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Faint Local 
Group 

satellites

Number of large LG satellites more than doubled

•MW: Boötes I (-6.4), Boötes II (-4.2), Canes Venatici I 
(-8.6), Canes Venatici II (-4.9), Coma Berenices (-4.1), 
Hercules (-6.6), Leo IV (-5.0), Leo V (-4.3), Leo T (-8.0), 
SDSSJ1058+2843 (-0.4), Segue 1 (-1.5), Ursa Major I 
(-5.4), Ursa Major II (-4.1), Willman 1 (-2.6)                 
found in the SDSS (quarter of the MW halo)

[MV = -8.8 for Draco, previously known faintest MW 
satellite]

•M31: And IX (-8.3), And X (-8.1), And XI (-7.3), And XII 
(-6.4), And XIII (-6.9), And XIV (-8.5), And XV (-9.4), And 
XVI (-9.2), AndXVII (-8.5), And XVIII (-9.1), And XIX 
(-9.7), And XX (-6.5) & … from large surveys of roughly a 
third of the M31 halo.

Leo T
And XX
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Around both MW and M31

What are they?

•Are they faint dwarf galaxies? Some overlap with 
previously known galaxies (especially around M31).

•DM dominated from spectroscopic surveys (Mass 
estimates)

•Why smaller? (completeness)
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Structural properties?

(X0,Y0)

θ

ε

rh

Σb

From SDSS data, homogeneous structural parameters and properties:

•Best model with exponential density profile

Martin, de Jong & Rix (2008b)



Fitting structural properties
Previous structural parameter estimates with assumptions:

•smoothing (pixel size, smoothing kernel, background threshold) 

•ε=0…

•+ Σ(r) model
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For all stars i around a satellite, compute                              over a grid of L(p1, p2, . . . , pj)
(p1, p2, . . . , pj)
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Marginal distortions (1-2σ) detected in CVnI & UMaII but none otherwise

➙ No distortions or SDSS not deep enough to find them



Ellipticity

Faint galaxies appear flatter than bright galaxies

•mean ε = 0.32±0.02 (MV > –8.0) vs. ε = 0.47±0.03 (MV > 
–8.0)

•KS test: 99.6% proba that different subsamples 

•3 most flattened systems are faint
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4 Coleman et al.

Fig. 1.— Colour-magnitude diagrams for the central region of
Hercules (left panel) and a field region of equivalent area on the sky
(right panel). The photometry has been corrected for extinction
and all sources outside the sharpness limit have been removed. Our
principal colour, c1, has been designed to enhance the Hercules-to-
field contrast in the colour-magnitude plane. The red dashed line is
the isochrone of a metal-poor stellar population at 13 Gyr (Girardi
et al. 2002, 2004). The blue errorbars in the left panel represent the
uncertainty in the colour c1 returned by the artificial star tests, and
the dashed lines trace the V magnitude at which the photometric
completeness has fallen to 50%. The red contour line traces the
CMD-selection region for the Hercules main sequence population.
Note the increased background galaxy contamination in the right
panel at magnitudes fainter than V = 24.

Fig. 2.— Upper panel: Spatial distribution of the Hercules CMD-
selected objects, where the dashed line marks the limit of our LBT
data. The blue shaded region represents the saturated star aligned
towards the centre of the dSph. The solid red ellipse marks the core
radius from our best-fitting King model (see Fig. 3) and the dashed
ellipse outlines the inner border of the field region. Both the core
and field populations were used to derive the CMD-selection limit
shown in Fig. 1. These ellipses have an ellipticity of 0.65 and semi-
major axis radii of 4.42′ and 11′ respectively. Lower panel: Contour
diagram of the CMD-selected sources. Each star has been convolved
with a Gaussian of width 0.6′ arcmin. The contours correspond to
stellar densities of 1.5σ, 3σ, . . . , 10.5σ above the background, where
σ is the uncertainty in the background stellar density from Poisson
statistics.

Fig. 3.— Radial profile of Hercules, determined from the CMD-
selected dataset. The stellar density was evaluated within ellipses at
every 1′ major axis radius using an ellipticity of 0.65 and a position
angle of −73◦. The dashed line represents the best-fitting King pro-
file, and the parameters with their associated bootstrap uncertain-
ties are listed. The background level of 15.43 ± 0.28 stars/arcmin2

(Poisson statistical uncertainty) has been subtracted from all data-
points. Inset panel: Ellipticity as a function of radius. Uncertainties
were determined using bootstrap resampling. The central coordi-
nates of this system demonstrate a mild dependence on radius, with
a variation of ∼0.3′ in RA and ∼0.2′ in Dec over the radial range.
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rh, min = 100pc

rh, maj = 300pc
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