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P granules resemble liquid-like drops

P granules form by liquid phase separation that 
can be reversibly affected by temperature
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a robust regulator protein 
MEX-5 dissolves drops at 
the A side
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---> in-vitro
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with Shamba Saha

hypothesis for P granules positioning 
 in a MEX-5 gradient

MEX-5 at the A side binds mRNA,  

reducing locally the demixing affinity  

   --> droplet dissolution at A side 

   --> while at the P side, 

 PGL can bind mRNA leading to stable drops

A P A P
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Polarity protein MEX-5 positions liquid-like P granules in C.

elegans embryo by inhibiting mRNA-dependent P granule

assembly

Supplementary Material: Theoretical Model

To address the question whether the ability of Mex-5 to bind mRNA could position

PGL-3 droplets to regions of low Mex-5 we derived a theoretical model of PGL-3 phase

separation, mRNA binding and interactions with Mex-5. In section A, we present the

model used to describe phase separation of PGL-3 and PGL-3 bound to mRNA (in short:

PGL-3:mRNA) from water. Then we discuss in section B how this model can be used to

fit the experimentally measured concentration di↵erence inside and outside of droplets, �I,

and how to extract the corresponding interaction parameters. In section C we derive the

dynamical equations for phase separation and mRNA binding processes in presence of Mex-5

and discuss the boundary conditions and parameters used in the numerical computations.

We abbreviate PGL-3, PGL:mRNA and mRNA as P, PR and R. Mex-5 and Mex-5:mRNA

are indicated as M and MR in the following.

A. Theoretical model for phase separation of PGL-3 and PGL-3:mRNA

Phase separation occurs when molecular interactions between di↵erent components dom-

inate entropic e↵ects which tend to keep the systems in a mixed state. This competition

can be captured by the Flory-Huggins (FH) model on a coarse grained level. For a fluid

consisting of N di↵erent components, the homogenous FH free-energy density is:
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where C
i

denotes the chain length, i.e. the number of monomers each of volume a

3. The

molecular interactions between component i and k are characterized by FH interaction

parameters �
ij

. The logarithmic contributions in Eq. (1) are related to the system’s mixing

entropy. The internal energy for component i is denoted as !
i

and is measured in multiples

of k
b

T . In the FH free energy Eq. (1), there are N �1 independent volume fractions �
i

since

volume conservation enforces �
N

= 1�
P

N�1
i=1 �
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In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.
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Thus the contribution to the free-energy density of the regulating components M , R and
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. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is
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The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration
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Model for PGL-3 phase separation in a MEX-5 gradient

Polarity protein MEX-5 positions liquid-like P granules in C.

elegans embryo by inhibiting mRNA-dependent P granule

assembly

Supplementary Material: Theoretical Model

To address the question whether the ability of Mex-5 to bind mRNA could position

PGL-3 droplets to regions of low Mex-5 we derived a theoretical model of PGL-3 phase

separation, mRNA binding and interactions with Mex-5. In section A, we present the

model used to describe phase separation of PGL-3 and PGL-3 bound to mRNA (in short:

PGL-3:mRNA) from water. Then we discuss in section B how this model can be used to

fit the experimentally measured concentration di↵erence inside and outside of droplets, �I,

and how to extract the corresponding interaction parameters. In section C we derive the

dynamical equations for phase separation and mRNA binding processes in presence of Mex-5

and discuss the boundary conditions and parameters used in the numerical computations.

We abbreviate PGL-3, PGL:mRNA and mRNA as P, PR and R. Mex-5 and Mex-5:mRNA

are indicated as M and MR in the following.

A. Theoretical model for phase separation of PGL-3 and PGL-3:mRNA

Phase separation occurs when molecular interactions between di↵erent components dom-

inate entropic e↵ects which tend to keep the systems in a mixed state. This competition

can be captured by the Flory-Huggins (FH) model on a coarse grained level. For a fluid

consisting of N di↵erent components, the homogenous FH free-energy density is:

f

(N)
FH =

k

b

T

a

3


NX

i=1

�

i

C
i

(ln�
i

+ !

i

) +
X

i,j:i<j

�

ij

�

i

�

j

,

�
, (1)

where C
i

denotes the chain length, i.e. the number of monomers each of volume a

3. The

molecular interactions between component i and k are characterized by FH interaction

parameters �
ij

. The logarithmic contributions in Eq. (1) are related to the system’s mixing

entropy. The internal energy for component i is denoted as !
i

and is measured in multiples

of k
b

T . In the FH free energy Eq. (1), there are N �1 independent volume fractions �
i

since

volume conservation enforces �
N

= 1�
P

N�1
i=1 �

i

.

Polarity protein MEX-5 positions liquid-like P granules in C.

elegans embryo by inhibiting mRNA-dependent P granule

assembly

Supplementary Material: Theoretical Model

To address the question whether the ability of Mex-5 to bind mRNA could position

PGL-3 droplets to regions of low Mex-5 we derived a theoretical model of PGL-3 phase

separation, mRNA binding and interactions with Mex-5. In section A, we present the

model used to describe phase separation of PGL-3 and PGL-3 bound to mRNA (in short:

PGL-3:mRNA) from water. Then we discuss in section B how this model can be used to

fit the experimentally measured concentration di↵erence inside and outside of droplets, �I,

and how to extract the corresponding interaction parameters. In section C we derive the

dynamical equations for phase separation and mRNA binding processes in presence of Mex-5

and discuss the boundary conditions and parameters used in the numerical computations.

We abbreviate PGL-3, PGL:mRNA and mRNA as P, PR and R. Mex-5 and Mex-5:mRNA

are indicated as M and MR in the following.

A. Theoretical model for phase separation of PGL-3 and PGL-3:mRNA

Phase separation occurs when molecular interactions between di↵erent components dom-

inate entropic e↵ects which tend to keep the systems in a mixed state. This competition

can be captured by the Flory-Huggins (FH) model on a coarse grained level. For a fluid

consisting of N di↵erent components, the homogenous FH free-energy density is:

f

(N)
FH =

k

b

T

a

3


NX

i=1

�

i

C
i

(ln�
i

+ !

i

) +
X

i,j:i<j

�

ij

�

i

�

j

,

�
, (1)

where C
i

denotes the chain length, i.e. the number of monomers each of volume a

3. The

molecular interactions between component i and k are characterized by FH interaction

parameters �
ij

. The logarithmic contributions in Eq. (1) are related to the system’s mixing

entropy. The internal energy for component i is denoted as !
i

and is measured in multiples

of k
b

T . In the FH free energy Eq. (1), there are N �1 independent volume fractions �
i

since

volume conservation enforces �
N

= 1�
P

N�1
i=1 �

i

.
2

In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.

1� �

R

� �

M

� �

MR

= �

P

+ �

PR

+ �

W

' 1 . (2)

Thus the contribution to the free-energy density of the regulating components M , R and

MR are

freg = k

b

T

X

i={M,R,MR}

c

i

(ln c
i

⌫

i

+ !

i

) , (3a)

where c

i

denotes concentration and ⌫

i

= C
i

a

3 the molecular volume; the corresponding

volume fraction �

i

= ⌫

i

c

i

. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is

f

(3)
FH =

k

b

T

a

3


�

S

(ln�
S

+ !

S

) + �

P

(ln�
P

+ !

P

) + �

PR

(ln�
PR

+ !

PR

)

+ �

P,W

�

P

�

W

+ �

PR,W

�

PR

�

W

+ �

PR,P

�

PR

�

P

�
. (3b)

The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

2

In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.

1� �

R

� �

M

� �

MR

= �

P

+ �

PR

+ �

W

' 1 . (2)

Thus the contribution to the free-energy density of the regulating components M , R and

MR are

freg = k

b

T

X

i={M,R,MR}

c

i

(ln c
i

⌫

i

+ !

i

) , (3a)

where c

i

denotes concentration and ⌫

i

= C
i

a

3 the molecular volume; the corresponding

volume fraction �

i

= ⌫

i

c

i

. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is

f

(3)
FH =

k

b

T

a

3


�

S

(ln�
S

+ !

S

) + �

P

(ln�
P

+ !

P

) + �

PR

(ln�
PR

+ !

PR

)

+ �

P,W

�

P

�

W

+ �

PR,W

�

PR

�

W

+ �

PR,P

�

PR

�

P

�
. (3b)

The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

2

In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.

1� �

R

� �

M

� �

MR

= �

P

+ �

PR

+ �

W

' 1 . (2)

Thus the contribution to the free-energy density of the regulating components M , R and

MR are

freg = k

b

T

X

i={M,R,MR}

c

i

(ln c
i

⌫

i

+ !

i

) , (3a)

where c

i

denotes concentration and ⌫

i

= C
i

a

3 the molecular volume; the corresponding

volume fraction �

i

= ⌫

i

c

i

. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is

f

(3)
FH =

k

b

T

a

3


�

S

(ln�
S

+ !

S

) + �

P

(ln�
P

+ !

P

) + �

PR

(ln�
PR

+ !

PR

)

+ �

P,W

�

P

�

W

+ �

PR,W

�

PR

�

W

+ �

PR,P

�

PR

�

P

�
. (3b)

The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

2

In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.

1� �

R

� �

M

� �

MR

= �

P

+ �

PR

+ �

W

' 1 . (2)

Thus the contribution to the free-energy density of the regulating components M , R and

MR are

freg = k

b

T

X

i={M,R,MR}

c

i

(ln c
i

⌫

i

+ !

i

) , (3a)

where c

i

denotes concentration and ⌫

i

= C
i

a

3 the molecular volume; the corresponding

volume fraction �

i

= ⌫

i

c

i

. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is

f

(3)
FH =

k

b

T

a

3


�

S

(ln�
S

+ !

S

) + �

P

(ln�
P

+ !

P

) + �

PR

(ln�
PR

+ !

PR

)

+ �

P,W

�

P

�

W

+ �

PR,W

�

PR

�

W

+ �

PR,P

�

PR

�

P

�
. (3b)

The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

2

In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.

1� �

R

� �

M

� �

MR

= �

P

+ �

PR

+ �

W

' 1 . (2)

Thus the contribution to the free-energy density of the regulating components M , R and

MR are

freg = k

b

T

X

i={M,R,MR}

c

i

(ln c
i

⌫

i

+ !

i

) , (3a)

where c

i

denotes concentration and ⌫

i

= C
i

a

3 the molecular volume; the corresponding

volume fraction �

i

= ⌫

i

c

i

. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is

f

(3)
FH =

k

b

T

a

3


�

S

(ln�
S

+ !

S

) + �

P

(ln�
P

+ !

P

) + �

PR

(ln�
PR

+ !

PR

)

+ �

P,W

�

P

�

W

+ �

PR,W

�

PR

�

W

+ �

PR,P

�

PR

�

P

�
. (3b)

The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

2

In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.

1� �

R

� �

M

� �

MR

= �

P

+ �

PR

+ �

W

' 1 . (2)

Thus the contribution to the free-energy density of the regulating components M , R and

MR are

freg = k

b

T

X

i={M,R,MR}

c

i

(ln c
i

⌫

i

+ !

i

) , (3a)

where c

i

denotes concentration and ⌫

i

= C
i

a

3 the molecular volume; the corresponding

volume fraction �

i

= ⌫

i

c

i

. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is

f

(3)
FH =

k

b

T

a

3


�

S

(ln�
S

+ !

S

) + �

P

(ln�
P

+ !

P

) + �

PR

(ln�
PR

+ !

PR

)

+ �

P,W

�

P

�

W

+ �

PR,W

�

PR

�

W

+ �

PR,P

�

PR

�

P

�
. (3b)

The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

2

In our specific example of the competition about mRNA, we have 6 components: the

components which are known to demix from the solvent water W , i.e. P and PR, and M , R

andMR which are assumed to regulate demixing via binding processes. SinceM and R (and

the product MR) are not known to demix in-vivo and in-vitro, we would like to approximate

Eq. (1) and treat the regulating components as dilute, �
i

⌧ 1 for i 2 {M,R,MR}, such

that interactions with and between each regulating component are negligible, i.e.

1� �

R

� �

M

� �

MR

= �

P

+ �

PR

+ �

W

' 1 . (2)

Thus the contribution to the free-energy density of the regulating components M , R and

MR are

freg = k

b

T

X

i={M,R,MR}

c

i

(ln c
i

⌫

i

+ !

i

) , (3a)

where c

i

denotes concentration and ⌫

i

= C
i

a

3 the molecular volume; the corresponding

volume fraction �

i

= ⌫

i

c

i

. Within the aforementioned approximation, the contribution to

the free energy density by the demixing components R, PR and W is

f

(3)
FH =

k

b

T

a

3


�

S

(ln�
S

+ !

S

) + �

P

(ln�
P

+ !

P

) + �

PR

(ln�
PR

+ !

PR

)

+ �

P,W

�

P

�

W

+ �

PR,W

�

PR

�

W

+ �

PR,P

�

PR

�

P

�
. (3b)

The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

PGL-3

MEX-5

mRNA

water
re

gu
la

tin
g

co
m

po
ne

nt
s

de
m

ix
in

g 
co

m
po

ne
nt

s



Model for PGL-3 phase separation in a MEX-5 gradient

phase separation and chemical reactions are in equilibrium. Afterwards, we
use our model to calculate the total fluorescence observed in droplets in the
presence of mRNA and MEX-5 and find a qualitative agreement with in vitro
measurements. In section 3 we discuss how this model can fit the experimen-
tally measured concentration di↵erence inside and outside of droplets, �I

[intensity of luminescence/volume] as a function of the total concentration of
PGL-3, and how to extract the corresponding interaction parameters from
such fits. Moreover, we present evidence that the experimental system is
close to phase separation equilibrium. In section 4 we derive the dynamical
equations for phase separation and mRNA binding processes in presence of
MEX-5, which only relies on the assumption of local equilibrium. Moreover,
we discuss the boundary conditions and parameters used in the numerical
computations and give more details on the Movies S6 and S7. We abbreviate
PGL-3, PGL:mRNA and mRNA as P, PR and R. MEX-5 and MEX-5:mRNA
are indicated as M and MR in the following.

1 Theoretical model of PGL-3 and PGL-3:mRNA

phase separation

Phase separation occurs when molecular interactions between di↵erent com-
ponents dominate entropic e↵ects which tend to keep the systems in a mixed
state. This competition can be captured by the Flory-Huggins model on a
coarse grained level. For a fluid consisting of N di↵erent components, the
homogenous Flory-Huggins free-energy density is:

f

(N)
FH =

kbT

⌫

 NX

i=1

�i

ni
(ln�i + !i) +

X

i,j:i<j

�ij�i�j ,

�
, (1)

where ⌫ is a solvent molecule volume and ni⌫ = ⌫i the volume of a molecule
of species i. The molecular interactions between component i and k are
characterized by interaction parameters �ij. The logarithmic contributions
in Eq. (1) are related to the system’s mixing entropy. The internal energy
for component i is denoted as !i and is measured in multiples of kbT . In the
free energy Eq. (1), there are N � 1 independent volume fractions �i since
volume conservation enforces

�N = 1�
N�1X

i=1

�i . (2)

In our specific example of the competition for mRNA, we have 6 compo-
nents (N = 6): the components which are known to demix from the solvent
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The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to
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Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).
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The free energy density above describes demixing of P and/or PR from the solvent water
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The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to

f

(6)
FH ' f

(3)
FH + freg =: f . (3c)

Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

(water) W , i.e. P and PR, and M , R and MR which are assumed to regulate
demixing via binding processes. Since M and R (and the product MR) are
not known to demix neither in vivo nor in vitro, we will approximate Eq. (1)
and treat the regulating components as dilute, �i ⌧ 1 for i 2 {M,R,MR},
such that interactions with and between each regulating component are neg-
ligible, i.e.
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Thus the contribution to the free-energy density of the regulating components
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the corresponding volume fraction is �i = ⌫ici, where ci denotes the concen-
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The free energy density above describes demixing of P and/or PR from water
W . In summary, we have approximated the free energy density Eq. (1) for
N = 6 to

f

(3)
FH + freg = f . (6)

Please note that the approximated free energy density f for six components
depends only on five independent volume fractions due to volume conserva-
tion, r.h.s. of Eq. (3).

2 Theory of PGL-3 phase separation and mRNA

binding and comparison with experiments

In this section we discuss the case where phase separation and chemical
reactions are in equilibrium. Moreover, let us first consider the situation
where M and MR are absent and R is homogenous. For a given PGL-3
concentration the binding to mRNA,

P +R

*

)

PR , (7)

3

phase separation and chemical reactions are in equilibrium. Afterwards, we
use our model to calculate the total fluorescence observed in droplets in the
presence of mRNA and MEX-5 and find a qualitative agreement with in vitro
measurements. In section 3 we discuss how this model can fit the experimen-
tally measured concentration di↵erence inside and outside of droplets, �I

[intensity of luminescence/volume] as a function of the total concentration of
PGL-3, and how to extract the corresponding interaction parameters from
such fits. Moreover, we present evidence that the experimental system is
close to phase separation equilibrium. In section 4 we derive the dynamical
equations for phase separation and mRNA binding processes in presence of
MEX-5, which only relies on the assumption of local equilibrium. Moreover,
we discuss the boundary conditions and parameters used in the numerical
computations and give more details on the Movies S6 and S7. We abbreviate
PGL-3, PGL:mRNA and mRNA as P, PR and R. MEX-5 and MEX-5:mRNA
are indicated as M and MR in the following.

1 Theoretical model of PGL-3 and PGL-3:mRNA

phase separation

Phase separation occurs when molecular interactions between di↵erent com-
ponents dominate entropic e↵ects which tend to keep the systems in a mixed
state. This competition can be captured by the Flory-Huggins model on a
coarse grained level. For a fluid consisting of N di↵erent components, the
homogenous Flory-Huggins free-energy density is:
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(ln�i + !i) +
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, (1)

where ⌫ is a solvent molecule volume and ni⌫ = ⌫i the volume of a molecule
of species i. The molecular interactions between component i and k are
characterized by interaction parameters �ij. The logarithmic contributions
in Eq. (1) are related to the system’s mixing entropy. The internal energy
for component i is denoted as !i and is measured in multiples of kbT . In the
free energy Eq. (1), there are N � 1 independent volume fractions �i since
volume conservation enforces

�N = 1�
N�1X

i=1

�i . (2)

In our specific example of the competition for mRNA, we have 6 compo-
nents (N = 6): the components which are known to demix from the solvent
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The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to
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Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration
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The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to
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Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

Model for PGL-3 phase separation in a MEX-5 gradient

(water) W , i.e. P and PR, and M , R and MR which are assumed to regulate
demixing via binding processes. Since M and R (and the product MR) are
not known to demix neither in vivo nor in vitro, we will approximate Eq. (1)
and treat the regulating components as dilute, �i ⌧ 1 for i 2 {M,R,MR},
such that interactions with and between each regulating component are neg-
ligible, i.e.
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Thus the contribution to the free-energy density of the regulating components
M , R and MR are
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the corresponding volume fraction is �i = ⌫ici, where ci denotes the concen-
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The free energy density above describes demixing of P and/or PR from water
W . In summary, we have approximated the free energy density Eq. (1) for
N = 6 to
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Please note that the approximated free energy density f for six components
depends only on five independent volume fractions due to volume conserva-
tion, r.h.s. of Eq. (3).

2 Theory of PGL-3 phase separation and mRNA

binding and comparison with experiments

In this section we discuss the case where phase separation and chemical
reactions are in equilibrium. Moreover, let us first consider the situation
where M and MR are absent and R is homogenous. For a given PGL-3
concentration the binding to mRNA,
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The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to
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Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).
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The free energy density above describes demixing of P and/or PR from the solvent water

W . In summary, we simplfied the free energy density Eq. (1) for M = 6 to
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Please note that the approximated free energy density f for six components depends only

on five independent volume fractions due to volume conservation, r.h.s. of Eq. (2).

B. PGL-3 phase separation and mRNA binding and fitting the experimental �I

data

To fit the experimentally determined data of the concentrations di↵erence �I [light in-

tensity/volume] of PGL-3 inside and outside of drops for varying total PGL-3 concentration

3

c

T
P

, let us consider the situation where M and MR are absent and R is homogenous. For a

given PGL-3 concentration the binding to mRNA,

P +R ⌦ PR , (4)

defines a corresponding concentration of PGL-3:mRNA. At equilibrium, this relation can be

represented as a specific path in the two-dimensional phase diagram and can be derived by

from µ

P

+µ

R

= µ

PR

, where µ
i

= @f

@ci
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i

@f

@�i
denotes the chemical potential. Neglecting the

impact of molecular interactions on the binding constants, one obtains
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Since the amount of total mRNA concentration c

T
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is constant, the specific path

is given by
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T
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1 + KPR
cP

. (6)

The specific path is shown in the phase diagram; see main text, Figure 6B.

The binodal lines in the phase diagram can be computed by finding the convex hull to

the free energy density Eq. (3c) using qhull (www.qhull.org, [1]). From the binodal lines

we then determine the tie lines which connect the concentrations inside and outside of the

coexisting phases. Phases coexist when the chemical potentials are equal.

In the absence of mRNA, c
PR

= 0, and

�I = I0(c
in

P
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) , (7)

where I0 is a constant relating luminescence and concentration of PGL-3, cin
P

and c
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are

concentrations inside and outside of the coexisting phases connected by a tie line at pre-

scribed concentration c
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because in the experiments PGL-3 is labeled independent of its binding to mRNA. In ad-

dition, we also included a weight factor � since luminescence could be weakly a↵ected by

mRNA binding [2]. For the fit presented in the main text, we use � = 2. Please note that

the value of � has no qualitative impact on �I (Figure 1), however, it allows to obtain

a quantitative agreement with the experimental data. We checked that the used value is

5

we obtain the interaction parameters from the fit shown in Table I, which are quantitatively

similar to demixing polymers in water [3, 4].

Because P and PR have a molecular volume that is about a factor of ⇠ 2 · 104 larger

than water, the interaction parameters are close to the minimal critical value, �
c

= 0.5 +

C�1/2 + (2C)�1. However, by this relationship we can estimate the interaction parameters

for the case of a solvent of roughly equal molecular volume, e.g. the protein environment

in the cell. For large C, �
c

' 0.5 + C�1/2. Reverting the scaling, gives �

PR,W

⇡ 2.2 and

�

P,W

⇡ 1.4. Please note that these absolute values only serve as rough estimates for the

interaction parameters of P and PR in a cellular enviroment. In our later dynamical model

(see next section), where we test whether the ability of Mex-5 to bind mRNA could position

PGL-3 droplets to regions of low Mex-5, we use the ratio of these interaction parameters,

i.e. �
PR,W

/�

P,W

⇡ 1.6, as input. The absolute values of the interaction parameters mostly

determine the threshold concentration above phase separation occurs, while the inequality

�

PR,W

> �

P,W

is an important qualitative precondition for the dissolution of PGL-3 droplets

in regions of high Mex-5.

C. Dynamical equations and extension by Mex-5 binding

To derive the dynamical equations we add (in addition to P + R ⌦ PR) the following

Mex-5 binding processes to our model:

M +R ⌦ MR , (9)

M + PR ⌦ MR + P . (10)
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regulation via binding:

and binding constant are 
know from experiments

Model for PGL-3 phase separation in a MEX-5 gradient

(water) W , i.e. P and PR, and M , R and MR which are assumed to regulate
demixing via binding processes. Since M and R (and the product MR) are
not known to demix neither in vivo nor in vitro, we will approximate Eq. (1)
and treat the regulating components as dilute, �i ⌧ 1 for i 2 {M,R,MR},
such that interactions with and between each regulating component are neg-
ligible, i.e.

1� �R � �M � �MR = �P + �PR + �W ' 1 . (3)

Thus the contribution to the free-energy density of the regulating components
M , R and MR are

freg = kbT

X

i={M,R,MR}

ci (ln ci⌫i + !i) , (4)

the corresponding volume fraction is �i = ⌫ici, where ci denotes the concen-
tration of species i. Within the aforementioned approximation, the contri-
bution to the free energy density by the demixing components R, PR and W
is

f

(3)
FH =

kbT
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
�W (ln�W + !W ) +

�P

nP
(ln�P + !P ) +

�PR

nPR
(ln�PR + !PR)

+ �P,W �P�W + �PR,W �PR�W + �PR,P �PR�P

�
. (5)

The free energy density above describes demixing of P and/or PR from water
W . In summary, we have approximated the free energy density Eq. (1) for
N = 6 to

f

(3)
FH + freg = f . (6)

Please note that the approximated free energy density f for six components
depends only on five independent volume fractions due to volume conserva-
tion, r.h.s. of Eq. (3).

2 Theory of PGL-3 phase separation and mRNA

binding and comparison with experiments

In this section we discuss the case where phase separation and chemical
reactions are in equilibrium. Moreover, let us first consider the situation
where M and MR are absent and R is homogenous. For a given PGL-3
concentration the binding to mRNA,

P +R

*

)

PR , (7)
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given PGL-3 concentration the binding to mRNA,

P +R ⌦ PR , (4)

defines a corresponding concentration of PGL-3:mRNA. At equilibrium, this relation can be

represented as a specific path in the two-dimensional phase diagram and can be derived by
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, where µ
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denotes the chemical potential. Neglecting the
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Since the amount of total mRNA concentration c

T
R

= c

R

+ c

PR

is constant, the specific path

is given by

c

PR

' c

T
R

1 + KPR
cP

. (6)

The specific path is shown in the phase diagram; see main text, Figure 6B.

The binodal lines in the phase diagram can be computed by finding the convex hull to

the free energy density Eq. (3c) using qhull (www.qhull.org, [1]). From the binodal lines

we then determine the tie lines which connect the concentrations inside and outside of the

coexisting phases. Phases coexist when the chemical potentials are equal.

In the absence of mRNA, c
PR

= 0, and

�I = I0(c
in

P

� c

out

P

) , (7)

where I0 is a constant relating luminescence and concentration of PGL-3, cin
P

and c

out

P

are

concentrations inside and outside of the coexisting phases connected by a tie line at pre-

scribed concentration c

T
P

= c

P

+ c

PR

. In the presence of mRNA,

�I = I0(c
in

P

+ � c

in

PR

� c

out

P

� � c

out

PR

) , (8)

because in the experiments PGL-3 is labeled independent of its binding to mRNA. In ad-

dition, we also included a weight factor � since luminescence could be weakly a↵ected by

mRNA binding [2]. For the fit presented in the main text, we use � = 2. Please note that

the value of � has no qualitative impact on �I (Figure 1), however, it allows to obtain

a quantitative agreement with the experimental data. We checked that the used value is

consider PGL-3 and mRNA only
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