

Syntrophic Cooperations in Methanogenic Degradation

Bernhard Schink Department of Biology University of Konstanz D-78457 Constance Germany Bernhard.Schink@uni-konstanz.de

Overview

- Concept of interspecies electron transfer
- Syntrophic cooperations and
- Energetical implications
- Alternative electron carriers
- Anaerobic methane oxidation
- Conclusions

The "Microbial Redox Tower"

Major carriers	E _o ' (mV)
0 ₂ /H ₂ O	+ 810
NO3-/N2	+ 751
NO3-/NO2-	+ 430
NO ₃ -/NH ₄ +	+ 363
MnO ₂ /Mn ²⁺	+ 600
FeOOH/Fe ²⁺	+ 150
SO42-/H2S	- 218
S°/H ₂ S	-240
CO₂/CH₄	- 244
2 H+/H ₂	- 414
CO ₂ / <ch<sub>2O></ch<sub>	- 434

Fig. 30.4 Sequence of redox processes coupled to mineralization of organic matter

Sediment core from Lake Constance, Profundal, about 80 m water depth

Alessandro Volta, 1776 : "aria infiammabile"

LETTERA PRIMA.

Al Padre Carlo Giuseppe Campi C. R. S.

CARISSIMO AMICO.

Como, li 14 Novembre, 1776.

UANDO mi fcriveste primamente della forgente d'aria infiammabile da voi ritrovata ful principio dell'autunno, e quindi conversammo alcuni giorni infieme, vi ricorderà

quanti discorsi, e quante congetture si fecero tra noi sul soggetto sempre più maraviglioso ed inte-

$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$$

△G°' = -2870 kJ per mol

$$C_6H_{12}O_6 \rightarrow 3 CH_4 + 3 CO_2$$

 $\Delta G^{\circ} = -390 kJ per mol$

 $3 \text{ CH}_4 + 6 \text{ O}_2 \rightarrow 3 \text{ CO}_2 + 6 \text{ H}_2\text{O}$ $\Delta \text{G}^{\circ} = -2480 \text{ kJ per mol}$

Energetics of ATP formation

 $ADP + P_i \rightarrow ATP + H_2O$ $\triangle G^{0'} = +32 \text{ kJ /mol rct.}$ with [ATP], [P_i] = 10^{-2} M; [ADP] = 10^{-3} M: $\triangle G' = +49 \text{ kJ /mol rct.}$ Heat loss in irreversible reactions:10-20 kJ/ mol rct. $\rightarrow + 60-70 \text{ kJ/mol ATP}$

(F₁/F_o) ATPase:

Synthesizes or hydrolyses ATP at the cytoplasmic membrane

The reaction is coupled to a proton (or Na⁺ ion) flux across the charged membrane (pmf = -180 - -200 mV).

If 3-4 protons (Na⁺ ions) cross the membrane per ATP the smallest energy quantum exploitable by a biochemical process for ATP synthesis is equivalent to 1/3 - 1/4 ATP, i. e.

→ + 15-20 kJ/mol H⁺ (Na⁺) translocated

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

△G°' = -2870 kJ per mol

= 38 ATP per mol glucose \rightarrow - 75 kJ per mol ATP

$$C_6H_{12}O_6$$
 → 3 CH_4 + 3 CO_2
 $\Delta G^{\circ} = -390$ kJ per mol
= ca. 5 ATP per mol

C₆H₁₂O₆ + 6 O₂ → 6 CO₂ + 6 H₂O Δ G°' = -2870 kJ per mol

 \rightarrow 38 ATP per mol glucose

 \rightarrow - 75 kJ per mol ATP

With 70 kJ per ATP, [glucose] could go down to 10⁻³⁵ M before the system would become energy-limited.

C₆H₁₂O₆ + 6 O₂ → 6 CO₂ + 6 H₂O Δ G°' = -2870 kJ per mol

 \rightarrow 38 ATP per mol glucose

 \rightarrow - 75 kJ per mol ATP

With 70 kJ per ATP, [glucose] could go down to 10⁻³⁵ M before the system would become energy-limited.

(= <1 molecule in Lake Constance (50 km³ water)

```
C_6H_{12}O_6 → 3 CH_4 + 3 CO_2

\triangle G^{\circ} = -390 kJ per mol

= ca. 5 ATP per mol
```

With 70 kJ per ATP, [glucose] could go down to 10⁻⁷ M (100 nM) before the system would become energy-limited.

Electron flow in a methanogenic microbial community

Metabiotic glucose fermentation

Acetobacterium woodii

Methanosarcina barkeri

(Winter and Wolfe, 1979)

Secondary Fermentations "Syntrophic" Cooperations

Electron flow in a methanogenic microbial community

Archiv für Mikrobiologie 59, 20–31 (1967)

Marvin Bryant

Methanobacillus omelianskii, a Symbiotic Association of Two Species of Bacteria*

M. P. BRYANT, E. A. WOLIN, M. J. WOLIN, and R. S. WOLFE Departments of Dairy Science and Microbiology, University of Illinois, Urbana, Illinois

Received April 20, 1967

Methanobacillus omelianskii

2 ethanol + $CO_2 \rightarrow 2$ acetate + CH_4 $\Delta G^{0'} = -112 \text{ kJ}$

S-organism

2 ethanol + 2 H₂O \rightarrow 2 acetate + 4 H₂ $\Delta G^{0'}$ = + 20 kJ

Methanogen

 $4 H_2 + CO_2 \rightarrow CH_4 + 2 H_2O \qquad \qquad \Delta G^{0'} = -131 \text{ kJ}$

Bryant et al (1967)

Electron transfer in energy metabolism

Syntrophic oxidation reactions

	∆G _o '
	(kJ per mol rct)
Primary alcohols	
$\text{CH}_3\text{CH}_2\text{OH} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COO}^- + \text{H}^+ + 2 \text{H}_2$	+ 9.6
Fatty acids	
$\text{CH}_3\text{CH}_2\text{CH}_2\text{COO}^- + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ CH}_3\text{COO}^- + 2 \text{ H}^+ + 2 \text{ H}_2\text{O}^- + 2 \text{ H}^+ + 2 \text{ H}^+ + 2$	+ 48.3
$CH_3CH_2COO^- + 2H_2O \rightarrow CH_3COO^- + CO_2 + 3H_2$	+ 76.0
$CH_3COO^- + H^+ + 2 H_2O \rightarrow 2CO_2 + 4 H_2$	+ 95.0
CH ₃ CH(CH ₃)CH ₂ COO ⁻ + CO ₂ + 2 H ₂ O → 3 CH ₃ COO ⁻ + 2 H ⁺ + H ₂	+ 25.2

Benzoate

 $\text{C}_{6}\text{H}_{5}\text{COO}^{-} + 6 \text{ H}_{2}\text{O} \rightarrow 3 \text{ CH}_{3}\text{COO}^{-} + 2 \text{ H}^{+} + \text{CO}_{2} + 3 \text{ H}_{2} \qquad + 49.5$

19

Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens

Michael J. McInerney¹, Marvin P. Bryant¹, and Norbert Pfennig²

¹ Departments of Dairy Science and Microbiology University of Illinois, Urbana, IL 61801, U.S.A.

² Institut für Mikrobiologie der Gesellschaft für Strahlen- und Umweltforschung mbH München in Göttingen, Federal Republic of Germany

Abstract. A new species of anaerobic bacterium that degrades the even-numbered carbon fatty acids, butyrate, caproate and caprylate, to acetate and H2 and the odd-numbered carbon fatty acids, valerate and heptanoate, to acetate, propionate and H2 was obtained in coculture with either an H2-utilizing methanogen or H2-utilizing desulfovibrio. The organism could be grown only in syntrophic association with the H2-utilizer and no other energy sources or combination of electron donor and acceptors were utilized. It was a Gram-negative helical rod with 2 to 8 flagella, about 20 nm in diameter, inserted in a linear fashion about 130 nm or more apart along the concave side of the cell. It grew with a generation time of 84 h in co-culture with Methanospirillum hungatii and was present in numbers of at least 4.5×10^{-6} per g of anaerobic digestor sludge.

Key words. Anaerobic degradation – Methanogenesis – Sludge – Syntrophic association – H_2 transfer – Butyrate – Propionate – Acetate – H_2 . products were degraded by a complex of methanogenic species per se to CO_2 and methane. However, Bryant et al. (1967, 1977) showed that the fermentation of ethanol as carried out by *Methanobacillus omelianskii* [Eq. (a)]

Archives of

C by Springer-Verlag 1979

$$2 \text{ CH}_3\text{CH}_2\text{OH} + \text{HCO}_3^- \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}^+$$

+ CH₄ + H₂O $\Delta \text{G}^{0'} = -116.4 \text{ kJ/} \text{ (a)}$
reaction, pH 7 (Thauer et al., 1977)

is in fact carried out by a syntrophic association of two species. Nonmethanogenic species fermented ethanol according to Eq. (b).

$$2 \operatorname{CH}_{3}\operatorname{CH}_{2}\operatorname{OH} + 2 \operatorname{H}_{2}\operatorname{O} \rightleftharpoons 2 \operatorname{CH}_{3}\operatorname{COO}^{-} \\ + 4 \operatorname{H}_{2} + 2 \operatorname{H}^{+}$$
(b)
$$\Delta G^{0'} = 19.2 \text{ kJ/reaction}$$

This fermentation is thermodynamically unfavorable unless the partial pressure of H_2 is maintained at a low level by the second species, a methanogenic bacterium that obtains energy for growth via reduction of CO_2 with H_2 [Eq. (c)].

Agar Shake Dilution Technique for Purification of Strictly Anaerobic Microbes

Growth medium with 1% Agar

First arrow: Addition of BES, Second arrow: Addition of *Desulfovibrio desulfuricans* (+ sulfate)

2 CH₃CH₂CH₂COO⁻ + H⁺ + 2 H₂O \rightarrow 5 CH₄ + 3 CO₂ Δ G^o' = - 177 kJ per mol with 10 µM butyrate: Δ G' = - 140 kJ per mol

2 $CH_3CH_2CH_2COO^- + H^+ + 2 H_2O \rightarrow 5 CH_4 + 3 CO_2$ $\Delta G^{\circ \circ} = -177 \text{ kJ per mol}$

with 10 μ M butyrate:

∆G' = - 140 kJ per mol

 $2 \text{ CH}_3\text{CH}_2\text{CH}_2\text{COO}^- + \text{H}^+ + 2 \text{ H}_2\text{O} \rightarrow 5 \text{ CH}_4 + 3 \text{ CO}_2$ $\Delta \text{G}^{\circ \circ} = -177 \text{ kJ per mol}$

with 10 μ M butyrate:

 $\Delta G' = -140 \text{ kJ per mol}$

 $2 \text{ CH}_3\text{CH}_2\text{CH}_2\text{COO}^- + \text{H}^+ + 2 \text{ H}_2\text{O} \rightarrow 5 \text{ CH}_4 + 3 \text{ CO}_2$ $\Delta \text{G}^\circ` = -177 \text{ kJ per mol}$

with 10 μ M butyrate:

 $\Delta G' = -140 \text{ kJ per mol}$

Electron flow in a methanogenic microbial community

Butyric acid fermentation

(2) Glucose \rightarrow 2 Acetate + 2 CO₂ + 4 H₂

ΔG₀' = -216 kJ/mol 🔆 4 ATP

Observed:

(3) Glucose \rightarrow 0.7 Butyrate + 0,6 Acetate + 2.6 H₂ + 2 CO₂ ΔG_0° = -233 kJ/mol \rightarrow 3.3 ATP

Energetics of glucose fermentation by Clostridium butyricum

In pure culture: glucose + 2 H₂O \rightarrow 0.7 butyrate⁻ + 0.6 acetate⁻ + 1.3 H⁺ + 2 CO₂ + 2.6 H₂ $\Delta G_0' = -233$ kJ per mol, yielding 3.3 ATP per glucose

Alternatively: glucose + 2 H₂O \rightarrow 2 acetate⁻ + 2 H⁺ + 2 CO₂ + 4 H₂; $\Delta G_0' = -216$ kJ per mol glucose 60-70 kJ needed per mol ATP; \rightarrow too little energy to form 4 ATP!

At $[H_2] = 10^{-4}$ atm, the overall energetics changes to

 Δ G' = -307 kJ, allowing for 4 ATP per glucose.

Glucose fermentation to acetate only

Agar Shake Dilution Technique for Purification of Strictly Anaerobic Microbes

Growth medium with 1% Agar

Direct dilution cultivation with Lake Constance profundal sediment

Substrate	Cultivation conditions	CFU per ml
Glucose	- Msp. hungatei	1.2 · 10 ⁵
	+ Msp. hungatei	1.4 · 10 ⁸
Starch	- Msp. hungatei	2.0 · 10 ⁵
	+ Msp. hungatei	$4.2 \cdot 10^7$
Sucrose	- Msp. hungatei	8.0 · 10 ⁴
	+ Msp. hungatei	$1.6 \cdot 10^{7}$
	1	1

Total count (DAPI): 8.7×10^7 cells per ml sediment

Incubation at 28°C for 2 months.

Predominant colonies show "satellites".

Strain BoGl83; *Bacillus stamsii*

10 μm

16S rRNA sequence comparison of strain BoGlc83

Six strains of defined cocultures isolated from direct dilution series:

- Short rods, 2.0 x 0.5 μ m in size
- Gram-positive, forming subterminal spores
- Facultatively aerobic
- Glucose degradation inhibited by 5 mM BES
- Glucose concentrations >5 mM inhibitory, 2 mM optimal
- Fermentation pattern of the defined cocultures: Glucose \rightarrow 2 Acetate + CH₄ + CO₂
- Not (yet) found in wastewater biogas reactors

Müller, N., U. Stingl, B. M. Griffin, B. Schink: Environ. Microbiol. 10, 1501-1515 (2008) Müller, N., F. D. Scherag, M. Pester, B. Schink: Syst. Appl. Microbiol. 38, 379-389 (2015)

Gary Larson
Importance of Acetate vs. H₂ as Electron Carriers

Butyric acid fermentation

(2) Glucose \rightarrow 2 Acetate + 2 CO₂ + 4 H₂

ΔG₀' = -216 kJ/mol 🔆 4 ATP

Observed:

(3) Glucose \rightarrow 0.7 Butyrate + 0,6 Acetate + 2.6 H₂ + 2 CO₂ ΔG_0° = -233 kJ/mol \rightarrow 3.3 ATP

Electron flow in a methanogenic microbial community

39

Habitat	Temperature (°C)	Detention time (d)	[Acetate] (µM)	[Propionate] (µM)	[Butyrate] (µM)	[Hydrogen] (Pa)
Eutrophic Marine Sediment Eutrophic Freshwater Sediment Anaerobic Sewage Sludge Rumen of a Cow	4 - 10	"unlimited"	1 - 660	1 - 24	0.1 - 22	<1
	4 - 10	"unlimited"	1 - 160	1 - 20	1 - 10	<2
	30 - 35	15 - 30	5 - 6000	1 - 500	1 - 500	1 - 10
	37 - 39	0.5 - 2	60 000	20 000	10 000	20 - 5000

Properties of methanogenic habitats

(modified after Schink, B. Naturwissenschaften 76, 364-373 (1989))

Sewage Sludge Digestor, Sewage Plant, Constance ca. 5000 m³

Biogas Reactors

Habitat	Temperature (°C)	Detention time (d)	[Acetate] (µM)	[Propionate] (µM)	[Butyrate] (µM)	[Hydrogen] (Pa)
Eutrophic Marine Sediment Eutrophic Freshwater Sediment Anaerobic Sewage Sludge Rumen of a Cow	4 - 10	"unlimited"	1 - 660	1 - 24	0.1 - 22	<1
	4 - 10	"unlimited"	1 - 160	1 - 20	1 - 10	<2
	30 - 35	15 - 30	5 - 6000	1 - 500	1 - 500	1 - 10
	37 - 39	0.5 - 2	60 000	20 000	10 000	20 - 5000

Properties of methanogenic habitats

(modified after Schink, B. Naturwissenschaften 76, 364-373 (1989))

Electron flow in a methanogenic microbial community

Electron flow in a methanogenic microbial community inside a ruminant

Digestion of Termites

Figure 4 | Major microbial processes in the hindgut of lower termites. The fermentation of wood polysaccharides by the gut flagellates yields acetate and other short-chain fatty acids, which are resorbed by the host. Hydrogen is an important intermediate that drives the reduction of CO,, which yields additional acetate (via homoacetogenesis) and some methane14. Although H, may strongly accumulate at the gut centre, most of it is consumed before it can escape from the gut13,72. The high surface-to-volume ratio of the microlitre-sized hindgut compartment causes an enormous influx of oxygen across the gut wall. Its efficient removal by the gut microbiota within fractions of a millimetre results in steep gradients in the hindgut periphery^{11,70}. Oxygen is consumed by both microaerobic and anaerobic bacteria and methanogenic archaea that use acetate, lactate or hydrogen as the electron donor 71,72,100,104,

Brune, A. Nature Rev. 2014

46

Effect of intermicrobial distances

Schink and Thauer 1987

cluster formation

$$r = 1 \ \mu m$$

 $d = 0.08 \ \mu m$
 $C_p = 0.1 \ mM$
 $C_c = 0.01 \ mM$
Flux = 2000 \ nmol ml⁻¹ min⁻¹

Granules in an UASB Reactor, G. Lettinga, Wageningen, NL

Growth of a syntrophic community in, e. g., a sewage digestor sludge floc Formate or hydrogen?

- Indications for interspecies formate transport in syntrophic oxidation of butyrate, propionate, and ethanol
- Redox potentials nearly identical (E° = -430 vs. -414 mV);

in situ ca. -300 mV

- Diffusion kinetics nearly equivalent
- Solubility in water quite different
- Energetically equivalent?

Hydrogen vs. Formate as Electron Shuttle in Syntrophic Cooperations

Schink, Montag, Keller, Müller, 2017

Anaerobic oxidation of methane

CH₄ + SO₄²⁻ + 2 H⁺ → CO₂ + H₂S + 2 H₂O

$$\Delta$$
G°' = - 21 kJ per mol

Global amount ca. 10¹⁹ g; Kvenvolden and Lorenson, 2013 ⁵⁵

Gas hydrates

Gas hydrate ("Methane Ice")

Anaerobically methane-oxidizing aggregates

Aggregates were harvested off the coast of Oregon at about 1000 m water depth above methane hydrates

(*Photo:* K. Knittel, A. Boetius, Bremen)

Anaerobic oxidation of methane

CH₄ + SO₄²⁻ + 2 H⁺ → CO₂ + H₂S + 2 H₂O $\triangle G^{\circ} = -21$ kJ per mol

at 100 atm CH₄ , 20 mM SO₄²⁻, 2 mM H₂S: Δ G' = - 35 kJ per mol

Scheme of electron flow in sulfate-dependent anaerobic methane oxidation

Milucka, Widdel, Kuypers et al., Nature 491, 541-546 (2012)

"Chloropseudomonas ethylica" (Pfennig and Biebl, 1976)

Interspecies electron transfer ("syntrophy") in a coculture of *Desulfuromonas acetoxidans* and *Chlorobium sp.* (Pfennig and Biebl, 1976)

Conclusions

- In anoxic environments, interspecies interactions are much more common than in the oxygen-supplied world.
- Beyond hydrogen or formate, also sulfur compounds (and others?) may shuttle electrons between partner organisms.
- Also degradation of sugars and other complex substrates,
 e. g. amino acids, may proceed in nature in the presence of partner organisms in a different mode than in pure culture in the lab.
- The energy available to the partners in methanogenic degradation is often at the lowermost limit that can be converted into metabolic energy (ca. 20 kJ per mol).

Biochemistry of Syntrophic Oxidations in Methanogenic Degradation

Bernhard Schink Department of Biology University of Konstanz D-78457 Constance Germany Bernhard.Schink@uni-konstanz.de

Overview

- Syntrophic oxidation of butyrate
- Syntrophic oxidation of acetate
- Syntrophic oxidation of ethanol
- Conclusions

Electron flow in a methanogenic microbial community

Energy sharing in a ternary syntrophic coculture converting butyrate to CH₄ and CO₂

 $2 \text{ CH}_3\text{CH}_2\text{CH}_2\text{COO}^- + \text{H}^+ + 2 \text{ H}_2\text{O} \rightarrow 5 \text{ CH}_4 + 3 \text{ CO}_2$ $\Delta \text{G}^\circ` = -177 \text{ kJ per mol}$

with 10 μ M butyrate:

 $\Delta G' = -140 \text{ kJ per mol}$

Pathway of syntrophic butyrate oxidation (Wofford et al., 1986)

69

Pathway of syntrophic butyrate oxidation (Wofford et al. 1986)

70

Hydrogen partial pressures and corresponding redox potentials in syntrophic oxidation reactions

Hydrogen release in a BES-inhibited coculture of Syntrophomonas wolfei and Methanospirillum hungatei

72
Hypothetical concept of reversed electron transport in syntrophic butyrate oxidation

Prominent membrane proteins of *Syntrophomonas wolfei* expressed after growth with either butyrate or crotonate

A1 hypothetical outer membrane protein (invasin/intimin/lectin-like)

- A2 formate dehydrogenase *alpha*-subunit, molybdopterin-binding; formate dehydrogenase major subunit, selenocysteine-containing
- A3 ABC-type transport permease protein (tungstate uptake)
- A4 formate dehydrogenase iron-sulfur subunit (cytochrome, quinone?); ABC-type transport substrate-binding protein (metal uptake)

B3 ATP synthase, sodium translocating, F1 *alpha*-subunit B4 ATP synthase, sodium translocating, F1 *beta*-subunit B9 ATP synthase, sodium translocating, F1 *gamma*-subunit B12 ATP synthase, sodium/proton translocating F0F1-type, F0 subunit *a* B13 ATP synthase, sodium/proton translocating, F1 *delta*-subunit B14 ATP synthase, sodium/proton translocating F0F1-type, F0 subunit *b B15* ATP synthase, sodium/proton translocating, F1 *epsilon*-subunit

Syntrophic conversion of acetate to $CH_4 + CO_2$

	$\Delta \mathbf{G^{0'}}$
$CH_3COO^- + H^+ + 2 H_2O \rightarrow CO_2 + 4 H_2$	+ 95 kJ /mol rct.
$4 H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$	- 131 kJ /mol rct.
$CH_3COO^- + H^+ + \rightarrow CH_4 + CO_2$	- 35 kJ /mol rct.

at 60°C: \triangle G' = - 42 kJ /mol rct. *"Reversibacter"* Zinder and Koch, 1984 ff. *Thermacetogenium phaeum* Hattori et al., 2000 t_d: 8-10 days; [H₂] = 5-10 Pa (10⁻⁵ - 10⁻⁴ atm)

at 35°C: ∆G' = - 38 kJ /mol rct.;

Clostridium ultunenseSchnürer et al., 1996 t_{ri} : 4-6 weeks; $[H_2] = 5-10$ Pa (10-5 - 10-4 atm)

Electron flow in a thermal methanogenic microbial community

Energetics of fermentative formation and degradation of acetate

$$4 H_2 + 2 CO_2 \rightarrow CH_3COO^- + 2 H_2O$$

$$\Delta G^{\circ} = -95 \text{ kJ per mol}$$

at
$$[H_2] = 10^{-5}$$
 atm., $[Ac] = 10$ mM, T = 60°C
 $\Delta G' = + 20$ kJ per mol

Acetate oxidation and formation by *Thermacetogenium phaeum* at 60°C (plus *Methanothermobacter thermautotrophicus*)

Acetate formation from formate or hydrogen by *Thermacetogenium phaeum Keller et al., 2019*

Acetate oxidation by Thermacetogenium phaeum Keller et al., 2019

Biomass degradation in technical reactors BMBF Project BioPara

Table 1 - Technical process parameters and substrate composition; HRT: hydraulicretention time; DM: dry matter; oDM: organic dry matter; Nm³: normal m³ (at 1 atm)

	WWTP	BG	R 1	BG	R 2	BG	R 3
Sample taken	17.11.2014	12.01.2015		21.01.2015		04.02.2015	
Temperature (°C)	39	40		40		47	
Reactor size [m³]	4500	2800		2500		1650	
HRT [h]	690	81		86.2		55	
Volume load [kg DM/m³·d]	1.73	4.27		4.11		7.57	
Volume load [kg oDM/m³·d]	1.44	3.93		3.82		6.47	
biogas formation rate [Nm³/d]	3560	6373		6024		7680	
Methane formation rate [mmol/kg·h]	0.831	1.92		2.03		3.92	
Substrates [t dry matter per day]	sewage sludge						
Maize silage		8.24	68.9%	6.08	59.1%	4.80	38.4%
Green rye		0	0%	0.96	9.3%	2.24	17.9%
Grain of wheat		0	0%	0	0%	3.48	27.9%
Cow manure		2.36	19.8%	0.26	2.6%	0	0%
Cattle slurry		0	0%	0.12	1.2%	0.88	7.0%
Horse manure		0	0%	0.27	2.6%	1.09	8.7%
Dried chicken feces		1.35	11.3%	2.59	25.2%	0	0%
NH ₄ - nitrogen	1.1	3.1		4.5		1.5	

Montag, D., B. Schink: Appl. Microbiol. Biotechnol. 100, 1019-102 (2016)

Biomass degradation in technical reactors

Table 1 - Technical process parameters and substrate composition; HRT: hydraulic retention time; DM: dry matter; oDM: organic dry matter; Nm³: normal m³ (at 1 atm)

	WWTP	BG	R 1	BG	R 2	BG	R 3
Sample taken	17.11.2014	12.01	.2015	21.01	.2015	04.02	.2015
Temperature (°C)	39	40		40		47)
Reactor size [m ³]	4500	2800		2500		1650	
HRT [h]	690	81		86.2		55	
Volume load [kg DM/m³·d]	1.73	4.27		4.11		7.57	
Volume load [kg oDM/m³·d]	1.44	3.93		3.82		6.47	
biogas formation rate [Nm³/d]	3560	6373		6024		7680	
Methane formation rate [mmol/kg·h]	0.831	1.92		2.03		3.92)
Substrates [t dry matter per day]	sewage sludge						
Maize silage		8.24	68.9%	6.08	59.1%	4.80	38.4%
Green rye		0	0%	0.96	9.3%	2.24	17.9%
Grain of wheat		0	0%	0	0%	3.48	27.9%
Cow manure		2.36	19.8%	0.26	2.6%	0	0%
Cattle slurry		0	0%	0.12	1.2%	0.88	7.0%
Horse manure		0	0%	0.27	2.6%	1.09	8.7%
Dried chicken feces		1.35	11.3%	2.59	25.2%	0	0%
NH₄ - nitrogen	1.1	3.1		4.5		1.5	

Pool sizes of fatty acids and other parameters measured in samples from a wastewater treatment plant (WWTP) and three biogas reactors (BGR1-3).

Compound	WWTP	BGR1	BGR2	BGR3
Formate [mmol·l ⁻¹]	0.015 ±0.000	0.001 ± 0.001	0.011 ±0.002	0.001 ± 0.000
Acetate [mmol·l ⁻¹]	0.010 ±0.001	0.180 ±0.012	10.103 ±0.703	0.948 ±0.057
Propionate [mmol·l ⁻¹]	0.078 ±0.005	0.016 ±0.005	1.315 ±0.156	0.097 ±0.015
Butyrate [mmol·l ⁻¹]	< 0.001	< 0.001	0.597 ±0.042	0.034 ±0.002
рН	7.4	8.2	8.3	8.1
Hydrogen [ppm]	44.7 ±0.5	18.2 ±0.7	29.1 ±0.2	10.9 ±0.7
Carbon monoxide [ppm]	18.0 ±0.2	17.7 ±0.5	10.2 ±0.1	1.8 ±0.3
Methane [bar]	0.67 ±0.02	0.55 ±0.01	0.50 ±0.02	0.50 ±0.01

Gibbs' free energy changes of conversion reactions in equilibrated digested sludge systems (waste water treatment plant and biogas reactors); the complete conversion reactions are given in Table 1. *) calculation based on estimated butyrate concentrations below the detection limit: WWTP: 10 nM and BGR1: 100 nM

Step	Eq.	WWTP	BGR1	BGR1 BGR2		
	#	[kJ·mol⁻¹]	[kJ·mol⁻¹]	[kJ·mol⁻¹]	[kJ·mol⁻¹]	
Butyrate oxidation	(1)	-21.4*	-20.0*	-20.0	-28.6	
Propionate oxidation	(2)	-19.3	-13.8	-10.9	-17.9	
Acetate oxidation	(3)	+8.8	-3.5	-7.7	-13.2	
H_2 to CH_4	(4)	-9.6	-10.4	-15.8	-5.6	
Acetate to CH_4	(5)	-18.4	-13.9	-23.5	-18.8	
Formate to $H_2 + CO_2$	(6)	+2.6	-5.9	-2.0	-4.3	

Pool sizes of fatty acids and other parameters measured in samples from a wastewater treatment plant (WWTP) and three biogas reactors (BGR1-3).

Compound	WWTP	BGR1	BGR2	BGR3
Formate [mmol·l ⁻¹]	0.015 ±0.000	0.001 ± 0.001	0.011 ±0.002	0.001 ± 0.000
Acetate [mmol·l ⁻¹]	0.010 ±0.001	0.180 ±0.012	10.103 +0.703	0.948 ±0.057
Propionate [mmol·l ⁻¹]	0.078 ±0.005	0.016 ±0.005	1.315 ±0.156	0.097 ±0.015
Butyrate [mmol·l ⁻¹]	< 0.001	< 0.001	0.597 10.042	0.034 ±0.002
рН	7.4	8.2	8.3	8.1
Hydrogen [ppm]	44.7 ±0.5	18.2 ±0.7	29.1 ±0.2	10.9 ±0.7
Carbon monoxide [ppm]	18.0 ±0.2	17.7 ±0.5	10.2 ±0.1	1.8 ±0.3
Methane [bar]	0.67 ±0.02	0.55 ±0.01	0.50 ±0.02	0.50 ±0.01

Gibbs' free energy changes of conversion reactions in equilibrated digested sludge systems (waste water treatment plant and biogas reactors); the complete conversion reactions are given in Table 1. *) calculation based on estimated butyrate concentrations below the detection limit: WWTP: 10 nM and BGR1: 100 nM

Step	Eq.	WWTP	BGR1	BGR2	BGR3	
	#	[kJ·mol⁻¹]	[kJ·mol⁻¹]	[kJ·mol⁻¹]	[kJ·mol⁻¹]	
Butyrate oxidation	(1)	-21.4*	-20.0*	-20.0	-28.6	
Propionate oxidation	(2)	-19.3	-13.8	-10.9	-17.9	
Acetate oxidation	(3)	+8.8	-3.5	-7.7	-13.2	
H_2 to CH_4	(4)	-9.6	-10.4	-15.8	-5.6	
Acetate to CH_4	(5)	-18.4	-13.9	-23.5	-18.8	
Formate to $H_2 + CO_2$	(6)	+2.6	-5.9	-2.0	-4.3	

Electron flow in a methanogenic microbial community

Conclusions

- The energy available to the partners in methanogenic degradation is often at the lowermost limit that can be converted into metabolic energy (~20 kJ per mol).
- In all cases of syntrophic oxidations studied so far, ATP is formed via substrate-level phosphorylation
- In most cases, evidence of energy-dependent reversed electron transport or of other energy-consuming membrane-bound reactions has been obtained.
- With syntrophic butyrate oxidation and syntrophic acetate oxidation by *Thermacetogenium phaeum*, menaquinone-linked reversed electron transport systems have been identified.
- In syntrophic ethanol oxidation by Pelobacter spp., the present working concept includes a Na⁺-driven Rnf complex and a confurcating hydrogenase or formate dehydrogenase.

A great "Thank You" to

- Michael Friedrich
- Christina Wallrabenstein
- Jan Kaden
- Ben Griffin
- Nicolai Müller
- David Schleheck
- Dirk Oehler
- Alexander Schmidt

- Alfons Stams, Caroline
 Plugge, Wageningen, NL
- Mike McInerney, Oklahoma State University, OK, USA

...and to you for your attention!

