Temporal regulation of the cell cycle in the Drosophila wing during metamorphosis

Buttitta Lab, University of Michigan

Distinct states of cell cycle exit:

Yiqin Ma

Kerry Flegel

Shyama Nandakumar

Drosophila metamorphosis – remarkably cool, and complicated

Cell shape/identity

Hair differentiation

Cell cycle changes

Morphological changes

The transition to G0 in the fly wing

DNA S-phase **Mitosis Oh APF** Proliferation (After Puparium Formation) 2h APF 18h 18h 6h APF time 18h APF 22h 20h Differentiation 24h APF 36h APF 24h 24h S-pase /neurons mitoses / neurons Adult

Temporal events are regulated by the hormone Ecdysone

Ashburner 1989

How is ecdysone signaling connected to the cell cycle?

How is ecdysone signaling connected to the cell cycle?

Y. Guo, K. Flegel

Schubiger and Palka

The transition to G0 in the fly wing

DNA S-phase **Mitosis Oh APF** Proliferation (After Puparium Formation) 2h APF 18h 18h 6h APF time 18h APF 22h 20h Differentiation 24h APF 36h APF 24h 24h S-pase /neurons mitoses / neurons Adult

Two stages of G₀ imply multiple levels of cell cycle shut down

How do we manipulate cell cycle exit?

Two stages of G₀ imply multiple levels of cell cycle shut down

Yiqin Ma

Common "lockdown" models

Key cell cycle genes recruited to periphery/constitutive heterochromatin VanSteensel Lab

Key cell cycle genes silenced by PRC or HP1 heterochromatin formation

Dynlacht, MacLellan Labs

Origins become inaccessible Crescenzi Lab

Regulatory element accessibility + RNAseq during metamorphosis

FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements)

Chromatin accessibility changes at the nab locus during larval->pupal stages

UNCHANGED

Distribution of Distance from Peaks to Nearest TSS

DYNAMIC AT 24H

Distribution of Distance from Peaks to Nearest TSS

Distribution of Distance from Peaks to Nearest TSS

DYNAMIC AT 44H

Chromatin accessibility changes at cell cycle genes after cell cycle exit

...but few chromatin accessibility changes at most other cell cycle genes

Cyclin B

PCNA

CycA

Chromatin accessibility changes at the few "Generals", not the many "Soldiers"

Adding exogenous CycE+Stg to E2F bypasses G₀

Bypassing G0 in the fly wing using E2F+CycE+Stg > 44 hr APF

What drives the changes in accessibility at cell cycle genes in G0?

Many questions remain:

- What happens to accessibility when we bypass G0? (cause or consequence?)
- How does Mi-2 impact chromatin accessibility at cell cycle genes?
- Does preventing changes in accessibility lead to a more flexible G0 state?
- Can we reverse an established G0 state and re-open the inaccessible spots?

Acknowledgements

<u>Buttitta Lab</u> Kerry Flegel Rosaline Sun Yiqin Ma Olga Grushko Shyama Nandakumar

<u>Reagents:</u> Bloomington Stock Center Bob Duronio Collaborators: Dan McKay (FAIRE-seq)

<u>Funding:</u> American Cancer Society NIH NIA U. Michigan BSSP Award

