MபSINGS ロN FAINT DWARF GALAXIES

Nicolas Martin, Jelte de Jong \& Hans-Walter Rix (MPIA) (2008, ApJ 684, 1075)

MபSINGS ロN FAINT DWARF GALAXIES

Nicolas Martin, Jelte de Jong \& Hans-Walter Rix (MPIA) (2008, ApJ 684, 1075)

FAINT LロCAL

GRロபア

SATELLITES
－MW：Boötes I（－6．4），Boötes II（－4．2），Canes Venatici I （－8．6），Canes Venatici II（－4．9），Coma Berenices（－4．1）， Hercules（－6．6），Leo IV（－5．0），Leo V（－4．3），Leo T（－8．0）， SDSSJ1058＋2843（－0．4），Segue 1 （－1．5），Ursa Major I （－5．4），Ursa Major II（－4．1），Willman 1 （－2．6） found in the SDSS（quarter of the MW halo）
［ $M_{v}=-8.8$ for Draco，previously known faintest MW satellite］
－M31：And IX（－8．3），And X（－8．1），And XI（－7．3），And XII （－6．4），And XIII（－6．9），And XIV（－8．5），And XV（－9．4），And XVI（－9．2），AndXVII（－8．5），And XVIII（－9．1），And XIX （－9．7），And XX（－6．5）\＆．．．from large surveys of roughly a third of the M31 halo．

MiLKY WAY SATELLITE SYSTEM

MiLKY WAY SATELLITE SYSTEM

MiLKY WAY SATELLITE SYGTEM

FAINT LロCAL GRロபP
 SATELLITES

Number of large LG satellites more than doubled
Around both MW and M31

What are they?

- Are they faint dwarf galaxies? Some overlap with previously known galaxies (especially around M31).
- DM dominated from spectroscopic surveys (Mass estimates)
- Why smaller? (completeness)

FAINT LロCAL GRロபP
SATELLITES

Number of large LG satellites more than doubled

Around both MW and M31

What are they?

- Are they faint dwarf galaxies? Some overlap with previously known galaxies (especially around M31).
- DM dominated from spectroscopic surveys (Mass estimates)
- Why smaller? (completeness)

What are their properties?

- Very low number of stars (30-400 stars in SDSS)
- Reliable structural parameters? $\left(\boldsymbol{\alpha}_{0}, \boldsymbol{\delta}_{0}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \mathbf{r}_{\mathrm{h}}\right)+\mathbf{N}^{*} \rightarrow$ Mv? Are they really distorted?

FAINT LロCAL GRロபア
 SATELLITES

Number of large LG satellites more than doubled

Around both MW and M31

What are they？

－Are they faint dwarf galaxies？Some overlap with previously known galaxies（especially around M31）．
－DM dominated from spectroscopic surveys（Mass estimates）
－Why smaller？（completeness）

What are their properties？

－Very low number of stars（ $\mathbf{3 0} \mathbf{- 4 0 0}$ stars in SDSS）
－Reliable structural parameters？$\left(\boldsymbol{\alpha}_{0}, \boldsymbol{\delta}_{0}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \boldsymbol{r}_{\mathrm{h}}\right)+\mathrm{N}^{*} \rightarrow$ Mv？Are they really distorted？

STRUCTURAL PRロPERTIES?

Martin, de Jong \& Rix (2008b)

From SDSS data, homogeneous structural parameters and properties:
Best model with exponential density profile

FITTING STRUCTURAL PRロPERTIES

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- $\in=0 .$. .
$0+\Sigma(r)$ model
Maximum Likelihood, only $\Sigma(r)$ model:

$$
\mathcal{L}\left(p_{1}, p_{2}, \ldots, p_{j}\right)=\prod \ell_{i}\left(p_{1}, p_{2}, \ldots, p_{j}\right)
$$

FITTING STRUCTURAL PRロPERTIES

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- $\in=0 .$. .
$0+\Sigma(r)$ model
Maximum Likelihood, only $\Sigma(r)$ model:

FITTING STRUCTURAL PRロPERTIES

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- $\in=0 .$. .
$0+\Sigma(r)$ model
Maximum Likelihood, only $\Sigma(r)$ model:

FITTING STRUCTURAL PRロPERTIES

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- $€=0 . .$.
$0+\Sigma(r)$ model
Maximum Likelihood, only $\Sigma(r)$ model:
$\begin{aligned} & \ell_{i}: \text { Model taken on data point } i \\ &\left(X_{i}, Y_{i}\right) \\ & \mathcal{L}\left(p_{1}, p_{2}, \ldots, p_{j}\right)= \\ & \begin{array}{l}\text { Model parameters } \\ \left(\boldsymbol{\alpha}_{\mathbf{0}}, \boldsymbol{\delta}_{\mathbf{0}}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \mathbf{r}_{\mathbf{h}}, \boldsymbol{\Sigma}_{\mathbf{b}} \mathbf{o r} \mathbf{o r}^{*} \mathbf{N}_{2}, \ldots, p_{j}\right)\end{array}\end{aligned}$

$$
\begin{aligned}
& \ell_{i}\left(X_{0}, Y_{0}, \epsilon, \theta, r_{h}, \Sigma_{b}\right)=\frac{N_{*}}{2 \pi\left(\frac{r_{h}}{1.68}\right)^{2}(1-\epsilon)} \exp \left(-1.68 \frac{r_{i}}{r_{h}}\right)+\Sigma_{b} \\
& r_{i}=\left(\left(\frac{1}{1-\epsilon}\left(\left(X_{i}-X_{0}\right) \cos \theta-\left(Y_{i}-Y_{0}\right) \sin \theta\right)\right)^{2}+\left(\left(\left(X_{i}-X_{0}\right) \sin \theta+\left(Y_{i}-Y_{0}\right) \cos \theta\right)\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

FITTING STRUCTURAL PRロPERTIES

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- $\epsilon=0 .$. .
$0+\Sigma(r)$ model
Maximum Likelihood, only $\Sigma(r)$ model:
$\left.\begin{array}{rl}\ell_{i}: \text { Model taken on data point } i \\ \left(X_{i}, Y_{i}\right)\end{array} \quad \mathcal{L}\left(p_{1}, p_{2}, \ldots, p_{j}\right)=1 l_{i}, p_{2}, \ldots, p_{j}\right)$

$$
\begin{aligned}
& \ell_{i}\left(X_{0}, Y_{0}, \epsilon, \theta, r_{h}, \Sigma_{b}\right)=\frac{\left(N_{6}\right)}{2 \pi\left(\frac{\left.r_{h}\right)}{1.68}\right)^{2}(1-\Theta)} \exp \left(-1.68 \frac{r_{i}}{\left(r_{h}\right)}+\Omega_{b}\right) \\
& r_{i}=\left((\frac { 1 } { 1 - \epsilon }) \left(X_{i}-\left(x_{0}\right) \cos \theta\left(Y_{i}-\left(Y_{0}\right) \operatorname{si}(\theta)\right)^{2}+\left(\left(\left(X_{i}-X_{0}\right) \sin \theta-\left(Y_{i}-Y_{0} \cos \Theta\right)\right)^{2}\right)^{1 / 2}\right.\right.
\end{aligned}
$$

FITTING STRUCTURAL PRロPERTIES

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- $€=0 . .$.
$0+\Sigma(r)$ model
Maximum Likelihood, only $\Sigma(r)$ model:
$\ell_{i}:$ Model taken on data point i
$\left(X_{i}, Y_{i}\right)$
$\mathcal{L}\left(p_{1}, p_{2}, \ldots, p_{j}\right)=$$\quad \begin{array}{ll} & \text { Model parameters } \\ \left(\boldsymbol{\alpha}_{\mathbf{0}}, \boldsymbol{\delta}_{0}, \boldsymbol{\theta}, \boldsymbol{\epsilon}, \mathbf{r}_{\mathbf{h}}, \boldsymbol{\Sigma}_{\mathbf{b}} \mathbf{o r} \mathbf{o r}^{*} \mathbf{N}_{2}, \ldots, p_{j}\right)\end{array}$

$$
\begin{aligned}
& \ell_{i}\left(X_{0}, Y_{0}, \epsilon, \theta, r_{h}, \Sigma_{b}\right)=\frac{\mathbb{N}_{\theta}}{2 \pi\left(\frac{\left.r_{h}\right)}{1.68}\right)^{2}(1-\epsilon)} \exp \left(-1.68 \frac{r_{i}}{\left(r_{h}\right)}+\Omega_{b}\right. \\
& r_{i}=\left(\left(\frac{1}{1-\epsilon}\right)\left(X_{i}\right)-\left(X_{0}\right) \cos \theta-\left(Y_{i}\right)-\left(Y_{0}\right) \operatorname{si}(\theta)\right)^{2}+\left(\left(\left(X_{i}\right)-\left(X_{0}\right) \sin \theta+\left(Y_{i}-\left(Y_{0}\right) \cos \theta\right)\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

FITTING STRUCTURAL PRロPERTIES

Previous structural parameter estimates with assumptions:

- smoothing (pixel size, smoothing kernel, background threshold)
- $€=0$...
$0+\Sigma(r)$ model
Maximum Likelihood, only $\Sigma(r)$ model:
$\left.\begin{array}{rl}\ell_{i}: \text { Model taken on data point } i \\ \left(X_{i}, Y_{i}\right)\end{array} \quad \mathcal{L}\left(p_{1}, p_{2}, \ldots, p_{j}\right)=1 l_{i}\right) \quad \begin{aligned} & \text { Model parameters } \\ & \left(\boldsymbol{\alpha}_{\mathbf{0}}, \boldsymbol{\delta}_{\mathbf{0}}, \boldsymbol{\theta}, \mathbf{\epsilon}, \mathbf{r}_{\mathbf{h}}, \boldsymbol{\Sigma}_{\mathbf{b}} \mathbf{0} \mathbf{o r}^{*} \mathbf{N}^{*}\right)\end{aligned}$

$$
\begin{aligned}
& \left.\ell_{i}\left(X_{0}, Y_{0}, \epsilon, \theta, r_{h}, \Sigma_{b}\right)=\frac{N_{*}}{2 \pi\left(\frac{\left.r_{h}\right)}{1.68}\right)^{2}(1-\epsilon)} \exp \left(-1.68 \frac{r_{i}}{r_{h}}\right)+\Sigma_{b}\right) \\
& r_{i}=\left(\left(\frac{1}{1-\epsilon}\left(X_{i}-X_{0} \cos \theta-Y_{i}-Y_{0}\right) \operatorname{si} \theta\right)^{2}+\left(\left(\left(X_{i}-X_{0}\right) \operatorname{si} \theta+Y_{i}-Y_{0} \cos \theta\right)^{2}\right)^{1 / 2}\right.
\end{aligned}
$$

For all stars i around a satellite, compute $\mathcal{L}\left(p_{1}, p_{2}, \ldots, p_{j}\right)$ over a grid of

$$
\left(p_{1}, p_{2}, \ldots, p_{j}\right)
$$

ML FITS

ML FITS

ML FITS

MAGNITUDES

Mv measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives N* + stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical M_{v}

MAGNITUDES

Mv measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives $\mathrm{N}^{*}+$ stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical Mv_{v}

Mv measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives $\mathrm{N}^{*}+$ stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical Mv_{v}

Mv measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives $\mathrm{N}^{*}+$ stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical Mv_{v}

MAGNITUDES

Mv measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives $\mathrm{N}^{*}+$ stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical Mv_{v}

10^{3} times $\mathrm{N}^{*} \pm \delta \mathrm{N}^{*} \xrightarrow[\text { pop. }]{\text { stellar }}{ }^{\prime} \mathrm{a}^{\prime} \mathbf{C M D} \xrightarrow[\text { correction }]{\text { LF }}{ }^{\prime} \mathrm{a}^{\prime} \mathbf{M v}_{\mathbf{v}}$ (\& 'a' mass)

MAGNITUDES
Mv measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives $\mathrm{N}^{*}+$ stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical Mv_{v}

MAGNITUDES
Mv measured from member stars' luminosity suffers from 'CMD shot-noise'

ML gives $\mathrm{N}^{*}+$ stellar population models (de Jong et al. 07) from the same dataset \rightarrow typical Mv_{v}

SIGNS ロF DISTロRTIロN？

Amount of scatter in pixel counts，accounting for Poisson noise with 4 pixel grids：

$$
\left(\frac{\sigma_{\mathrm{sc}}}{\text { total }}\right)^{2}=\left(\frac{1}{N} \sum_{i=1}^{N}\left(D_{i}-M_{i}\right)^{2}-\frac{1}{N} \sum_{i=1}^{N}\left(P_{i}-M_{i}\right)^{2}\right) \cdot\left(\frac{1}{N} \sum_{i=1}^{N} D_{i}\right)^{-2}
$$

SIGNS ロF DISTロRTIロN？

Amount of scatter in pixel counts，accounting for Poisson noise with 4 pixel grids：

$$
\left.\left.\left(\frac{\sigma_{\mathrm{sc}}}{\text { total }}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(D_{i}-M_{i}\right)^{2}\right)-\frac{1}{N} \sum_{i=1}^{N}\left(P_{i}-M_{i}\right)^{2}\right) \cdot\left(\frac{1}{N} \sum_{i=1}^{N} D_{i}\right)^{-2}
$$

Scatter in the data wrt model

SIGNS ロF DISTロRTIロN？

Amount of scatter in pixel counts，accounting for Poisson noise with 4 pixel grids：

$$
\left.\left.\left(\frac{\sigma_{\mathrm{sc}}}{\text { total }}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(D_{i}-M_{i}\right)^{2}\right)-\frac{1}{N} \sum_{i=1}^{N}\left(P_{i}-M_{i}\right)^{2}\right) \cdot\left(\frac{1}{N} \sum_{i=1}^{N} D_{i}\right)^{-2}
$$

Scatter in the data wrt model

Scatter in a Poisson realization of best model

Amount of scatter in pixel counts, accounting for Poisson noise with 4 pixel grids:

$$
\left(\frac{\sigma_{\mathrm{sc}}}{\text { total }}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(D_{i}-M_{i}\right)^{2}-\frac{1}{N} \sum_{i=1}^{N}\left(P_{i}-M_{i}\right)^{2} \cdot\left(\frac{1}{N} \sum_{i=1}^{N} D_{i}\right)^{-2}
$$

Scatter in the data wrt model

Scatter in a Poisson realization of best model

Amount of scatter in pixel counts, accounting for Poisson noise with 4 pixel grids:

$$
\left.\left(\frac{\sigma_{\mathrm{sc}}}{\text { total }}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(D_{i}-M_{i}\right)^{2}-\frac{1}{N} \sum_{i=1}^{N}\left(P_{i}-M_{i}\right)^{2}\right) \cdot\left(\frac{1}{N} \sum_{i=1}^{N} D_{i}\right)^{-2}
$$

Scatter in the data wrt model

Scatter in a Poisson realization of best model

Marginal distortions (1-2 σ) detected in CVnI \& UMall but none otherwise

Faint galaxies appear flatter than bright galaxies

ELLIPTICITY

$$
\begin{aligned}
& \text { - mean } \epsilon=0.32 \pm 0.02\left(M_{v}>-8.0\right) \text { vs. } \epsilon=0.47 \pm 0.03\left(M_{v}>\right. \\
& -8.0)
\end{aligned}
$$

- KS test: 99.6% proba that different subsamples

Faint galaxies appear flatter than bright galaxies

ELLIPTICITY

$$
\begin{aligned}
& \text { mean } \epsilon=0.32 \pm 0.02\left(M_{v}>-8.0\right) \text { vs. } \epsilon=0.47 \pm 0.03\left(M_{v}>\right. \\
& -8.0)
\end{aligned}
$$

- KS test: 99.6% proba that different subsamples

- 3 most flattened systems are faint

Hercules

$1.5 \sigma, 3 \sigma, 4.5 \sigma$

Coleman et al. (2007)

Hercules

$1.5 \sigma, 3 \sigma, 4.5 \sigma$

Coleman et al. (2007)

A TIDALLY
 SHAPED
 HERCபLES?

Observational "fact"

A TIDALLY SHAPED HERCULES?

Deprojected ellipticity

Observational "fact"

A TIDALLY SHAPED Hercules?

Deprojected ellipticity

Observational "fact"

A TIDALLY SHAPED Hercules?

Deprojected ellipticity

Observational "fact"

A TIDALLY
SHAPED
HERCULES?

Deprojected ellipticity

Observational "fact"

A TIDALLY
SHAPED
HERCULES?

Deprojected ellipticity

Observational "fact"

Deprojected ellipticity

Observational "fact"

A TIDALLY
SHAPED
HERCLLES?
$\mathrm{v}_{\mathrm{r}}=145 \mathrm{~km} / \mathrm{s}$

Deprojected ellipticity

Observational
"fact"

A TIDALLY
 SHAPED Hercules?

$\mathrm{v}_{\mathrm{r}}=145 \mathrm{~km} / \mathrm{s}$

Deprojected ellipticity

Observational "fact"

A TIDALLY SHAPED Hercules?

