MUSINGS ON FAINT DWARF GALAXIES

Nicolas Martin, Jelte de Jong & Hans-Walter Rix (MPIA) (2008, ApJ 684, 1075)

MUSINGS ON FAINT DWARF GALAXIES

Nicolas Martin, Jelte de Jong & Hans-Walter Rix (MPIA) (2008, ApJ 684, 1075)

Number of large LG satellites more than doubled

MW: Boötes I (-6.4), Boötes II (-4.2), Canes Venatici I (-8.6), Canes Venatici II (-4.9), Coma Berenices (-4.1), Hercules (-6.6), Leo IV (-5.0), Leo V (-4.3), Leo T (-8.0), SDSSJ1058+2843 (-0.4), Segue 1 (-1.5), Ursa Major I (-5.4), Ursa Major II (-4.1), Willman 1 (-2.6) found in the SDSS (quarter of the MW halo)

[M_V = -8.8 for Draco, previously known faintest MW satellite]

M31: And IX (-8.3), And X (-8.1), And XI (-7.3), And XII (-6.4), And XIII (-6.9), And XIV (-8.5), And XV (-9.4), And XVI (-9.2), AndXVII (-8.5), And XVIII (-9.1), And XIX (-9.7), And XX (-6.5) & ... from large surveys of roughly a third of the M31 halo.

Leo T

And XX

MILKY WAY SATELLITE SYSTEM

MILKY WAY SATELLITE SYSTEM

MILKY WAY SATELLITE SYSTEM

Number of large LG satellites more than doubled

Around both MW and M31

What are they?

- Are they faint dwarf galaxies? Some overlap with previously known galaxies (especially around M31).
- DM dominated from spectroscopic surveys (Mass estimates)
- Why smaller? (completeness)

Number of large LG satellites more than doubled

Around both MW and M31

What are they?

- Are they faint dwarf galaxies? Some overlap with previously known galaxies (especially around M31).
- DM dominated from spectroscopic surveys (Mass estimates)
- Why smaller? (completeness)
- > What are their properties?
 - Very low number of stars (30 400 stars in SDSS)
 - Reliable structural parameters? (α₀, δ₀, θ, ∈, rh) + N* → M_V? Are they really distorted?

Number of large LG satellites more than doubled

Around both MW and M31

What are they?

- Are they faint dwarf galaxies? Some overlap with previously known galaxies (especially around M31).
- DM dominated from spectroscopic surveys (Mass estimates)
- Why smaller? (completeness)
- > What are their properties?
 - Very low number of stars (30 400 stars in SDSS)
 - Reliable structural parameters? (α₀, δ₀, θ, ∈, rh) + N* → M_V? Are they really distorted?

STRUCTURAL PROPERTIES?

Martin, de Jong & Rix (2008b)

From SDSS data, homogeneous structural parameters and properties:

• Best model with exponential density profile

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- **e**=0...
- + $\Sigma(r)$ model

Maximum Likelihood, only $\Sigma(r)$ model:

$$\mathcal{L}(p_1, p_2, \dots, p_j) = \prod_i \ell_i(p_1, p_2, \dots, p_j)$$

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- **e**=0...
- + $\Sigma(r)$ model

Maximum Likelihood, only $\Sigma(r)$ model:

$$\mathcal{L}(p_1, p_2, \dots, p_j) = \prod_i \ell_i(p_1, p_2, \dots, p_j)$$

Model parameters (α_0 , δ_0 , θ , ϵ , r_h , Σ_b or N*)

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- **e**=0...
- + $\Sigma(r)$ model

Maximum Likelihood, only $\Sigma(r)$ model:

 $\ell_i: \text{Model taken on data point } i \qquad \mathcal{L}(p_1, p_2, \dots, p_j) = \prod_i \ell_i (p_1, p_2, \dots, p_j)$

Model parameters (α_0 , δ_0 , θ , ϵ , r_h , Σ_b or N*)

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- **e**=0...
- + $\Sigma(r)$ model

Maximum Likelihood, only $\Sigma(r)$ model:

 $\ell_i: \text{Model taken on data point } i \qquad \mathcal{L}(p_1, p_2, \dots, p_j) = \prod_i \ell_i (p_1, p_2, \dots, p_j)$ Model parameters

Model parameters (α_0 , δ_0 , θ , ϵ , r_h , Σ_b or N*)

$$\ell_i(X_0, Y_0, \epsilon, \theta, r_h, \Sigma_b) = \frac{N_*}{2\pi \left(\frac{r_h}{1.68}\right)^2 (1-\epsilon)} \exp\left(-1.68\frac{r_i}{r_h}\right) + \Sigma_b$$

$$r_i = \left(\left(\frac{1}{1-\epsilon} \left((X_i - X_0) \cos \theta - (Y_i - Y_0) \sin \theta \right) \right)^2 + \left(\left((X_i - X_0) \sin \theta + (Y_i - Y_0) \cos \theta \right) \right)^2 \right)^{1/2}$$

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- **e**=0...
- + $\Sigma(r)$ model

Maximum Likelihood, only $\Sigma(r)$ model:

 $\ell_i: \text{Model taken on data point } i \qquad \mathcal{L}(p_1, p_2, \dots, p_j) = \prod_i \ell_i (p_1, p_2, \dots, p_j)$

Model parameters $(\alpha_0, \delta_0, \theta, \varepsilon, r_h, \Sigma_b \text{ or } N^*)$

$$\ell_i(X_0, Y_0, \epsilon, \theta, r_h, \Sigma_b) = \frac{N_*}{2\pi \left(\frac{r_h}{1.68}\right)^2 (1-\epsilon)} \exp\left(-1.68\frac{r_i}{r_h}\right) + \Sigma_b$$

$$r_{i} = \left(\left(\frac{1}{1 + \epsilon} \left((X_{i} - X_{0}) \cos\theta + (Y_{i} - Y_{0}) \sin\theta \right)^{2} + \left(\left((X_{i} - X_{0}) \sin\theta + (Y_{i} - Y_{0}) \cos\theta \right)^{2} \right)^{1/2} \right)^{1/2}$$

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- **e**=0...
- + $\Sigma(r)$ model

Maximum Likelihood, only $\Sigma(r)$ model:

 $\ell_i: \text{Model taken on data point } i \qquad \mathcal{L}(p_1, p_2, \dots, p_j) = \prod_i \ell_i (p_1, p_2, \dots, p_j)$

Model parameters (α_0 , δ_0 , θ , ϵ , r_h , Σ_b or N*)

$$\ell_i(X_0, Y_0, \epsilon, \theta, r_h, \Sigma_b) = \frac{N_*}{2\pi \left(\frac{r_h}{1.68}\right)^2 (1-\epsilon)} \exp\left(-1.68\frac{r_i}{r_h}\right) + \Sigma_b$$

$$r_{i} = \left(\left(\frac{1}{1 - \epsilon} \left(X_{i} - X_{0} \cos \theta - Y_{i} - Y_{0} \sin \theta \right)^{2} + \left(\left(X_{i} - X_{0} \sin \theta + Y_{i} - Y_{0} \cos \theta \right)^{2} \right)^{1/2} \right)^{1/2}$$

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- **e**=0...
- + Σ(*r*) model

Maximum Likelihood, only $\Sigma(r)$ model:

 $\ell_i: \text{Model taken on data point } i \qquad \mathcal{L}(p_1, p_2, \dots, p_j) = \prod_i \ell_i p_1, p_2, \dots, p_j)$

Model parameters (α_0 , δ_0 , θ , ϵ , r_h , Σ_b or N*)

$$\ell_i(X_0, Y_0, \epsilon, \theta, r_h, \Sigma_b) = \frac{N_*}{2\pi \left(\frac{r_h}{1.68}\right)^2 (1 - \epsilon)} \exp\left(-1.68\frac{r_i}{r_h}\right) + \Sigma_b$$

$$r_{i} = \left(\left(\frac{1}{1 + \epsilon} \left(X_{i} - X_{0} \cos \theta + Y_{i} - Y_{0} \sin \theta \right)^{2} + \left(\left(X_{i} - X_{0} \sin \theta + Y_{i} - Y_{0} \cos \theta \right)^{2} \right)^{1/2} \right)^{1/2}$$

For all stars *i* around a satellite, compute $\mathcal{L}(p_1, p_2, \dots, p_j)$ over a grid of (p_1, p_2, \dots, p_j)

ML FITS

ML FITS

ML FITS

MAGNITUDES

M_V measured from member stars' luminosity suffers from 'CMD shot-noise'

M_V measured from member stars' luminosity suffers from 'CMD shot-noise'

16 Wil1 10 00 20 probable members 22 2 0 Willman 1 g—i L ~ 1000 L_☉

M_V measured from member stars' luminosity suffers from 'CMD shot-noise'

16 Wil1 10 00 20 probable members 22 2 0 Willman 1 g—i L ~ 1000 L_☉

M_V measured from member stars' luminosity suffers from 'CMD shot-noise'

M_V measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives N* + stellar population models (de Jong et al. 07) from the same dataset → typical M_V

16 Wil1 6 20 probable members 22 2 0 Willman 1 g—i L ~ 1000 L_☉

M_v measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives N* + stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical M_V

(& 'a' mass)

 $N^* \pm \delta N^* \xrightarrow{\text{stellar}} a' CMD \xrightarrow{LF} a' M_V$ 10³ times 800 600 LeolV

M_v measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives N* + stellar population models (de Jong et al. 07) from the same dataset → typical M_V

10³ times $N^* \pm \delta N^* \xrightarrow{\text{stellar}} \text{'a' CMD} \xrightarrow{\text{LF}} \text{'a' } M_V$ *pop.* (& 'a' mass)

SIGNS OF DISTORTION?

Amount of scatter in pixel counts, accounting for Poisson noise with 4 pixel grids:

$$\left(\frac{\sigma_{\rm sc}}{\rm total}\right)^2 = \left(\frac{1}{N}\sum_{i=1}^N (D_i - M_i)^2 - \frac{1}{N}\sum_{i=1}^N (P_i - M_i)^2\right) \cdot \left(\frac{1}{N}\sum_{i=1}^N D_i\right)^{-2}$$

SIGNS OF DISTORTION?

Amount of scatter in pixel counts, accounting for Poisson noise with 4 pixel grids:

$$\left(\frac{\sigma_{\rm sc}}{\rm total}\right)^2 = \left(\frac{1}{N}\sum_{i=1}^N (D_i - M_i)^2 - \frac{1}{N}\sum_{i=1}^N (P_i - M_i)^2\right) \cdot \left(\frac{1}{N}\sum_{i=1}^N D_i\right)^{-2}$$

Scatter in the data wrt model

SIGNS OF DISTORTION?

Amount of scatter in pixel counts, accounting for Poisson noise with 4 pixel grids:

$$\left(\frac{\sigma_{\rm sc}}{\rm total}\right)^2 = \left(\frac{1}{N}\sum_{i=1}^N (D_i - M_i)^2 - \left(\frac{1}{N}\sum_{i=1}^N (P_i - M_i)^2\right) \cdot \left(\frac{1}{N}\sum_{i=1}^N D_i\right)^{-2}\right)$$

Scatter in the data wrt model Scatter in a Poisson realization of best

IIIUUCI

Amount of scatter in pixel counts, accounting for Poisson noise with 4 pixel grids:

$$\left(\frac{\sigma_{\rm sc}}{\rm total}\right)^2 = \left(\frac{1}{N}\sum_{i=1}^N (D_i - M_i)^2 - \left(\frac{1}{N}\sum_{i=1}^N (P_i - M_i)^2\right) \cdot \left(\frac{1}{N}\sum_{i=1}^N D_i\right)^{-2}\right)$$

Scatter in the data wrt model Scatter in a Poisson realization of best

IIIUUEI

Amount of scatter in pixel counts, accounting for Poisson noise with 4 pixel grids:

$$\left(\frac{\sigma_{\rm sc}}{\rm total}\right)^2 = \left(\frac{1}{N}\sum_{i=1}^N (D_i - M_i)^2 - \left(\frac{1}{N}\sum_{i=1}^N (P_i - M_i)^2\right) \cdot \left(\frac{1}{N}\sum_{i=1}^N D_i\right)^{-2}\right)$$

Scatter in the data wrt model Scatter in a Poisson realization of best model

Marginal distortions (1-2 σ) detected in CVnI & UMaII but none otherwise

No distortions or SDSS not deep enough to find them

Faint galaxies appear flatter than bright galaxies

ELLIPTICITY

- mean $\epsilon = 0.32 \pm 0.02$ (M_V > -8.0) vs. $\epsilon = 0.47 \pm 0.03$ (M_V > -8.0)
- KS test: 99.6% proba that different subsamples
- 3 most flattened systems are faint

Faint galaxies appear flatter than bright galaxies

ELLIPTICITY

- mean $\epsilon = 0.32 \pm 0.02$ (M_V > -8.0) vs. $\epsilon = 0.47 \pm 0.03$ (M_V > -8.0)
- KS test: 99.6% proba that different subsamples
- 3 most flattened systems are faint

HERCULES

HERCULES

A TIDALLY SHAPED HERCULES?

Observational "fact"

A TIDALLY SHAPED HERCULES?

Sky

€=0.68

Deprojected ellipticity

Observational

Sky

€=0.68

Observational

Sky

€=0.68

Deprojected ellipticity

Observational

A TIDALLY SHAPED HERCULES?

Sky

€=0.68

Deprojected ellipticity

Observational

$v_r = 145 \text{ km/s}$

Sky

Deprojected ellipticity

Observational "fact"

$v_r = 145 \text{ km/s}$

Sky

€=0.68

Deprojected ellipticity

Observational

A TIDALLY SHAPED HERCULES?

