The Structure and Substructure of Cold Dark Matter Halos

Julio Navarro
University of Victoria

The Virgo Consortium

The Big Question

CDM halos: Main results

- CDM mass profiles are nearly universal
 - shape is independent of mass
- CDM density profiles are cuspy
 - no evidence for a constant-density central "core"
- CDM halos are clumpy
 - Abundant but non-dominant substructure
- CDM halos are triaxial
 - Preference for prolate configuration, asphericity increasing toward the center.

CDM halos: Outstanding issues

The Structure of the Central Cusp

- Power-law divergent slope ($\rho \propto r^{-1}$ or $\rho \propto r^{-1.2}$ or $\rho \propto r^{-1.5}$?)
 - Annihilation signal
- Disk galaxy rotation curves (cusp vs core vs triaxiality)

The Structure of Substructure

- Mass profile and abundance of Local Group satellites
- Annihilation signal from substructures and "boost factors"
- Abundance, spatial distribution and kinematics
 - lensing flux ratio anomaly, satellite distribution + orbits

The Phase-Space Distribution of Dark Matter

Implications for direct dark matter detection experiments

The Origin of a Universal Density Profile

- Theoretical interest
- Important to understand baryon-induced transformations of dark halo structure

The Aquarius programme

6 different galaxy size halos simulated at varying resolution, allowing for a proper assessment of numerical convergence and cosmic variance

Numerical resolution	Particle number in halo (N ₅₀)	# of substructures	mass resolution
Aq-A-5	808,479	299	$3.14 \times 10^6 \mathrm{M}_0$
Aq-A-4	6,424,399	1,960	$3.92 \times 10^5 \text{ M}_0$
Aq-A-3	51,391,468	13,854	4.91 x 10 ⁴ M ₀
Aq-A-2	184,243,536	45,024	$1.37 \times 10^4 \mathrm{M}_0$
Aq-A-1	1,473,568,512	297,791	1.71 x 10 ³ M ₀ (15 pc/h softening)

Springel et al '08

"Via l	_actea l
simul	ation"
"Via	Lactea I
simu	ılation"

84,700,000	~10,000	2.18 x 10 ⁴ M ₀
470,000,000	~100,000	$3.92 \times 10^3 \text{ M}_0$

Pictures of all Aquarius halos (level-2 resolution)

The Aquarius
"Billennium"
halo simulation.
A dark matter
halo with 1
billion particles
within the virial
radius.

Play Movie

z = 0.1 2400^3 run

The Mass Profile: numerical convergence

[•]Excellent numerical convergence down to radius where the collisional relaxation time approaches the age of the universe

Self-similarity in the mass profile?

•Slight but significant deviations from similarity.

•A "third parameter" is needed in order to describe accurately the mass profiles of CDM halos.

Velocity structure: convergence

•Excellent numerical convergence down to radius where the collisional relaxation time approaches the age of the universe

Velocity structure: self-similarity?

- •Slight but significant deviations from similarity.
- Note that deviant systems in mass are also deviant in velocity
- •Note similarity in shape between density and velocity dispersion

The Structure of the Cusp

•Logarithmic slope scales like a power-law of radius: the Sersic/Einasto profile
•Innermost profile shallower than r⁻¹

The Cusp: Maximum Asymptotic Slope

•Maximum asymptotic slope of the cusp: shallower than r-1

The "Phase-Space Density" Profile

•Remarkably, the "phase-space density", ρ/σ^3 , scales like a power law of radius •This is the same dependence as in Bertschinger's secondary infall similarity solution

The "Phase-Space Density" Profile

- •All halos seem to share the same "phase-space density", ρ/σ^3 , structure
 - •This seems to reflect a fundamental structural property of CDM halos

Summary

- The mass profile of CDM halos:
 - not strictly self-similar, and deviates slightly but significantly from the formula proposed by NFW.
 - It is well approximated by the Einasto profile

 $dln\rho/dlnr \propto r^{\alpha}$

- The Cusp:
 - $\rho \propto r^{-1.2}$ (or steeper) cusps ruled out,
 - − cusp must be shallower than $ρ∝r^{-1}$
- The "phase-space density":
 - seems to be a fundamental structural property of CDM halos.
 - A simple power law, with the same exponent as the self-similar secondary infall model, approximates well the profiles of all halos,

$$\rho/\sigma^3 \propto r^{-1.875}$$

The End

