Moving Sausages The First Universal Law of Cell Migration

Matthieu Piel, matthieu.piel@curie.fr
Systems Biology
of Cell Polarity and Cell Division,
UMR 144, Institut Curie/CNRS

The first universal law of cell migration?

An unexpected outcome of the First World Cell Race: Cytoskeletal flows impose a universal coupling between cell speed and cell persistence

Persistence time

Instantaneous speed

Theory

Nir Gov

Exp. Vienna

Verena Rupprecht
Stefan Wieser

Exp. Paris

Micropatterns for migrating cells: the First World Cell Race (2011)

Movie: T. Vignault

Faster cells are also more persistent, revealing a coupling between the motor and the steering wheel

Recording long cell tracks: not so simple

Recording long cell tracks: not so simple

Important points:

- 1) No convective flows: requires a roof
- 2) Long tracks: stitching
- 3) A focus keeping system

Mesenchymal cells on 1D adhesive tracks

Persistence Time = Δt Mean Instantaneous Spead = $\Delta x/\Delta t$

Franziska Lautenschlaeger, Paolo Maiuri (Piel lab)

Amoeboid cells inside 1D channels

Mesenchymal cells on 2D adhesive substrate

Amoeboid cells on 2D confined substrate

Coupling speed to persistence: all cells rely on a net flow of actin from front to back in order to move and this flow can transport other proteins

Protein Redistribution

The actin retrograde flow

(BMDC under agarose, Lifeact-GFP, TIRF, from Stefan Wieser, M. Sixt lab)

A simple 1D model for advection of a polarity factor by retrograde flow

$$\partial_t c(x,t) - \partial_x \left[Vc(x,t) \right] = D\partial_x^2 c(x,t) + \partial_x \zeta_c$$

$$V = V_0 k_{\text{on}} / (k_{\text{on}} + k_{\text{off}}) \qquad D = D_0 k_{\text{off}} / (k_{\text{on}} + k_{\text{off}}) \qquad \int_0^L c(x,t) dx = M$$

$$\bar{c}(x) = Ce^{-Vx/D}$$

J.F. Rupprecht, Raphael Voirturiez (UPMC, Paris) and Nir Gov (Weizmann Institut, Rehovot)

Modulating retrograd flow speed independantly of cell speed

(see Renkawitz et al. NCB 2009, Sixt lab)

Actin flow induces concentration of actin bound proteins

Verena Ruprecht and Stefan Wieser (Sixt and Heisenberg labs, IST Vienna)

The model captures the exponential relation between persistence and speed

$$\partial_t c(x,t) - \partial_x \left[V c(x,t) \right] = D \partial_x^2 c(x,t) + \partial_x \zeta_c$$

$$V^* = \beta \left(\frac{c_0^n(V)}{C_s^n + c_0^n(V)} - \frac{c_L^n(V)}{C_s^n + c_L^n(V)} \right)$$

$$\partial_t V = -\gamma (V - V^*) + \frac{K}{V} + \sqrt{2K} \zeta_V$$

$$\partial_t \phi = \frac{\sqrt{2K}}{V} \zeta_{\phi}, \quad L^2/D \ll \gamma^{-1}$$

$$\partial_t V = \gamma \mathcal{F}(V) + \sqrt{2\sigma^2(V)} \zeta_V$$

$$\partial_t V = \gamma \mathcal{F}(V) + \sqrt{2\sigma^2(V)} \zeta_V \qquad \mathcal{F}(V) = -V + \beta \left(\frac{\overline{c}_0^n(V)}{C_s^n + \overline{c}_0^n(V)} - \frac{\overline{c}_L^n(V)}{C_s^n + \overline{c}_L^n(V)} \right) + \frac{K}{\gamma V}$$

$$P(V) = \frac{C}{\sigma^2(V)} \exp\left(\gamma \int_0^V du \frac{\mathcal{F}(u)}{\sigma^2(u)}\right) \equiv Ce^{-\gamma W(V)} \qquad \qquad \boldsymbol{\tau_p} \simeq Ae^{\beta \boldsymbol{v}^{\boldsymbol{\theta}}}$$
 the mean first-passage time at $v=0$ $n \simeq 0.9$ $\theta \simeq 1$

J.F. Rupprecht, Raphael Voirturiez (UPMC, Paris) and Nir Gov (Weizmann Institut, Rehovot)

Persistence is correlated to retrograde flow speed, independently of cell speed

The model can generate trajectories the cell as an active Brownian particule

$$\partial_t V = \gamma \mathcal{F}(V) + \sqrt{2\sigma^2(V)} \zeta_V$$

$$\mathcal{F}(V) = -V + \beta \left(\frac{\overline{c}_0^n(V)}{C_s^n + \overline{c}_0^n(V)} - \frac{\overline{c}_L^n(V)}{C_s^n + \overline{c}_L^n(V)} \right) + \frac{K}{\gamma V}$$

$$\sigma^{2}(V) = K + K_{c}n^{2}\beta^{2}C_{s}^{2n} \left(\frac{\overline{c}_{0}^{2n-1}(V)}{(C_{s}^{n} + \overline{c}_{0}^{n}(V))^{4}} + \frac{\overline{c}_{L}^{2n-1}(V)}{(C_{s}^{n} + \overline{c}_{L}^{n}(V))^{4}} \right)$$

$$P(V) = \frac{C}{\sigma^2(V)} \exp\left(\gamma \int_0^V du \frac{\mathcal{F}(u)}{\sigma^2(u)}\right) \equiv Ce^{-\gamma W(V)}$$

J.F. Rupprecht, Raphael Voirturiez (UPMC, Paris) and Nir Gov (Weizmann Institut, Rehovot)

The model predicts a whole phase diagram of cell behaviors

Jean-François Rupprecht (Voituriez lab) Franziska Lautenschlaeger, Paolo Maiuri (Piel lab)

Simulating trajectories from the model

Real cell trajectories

Model fit on real trajectories

Conclusions

- 1) There is a universal correlation between persistence and speed of migrating cells (the first universal law of cell migrations?)
- 2) Experiments on BMDCs show that persistence is in fact correlated to retrograde actin flow
- 3) A model which assumes advective transport of a polarity factor by the actin flow can predict the exponential relation between persistence and speed
- 4) The same model, when varying parameters, can generate all observed cell trajectories
- 5) Extracting model parameters from real trajectories leads to self-consistent predictions

Cells under Constrains

Art by Renaud Chabrier www.renaudchabrier.com

Division under constrains

Fink, NCB, 2011 Lafaurie-Janvore, Science, 2013 Lancaster, Dev Cell, 2013

Migration under constrains

Faure-André, Science, 2008 Hawkins, PRL, 2009

Deconstructing the cell micro-environment

Lautenschlaeger and Piel, COCB, 2012

A reductionist approach to 3D migration

a) In vivo interstitial migration

b) In vitro migration in 3D

confinment

constriction

flow

rugosity

elasticity

Yanjun Liu

Maël Le Berre

Exerting force on the substrate: Momentum transfer under confinement

Adhesive: mesenchymal migration, protrusive, slow

Confined: amoeboid migration, contractile, fast

Chemneying (Malawista and de Boisfleury, CMC 2000 Lammerman et al., Nature 2008)

Hawkins et al., PRL, 2009

Chemneying: moving without adhering from Malawista and de Boisfleury to Sixt

Thin preparation of PMN leukocytes treated with EDTA

Malawista and de Boisfleury, PNAS 1997; Malawista et al. CMC 2000

Lämmermann et al., Nature 2008

Leukocytes need to be confined to reveal their migratory potential

No confinement

5 μm confinement

BMDCs migrating on FN coated glass surface

Leukocytes need to be confined to reveal their migratory potential

Micro-patterns and micro-channels: two simple tools with multiple applications

Micropatterns for migrating cells: the First World Cell Race (2011)

Movie: T. Vignault

Faster cells are also more persistent, revealing a coupling between the motor and the steering wheel

A model system for migration in a confined space: microchannels with sub-cellular dimension

Mice bone marrow derived dendritic cell (BMDC), phase contrast

<u>Faure-André, Science, 2008</u> Hawkins, PRL 2009 Heuze, Meth MB 2011 (also: Jacobelli, Nat Immunol 2010, Fernandez, Blood 2011, Moreau, Immunity 2012)

Microchannels for migrating amoeboid cells: Another race for immune cells?

Bone marrow derived dendritic cells from mice (BMDCs)

Amoeboid cells (here BMDCs) in side channels are faster than mesenchymal cells on adhesive lines although they do not move on adhesive lines

WCR cells on lines: **0.1 to 1 \mum/min**

h.Alv.M.Rha

h.Bre.E.Adc.6

BMDCS in channels: 1 to 20 μm/min

Faure-André et al., Science 2008

Amoeboid versus mesenchymal

Mesenchymal

Proteolysis dependent, high MMP activity

Low Rho-ROCK activity

Elongated morphology with lamellipodial protrusions

Strong attachment to ECM via focal adhesions

<u>Amoeboid</u>

Proteolysis independent, low MMP activity

High Rho-ROCK activity

Rounded morphology with membrane blebbing

High cellular contractility and cortical tension

Weak attachment to ECM

Elongated to Rounded Transition

Summary on Mesenchymal versus Amoeboid:

(see Sanz-Moreno and Marshall, COCB, 2010)

Elongated morphology/mesenchymal migration is favored by

- strong adhesion
- high protrusive activity (Rac1/Wave2/Arp2/3)

Rounded morphology/amoeboid migration is favored by

- low adhesion
- strong contractility (Rho1/ROCK/Formins/Myosin II)

Important point:

- On 2D substrates, both elongated and rounded migration are SLOW
- Inside 3D gels or in vivo, elongated cells are still SLOW (< $1\mu m/min$) and rounded cells are FAST (>1 $\mu m/min$)

WHY? CONFINEMENT!!

(read Totzluoglu et al. NCB 2013, E. Sahai Lab)

Migration under confinement: To adhere or not to adhere?

How cells exert force on their surrounding to move?

Mesenchymal

Amoeboid

Is it possible, by playing on adhesion, confinement, and contractility to induce mesenchymal cells to move like leukocytes?

Quantitative control of confinement and adhesion

(Cell confiner: see Le Berre et al. Int. Biol. 2012)

Primary Fibroblasts (NHDFs) on PLL-g-PEG-RGD/PII-g-PEG surfaces

NHDF morphology under confinement

NHDF migration under confinement

Is it truly a general phenomenon?

Cell lines assayed: NHDFs, HT29, RPE1, 3T3, MDA-MB231, HEK, HeLa

Fraction of A2 increases with contractility, while inhibiting contractility increases A1

Turning non motile HeLa cells into fast neutrophile-like cells by purely physical means

The fastest migrating HeLa cell ever: up to 10 μ m/min Movie: Yanjun Liu

The most famous neutrophile (Movie: Stossel)

HeLa cells adhesive no confinement

Adhesions (green) plus actin (red)

No confinement Fibronectine

Focal adhesions
Stress fibers

3 μm confinement 0% RGD No adhesions Flowing cortex

HeLa cells

Actin cytoskeleton: Lifeact-mcherry

No confinement 100% RGD

3 μm confinement 2% RGD

HeLa cells

Actin

Kymograph analysis

Retrograde flow analysis

Myosin motor: MYH9-GFP (Mysoin II A)

No confinement 100% RGD

3 μm confinement 2% RGD

HeLa cells

Kymograph analysis

Actin polymerisation

Actin polymerisation rate:

Div(Actin density x retrograde flow)

Focal adhesions
Stress fibers
Pulling
Slow motility (~0.1 µm/min)

No adhesions

Flowing cortex

Pushing

Fast motility (~5-10 μm/min)

Speed and polarity strongly

depend on contractility

No confinement 100% RGD

3 μm confinement 0% RGD

(for flow driven migration see also Poincloux et al. PNAS 2011 and Hawkins et al. Bioph J 2011)

These cells move like neutrophiles and even like... fish embryonic cells (under confinement)

(from Verena Ruprecht, CP Heisenberg lab, IST, Vienna)

It is really amoeboid migration: Dicty can do it too! (when treated with quinine)

Actin

And Inouye, JCS, 2001

A primitive and universal flow/friction/pressure driven migration?

One more migrating sausage... HeLa cells as a model system to study fast amoeboid migration!!

Conclusions

- 1) At high adhesion, cells migrate slower under confinement (lamelipodial/adhesion driven motility): they use their force to pull on the substrate, not to move
- 2) At low adhesion, cells migrate faster under confinement (amoeboid/friction driven motility), they use their force to contract, generating a pressure gradient
- 3) Mesenchymal cells moving under low adhesion/strong confinement display amoeboid morphology and behavior: HeLa as a model system for fast amoeboid migration!!

A phase diagram for non-adhesive cell migration?

But there is a limit to migration under confinement: the cell nucleus (check Wolf et al., JCB 2013)

The flowing cortex: A spontaneously polarizing motile state

Actin in MDA-MB231 cell migrating inside matrigel

Poincloux, PNAS 2011, Hawkins Biophys J 2011

Raphaël Voituriez (UPMC, Paris)

Rhoda Hawkins (Univ. Sheffield, UK)

The flowing cortex: A phase diagram of the motile states

$$\partial_x \left(\sigma^{\mathbf{n}} - \Pi \right) = \xi J_{\mathbf{p}}$$

 $\sigma^{\rm n} = \zeta \phi$ Active stress

 $\eta_{\rm p}\partial_x J_{\rm p}$ Passive stress

$$\xi J_{\rm p} = \xi \phi v_{\rm p}$$

$$\Pi = \alpha (\phi - \phi_0)^3 - \gamma \, \partial_x^2 \phi$$

Zeta: activity (contractility)

Xi: friction

Kd: depoly rate

General model (1D): Callan-Jones and Voituriez, N.J.Phys.2013

A reductionist approach to 3D migration

a) In vivo interstitial migration

b) In vitro migration in 3D

confinment

rugosity

elasticity

Constrictions in microchannels: a new tool to specifically assay the capacity of cells to deform their nucleus

Screening for constrictions sizes:

Length: L = 5; 10; 15; 20 μ m

Width: E=1; 1,5; 2; 2,5; 3; 3,5; 4; 5μm

L= 5 μ m; E= 1 μ m

 $L= 5 \mu m$; $E= 2 \mu m$

Bone marrow derived dednritic cells (BMDCs); Hoechst

The cell nucleus is limiting transmigration

Conclusions from the size screen:

2 µm gap

- DCs can pass down constrictions larger than 1 μm in width
- There is a sharp transition: most cells pass above 1.5 μm
- Cells are slowed down below 4 μm

Actin assembly around squeezed nucleus

BMDCs (Ii KO) in a 7μm channels with 15μm long and 2μm tickness constriction

This actin structure does not contain Myo II

Transmigration of iDCs depends on Hem1 and Arp2/3 but not on Myo II or formins

Does not depend either on the LINC complex or the lamina

Actin nucleation is specifically induced by the nucleus

This ring exists in vivo

Lifeact, Hoechst, LYVE (mouse ear explant, movie: Mattew Raab)

Conclusions

- 1) Below a minimal size, the nucleus becomes limiting and BMDCs use an Arp2/3 dependant MyoII independent mechanism to squeeze it
- 2) BMDCs can concentrate antigens via a Myosin II dependant filtering system and they do not push fluid in front of them ('viscous catching')
- 3) Geometric anisotropy is enough to bias cell migration, independently of adhesion, due to deformation of the visco-elastic cell body

A reductionist approach to 3D migration

a) In vivo interstitial migration

b) In vitro migration in 3D

constriction

flow

Mélanie Chabaud

Mélina Heuze

Mathieu Pinot

rugosity

elasticity

System

Microfluidic device: Normalization of direction and cell shape

Antigen uptake in vitro: DCs are filters And they do not push the fluid in front

Fate of internalized material

After 20-40min of exposure to the fluid-phase marker... DCs concentrate it in the lysosomal compartments

Eating a bead

A reductionist approach to 3D migration

a) In vivo interstitial migration

b) In vitro migration in 3D

flow

Yanjun Liu Maël Le Berre

Anisotropic friction: guiding cells with nonadhesive anistropic micro-structures

Nanofabrication: in collaboration with Y. Chen Lab, ENS Paris

Cells under tilted micro-pillars

 $20\,\mu m$ $30\,\mu m$

Tilted pillar →
PDMS spacer →
Glass coverslip →

Trajectory analysis reveals a robust biased migration

Whole population bias (50% boundary)

Simple model of an active Brownian particle in a ratchet potential

A simple model qualitatively captures the measured statistics on nuclear position

Conclusions

- 1) Below a minimal size, the nucleus becomes limiting and BMDCs use an Arp2/3 dependant MyoII independent mechanism to squeeze it
- 2) BMDCs can concentrate antigens via a Myosin II dependant filtering system and they do not push fluid in front of them ('viscous catching')
- 3) Geometric anisotropy is enough to bias cell migration, independently of adhesion, due to deformation of the visco-elastic cell body

Systems Biology of Cell Division and Cell Polarity

Acknowledgments

MICEMICO: migration under confinement

- Team of Ana-Maria Lennon (IC, Paris)
- Team of Raphael Voituriez (UPMC, Paris)
- Team of Vassili Soumelis (IC, Paris)
- Team of Danijela Vignjevic (IC, Paris)

Micro-fabrication/chemistry:

- Yong Chen (ENS Paris)
- Manuel Théry (CEA Grenoble)

Current funding

Universal law of cell migration:

- Stefan Wieser, Michael Sixt (IST, Austria)
- Verena Ruprecht, CP Heisenberg (IST)
- Nir Gov (Weizmann Institut, Israel)

Imaging:

- Imaging Platform PICT IBISA
- Nikon Imaging Center

Plasmids and cells

- Ina Poser (MPI-CBG, Dresden)
- Roland Wedlich-Söldner (MPI, Martinsried)
- more...

Former funding

This year cells will race inside micro-channels, to give a chance to amoeboid cells to win

Be FAST, PERSISTENT and SMART!

Beware of the dead-ends and may the best cell win!

To register or get more information: http://goo.gl/sk3PQ

