The making of a worm: genes, cells and the organism

baoz@mskcc.org

The Best Cancer Care. Anywhere.

C. elegans as a Model Organism

Nematode round worm worm

Courtesy of Allyson McCormick & Jim Thomas

The Invariant Cell Lineage of C. elegans

Goldstein Lab

Deppe et al, 1978, PNAS Schnabel et al, 1997, Dev Biol Henriksson et al, 2013 Nat Methods Boyle et al, 2006, BMC Bioinformatics Hamahashi et al, 2005, BMC Bioinformatics Bao et al, 2006, PNAS Giurumescu et al, 2013, Development Mace et al, 2013, G3 Chen et al, 2013, BMC Bioinformatics

(Systems) Biology of C. elegans

CCTTCTCAACAACAAC

Molecular Networks

Cellular Networks

The Invariant Cell Lineage of C. elegans

The Invariant Cell Lineage of C. elegans

Invariability of Embryogenesis

Differentiation

Proliferation

P₁

C

Е

MS

0 -

180min

P₂

P₃

pharynx/pha-4 muscle/hnd-1 X: cell death gut/elt-2

Cell Position

35 embryos aligned

number of cells

Migration

Moore et al 2013 Development

Automated Lineaging

30 plane every min for 7 hrs

Bao et al, 2006, PNAS; Murray et al, 2008, Nat Methods

Systematic Single-Cell Analysis: Gene Expression

http://epic.gs.washington.edu

Bob Waterston, UW

John Murray, UPenn

Murray et al, 2012, Genome Res

From Images to Mechanisms

Self-Renewal of the EMS Blastomere

SKN-1 Turnover Regulates self-renewal

HS SKN-1

From Terminal Cell Fates to Progenitors

 Pharynx
 Skin
 Neuron
 Muscle
 GUT

 PHA-4
 NHR-25
 CND-1
 HND-1
 ELT-2

Fate Transformations as Key Phenotype

wild type

mom-2/Wnt (RNAi)

penetrance pleiotropy primary site

Systematic Perturbation of Development

350 terminal cells

Du et al, 2015, Dev Cell

Canalized Landscape of Cell Lineage Differentiation

- Enriched types:
 - Normal fates used by other cells (homeotic transformations)
 - Patterns similar to normal fates

What do frequencies mean?

Trajectories of Cell Fate Differentiation

Alternative paths to MS

Inherent Propensity

When is There Room for Random Fate Decisions?

"Pure" fate switch genes are rare

Many pathways contribute to fate choice

Integrated Model

http://digital-development.org

Flexibility of Fate Restriction

Reproducible Cell Positions

Cell Position

Migration

Constant Neighbors

Reproducible Cell Positions

Constant Neighbors

Lab Members

Anthony Santella Pavak Shah Fan Li Yichi Xu Kris Barnes Hong Shao Raul Catena

Undergrad Assistants Doris Tang Katie Tran Braden Katzman Benjamin De Leon Allison Chen David Cohen

