constraints, phenotyp-

ic plasticity and evolvability is still rather limited. How-

ever, the concept that adaptation strategies are resource

allocation strategies with only one objective — fitness —

provides direction and a research agenda for many years to

come. Their study will give insight into fundamental

ecological and biological concepts but it will also be

valuable for biotechnological applications such as meta-

bolic and evolutionary engineering [49].
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