New Methods for Galaxy Modelling

James Binney
Oxford University

Outline

- Why do we need good models?
- How are models made now?
- Quasiperiodicity & integrability
- The torus technique
- Secular perturbation theory revised
- Application to tidal debris

Why we need dynamical models

- Dynamics connects measurements made at different places
- It connects velocity space to real space
- It connects stars to DM
- Dynamics reduces the dimensionality of the Galaxy from 6 to 3

Why upgrade now?

- Advances in observational technique:
 - Integral-field spectroscopy
 - (SAURON, OASIS, KMOS, WFMOS, ..)
 - Photometric & radial-velocity surveys
 - (2Mass, SDSS, SEGUE, RAVE, VHS, Pan-Starrs, ..)
 - Astrometric satellites
 - (Hipparcos, Gaia, Jasmine,..)
- Only dynamical models can adequately exploit these large data sets

Science requirements

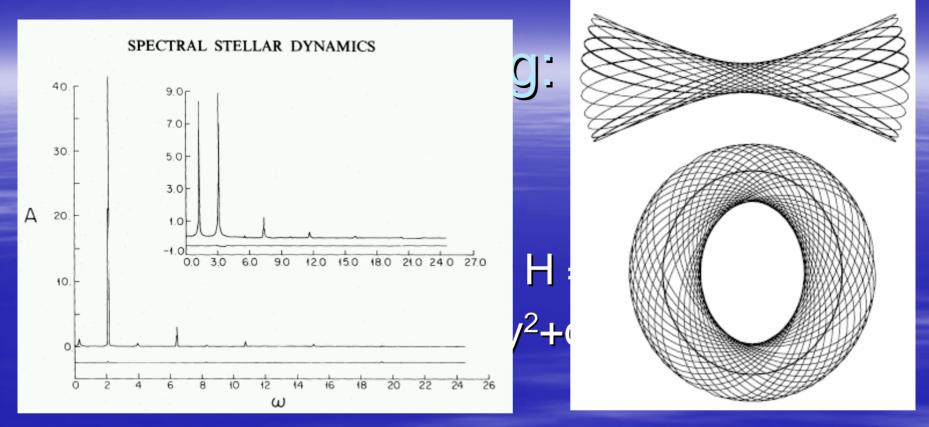
- MW complex, non-equilibrium system
 - The bulge-bar, spiral arms, streams, SFR(t,Z,α) at many locations, secular heating, radial migration, chemical evolution,
- We don't even want a definitive model
- We must model hierarchically:
 - axisymmetric model \rightarrow barred model \rightarrow spiral structure \rightarrow warped model \rightarrow metallicity tagging $\rightarrow \dots$
- We need the DF so we can sample at will & calculate likelihoods
- We must be able to compute secular evolution
 - Possible if we use analytic DF $f_k(E,L_z,I_3)$.. for each of K populations

Galaxy modelling now

- N-body modelling
 - Operationally straightforward
 - Limitations
 - Lack of control of configuration (but M2M)
 - Hard to characterise configuration (no DF)
 - Poisson noise and spurious relaxation
 - Sampling problem (must have many low-L stars, but nearly all invisible)
 - Hard to add stellar populations, secular & chemical evolution etc

Schwarzschild modelling

- Standard for BH searches
- Given $\Phi(x)$ and $\rho(x)$ and $\langle v \rangle(x)$ etc
- Integrate orbits in Φ & save $p_{\alpha}(x,v)$
- Seek $w_{\alpha} \ge 0$ s.t. $\rho(x) = \sum_{\alpha} w_{\alpha} p_{\alpha}(x, v)$, etc
- Limitations
 - Messy: need to store M phase-space p_{α} for N orbits \rightarrow N*M matrix to invert
 - Orbits not naturally characterised
 - Poisson noise
 - Eqs under-determined so no unique soln; should count # of solutions Magorrian (06)
 - Sampling problem
- Solution: replace time-series orbits with orbital tori



- Orbits come in families
- Time series x(t) etc are quasiperiodic

Angles & actions

- Quasiperiodic orbits \Rightarrow exist magic integrals J_1, J_2, J_3 that can be complemented by coordinates $\theta_1, \theta_2, \theta_3$ with trivial eqns of motion J_i = constat and $\theta_i = \Omega_i$ t + const
- Orbits 3-tori labelled by J with θ defining position on torus
- Torus null is sense ∫_{torus}dx· dv=0
- Question is: how to find $(x, v)(J,\theta)$ for given Φ ?

Analytic models

(de Zeeuw MNRAS 1985)

- Most general:
- Φ separable in x,y,z and $\Phi(r)$ limiting cases
- Staeckel Φ yields analytic I_i but numerical integration required for J_i,θ_i
- everything analytic for 3d harmonic oscillator and isochrone $\Phi(r) = \frac{1}{b + \sqrt{b^2 + r^2}}$

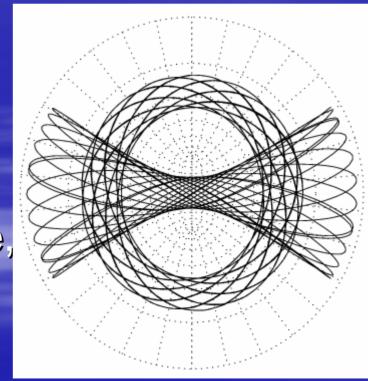
Torus programme

- Map toy torus from harmonic oscillator or isochrone into target phase space
- Use canonical mapping, so image is also null
- Adjust mapping so H = const on image

e.g. Box orbits

(Kaasalainen & Binney 1994)

- Orbits ~ bounded by confocal ellipsoidal coords (u,v)
- x'= Δ sinh(u) cos(v); y'= Δ cosh(u) sin(v)
- When (u,v) cover rectangle,
 (x',y') cover realistic box
 orbit

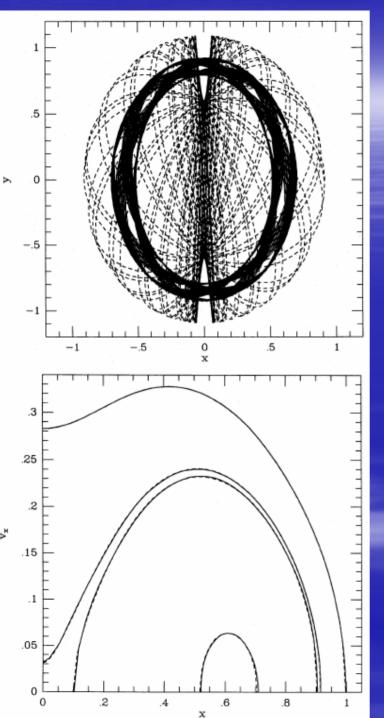


Box orbits (cont)

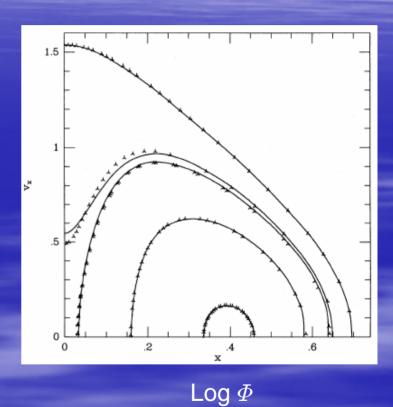
- Drive (u,v) with equations of motion when x=f(u), y=g(v) execute s.h.m.
- $-p_u(x,p_x)=df/du p_x$; $p_v=dg/dv p_y$
- $x=(2J_x/\omega_x)^{1/2} \sin(\theta_x), p_x = etc$
- So $(J,\theta) \rightarrow (x,p_x,...) \rightarrow (u,p_u,...) \rightarrow (x',p_x',...)$
- Requires orbit to be bounded by ellipsoidal coord curves – insufficiently general

Box orbits (cont)

- **So** make transformation (J',θ) → (J,θ) by
- $S(\theta,J') = \theta.J' + 2\sum S_n(J') \sin(n.\theta)$
- J = $\partial S/\partial \theta$ =J'+ 2∑ nS_n(J') cos(n.θ)
- The overall transformation $(J',\theta) \rightarrow (x',p_x',...)$ is now general
- (x,y) are not quite bounded by a rectangle, so (x',y') are not quite bounded by ellipsoidal coordinates
- Determine Δ , S_b and parameters in f(u), g(v) to minimize $\langle (H-\langle H \rangle)^2 \rangle$ over torus



Kaasalainen & B (1994)



Staeckel Φ

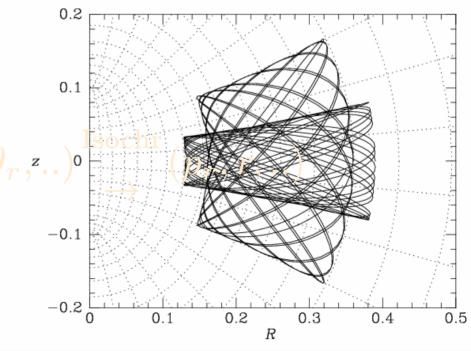
Orbits in $\Phi(R,z)$

- Ignorable ϕ → motion in (R,z) with H = p²/2 + L_z²/2R² + Φ
- Orbits nearly bounded by (u,v) so can

proceed as above

Or do

$$(J_r', heta_r',..)\stackrel{S=J heta'+\cdots}{
ightarrow}(J_r, heta_r,{}^{\mathbf{z}}..)^{\mathbf{0}}$$



General $\Phi(x,y,z)$

What have we achieved?

- Analytic formulae $x(J,\theta)$ and $v(J,\theta)$
- So can find at what θ star is at given x & get corresponding v
- If orbit integrated in t, star will just come close, & we have to search for closest x
- Orbit characterized by actions J essentially unique unlike initial conditions
- Sampling density apparent because d⁶w=(2π)³d³J
- The J are adiabatic invariants useful when ₱ slowly evolving (mass-loss, 2-body relax, disc accretion...)

What have we achieved (cont)

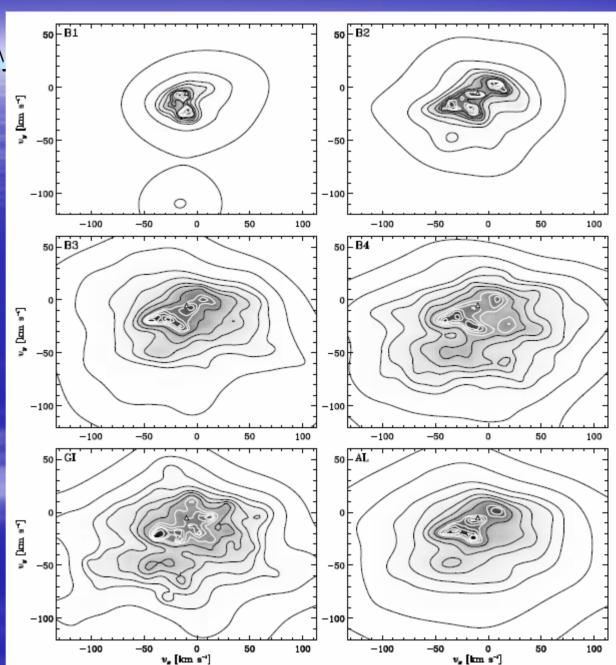
- Real-space characteristics of orbits naturally related to J so can design DF f(J) to give component of specified shape & kinematics (GDII sec 4.6)
- Numerically orbit given by parameters of toy plus point transformations plus <~100 S_n (cf 1000s of (x,p)_t if orbit integrated in t)
- S_n are continuous fns of J, so we can interpolate between orbits
- The likelihood of arbitrary data given a model can be calculated by doing 1-d integral for each star
- Fokker-Planck eqn exceptionally simple in a-a coordinates
- We are equipped to do Hamiltonian perturbation theory

Resonances & topology

- Orbit family determined a priori by gross structure of mapping
- Can foliate phase space with tori at will
- Then define integrable $H_0(J) = \langle H \rangle_{\mathcal{J}}$
- $\delta H \equiv H-H_0$ may cause qualitative change when ω_i rationally related
- Orbit said to be "trapped" by resonance

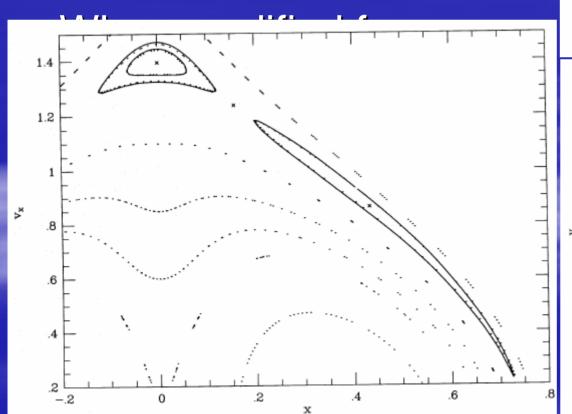
Observ

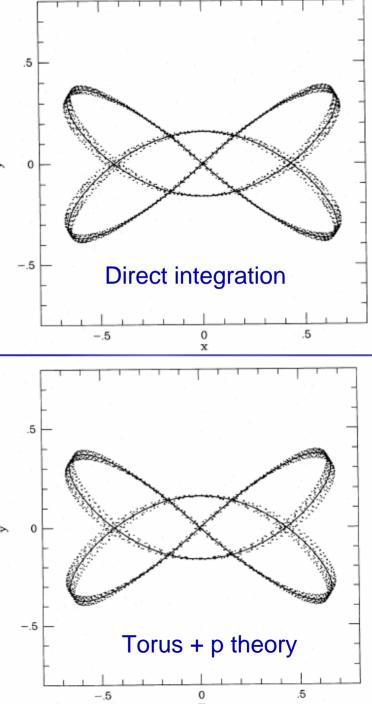
- Dehnen (1998)



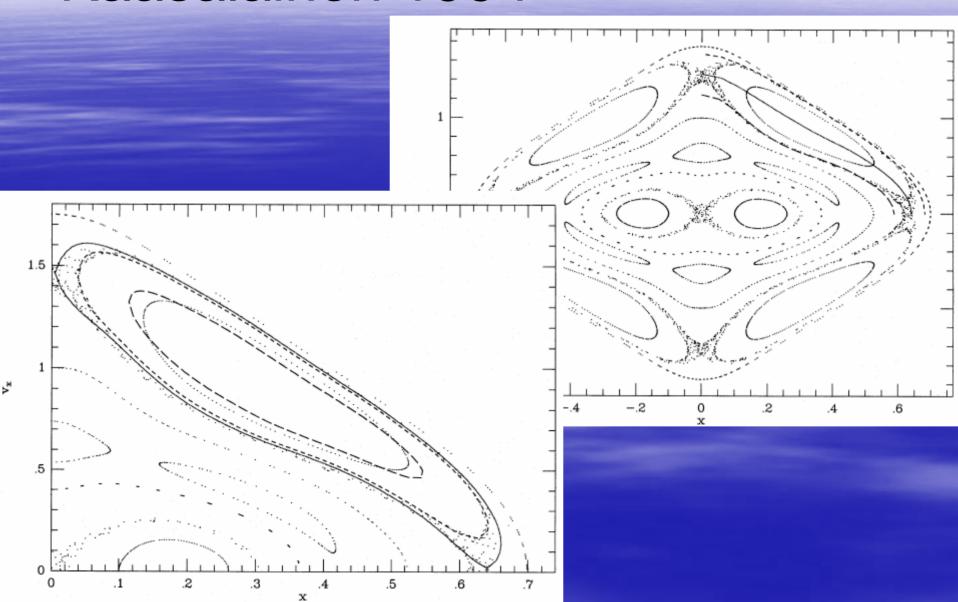
Kaasalainen (1994)

 Standard Hamiltonian theory doesn't work too well





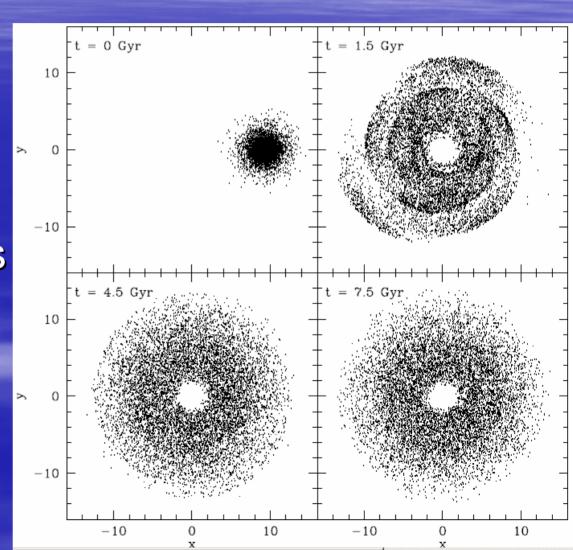
Kaasalainen 1994



Application to tidal debris

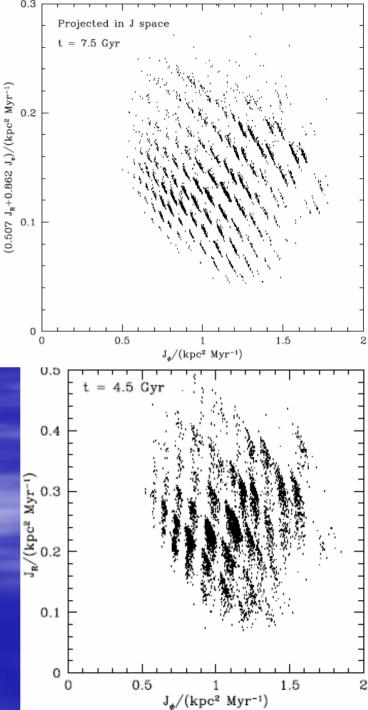
(McMillan & B 08)

- Helmi et al (06)
 conjecture for origin of Arcturus stream
- Get (x,v) of stars with d<1.5 kpc
- Obtain $(J_i, \theta_i, \Omega_i)$ for these stars



McMillan & B (cont)

- In phase-phase plane stars clumped
- Signals common origin
- Leads to similar clumping in (J_o,J_R)
- Can sharpen by viewing on axis inclined to J_z axis
- Can use sharpness of clumping to identify

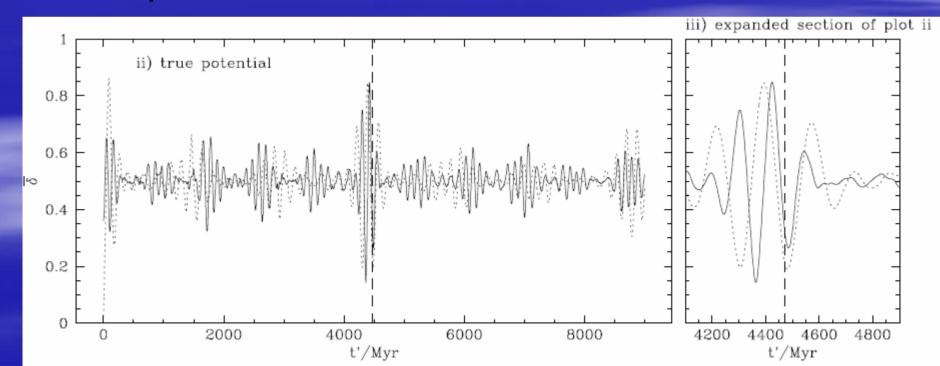


McMillan & B (cont)

Define
$$\delta_{R,\alpha} = \left| \frac{\Omega_{R,\alpha}t' - (\theta_{R,\alpha} - \theta_{R,0}) - 2\pi m_{R,\alpha}}{\pi} \right|$$

$$\delta_{\phi,\alpha} = \left| \frac{\Omega_{\phi,\alpha}t' - (\theta_{\phi,\alpha} - \theta_{\phi,0}) - 2\pi m_{\phi,\alpha}}{\pi} \right|,$$

ullet By minimising means of δ_R and δ_ϕ over particles, determine time since cluster disrupted



Conclusions

- Existing analytic or particle based methods inadequate for existing and future surveys
- Particle models seriously limited by Poisson noise, poor characterisation of orbits and sampling problem
- All these difficulties eliminated if time series replaced by tori
- With tori can also
 - use perturbation theory to study fine structure and develop deeper understanding
 - Identify tidally destroyed clusters and determine date of disruption
 - Characterise populations by analytic DFs that evolve in time to reflect SF and secular heating