Fluid flows shaping transport networks

Karen Alim

Biological Physics and Morphogenesis Max Planck Institute for Dynamics and Self-Organization

2nd August 2019

Fluid-filled networks abundant

Animals

Plants

Flows are information

tube wall fluid signalling molecule

Flows are information

Flow control

Adaptability

Topology

Flow control

Adaptability

Topology

Model organism is network-shaped giant cell

Physarum polycephalum

Model organism is network-shaped giant cell

Physarum polycephalum

- Actin cortex as tube wall
- Contracting tubes drive cytoplasm flow

Model organism is network-shaped giant cell

Physarum polycephalum

- Actin cortex as tube wall
- Contracting tubes drive cytoplasm flow

Contraction wavelength scales with network size

Contraction wavelength scales with network size

Peristaltic wave for efficient transport by Taylor dispersion

Alim, Amselem, Peaudecerf, Brenner, Pringle PNAS (2013)

Tube radii are patterned to enhance transport

Sophie Marbach

Uniform radii

Measured radii

Pruning to increase Taylor dispersion

Simulation

Flows are information

tube wall fluid signalling molecule

How does information propagate?

Natalie Andrew

Stimulus spread marked by increase in amplitude

Signal way slower than elastic wave or action pot.

comparison of propagation speed of possible mechanisms

Signal way slower than elastic wave or action pot.

comparison of propagation speed of possible mechanisms

Flows are information

Jean-Daniel Julien

re-capture of Calcium drives relaxation

$$\frac{\partial C}{\partial t} = 2\pi R \left[p_c \left(1 + \frac{R - R^0}{\epsilon_c} \right) - d_c \frac{C}{\pi R^2} \right]$$

contractions drive fluid flow

$$\bar{u} = -\frac{R^2}{8\mu}\frac{\partial}{\partial z}\left(\sigma_e + \sigma_C\right)$$

$$\frac{\partial R^2}{\partial t} = -\frac{\partial}{\partial z} \left(R^2 \bar{u} \right)$$

 ∂t

Oscillations predicted in physical parameter regime

Phase diagram

Traveling wave

Traveling wave predicted in physical parameter regime

Phase diagram

Traveling wave

Traveling wave scales beyond intrinsic wavelength

Closed tube

Traveling wave scales beyond intrinsic wavelength

Robust scaling in growing tubes

higher net flow - longer scaling

- Scaling up to 7x intrinsic wavelength
- Scaling limit now
 4.7cm

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

Topology

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

Topology

Light induces localized pruning

Felix Bäuerle

Bäuerle, Alim, submitted (2019)

Can overtone change transport?

 Waveform known to adapt under stimuli, but function is missing

> Baranowski Z., et al. Cell Biol. Int. Repts.(1982) Mori et al. Protoplasma (1986)

Dominant wave and one overtone at work

Phase between modes changes tube occlusion

Assume two periodic contraction waves around a baseline

 $H_1(\xi) = H_0 + A_1 \cos(2\pi\xi)$ $H_{1+2}(\xi, \vartheta) = H_0 + A_1 \cos(2\pi\xi) + A_2 \cos(4\pi\xi + \vartheta)$

 $\xi = x/L - t/T$

Deformation energy

$$U_{el}(H) = \frac{E}{2} \int \left(\frac{H - H_0}{H_0}\right)^2 dA$$

Assume equal energy for both waves

$$U_{el}(H_1) = U_{el}(H_{1+2}) \qquad \Rightarrow A_2 = -\frac{3}{2} \frac{A_1^2}{H_0} \cos(\vartheta)$$

Bäuerle, Alim, submitted (2019)

Phase between modes changes increases flow 25% at no cost

Assume two periodic contraction waves around a baseline

 $H_{1}(\xi) = H_{0} + A_{1}\cos(2\pi\xi)$ $H_{1+2}(\xi,\vartheta) = H_{0} + A_{1}\cos(2\pi\xi) + A_{2}\cos(4\pi\xi + \vartheta)$

 $\xi = x/L - t/T$

Deformation energy

 $U_{el}(H) = \frac{E}{2} \int \left(\frac{H - H_0}{H_0}\right)^2 dA$

Assume equal energy for both waves

$$U_{el}(H_1) = U_{el}(H_{1+2}) \qquad \Rightarrow A_2 = -\frac{3}{2} \frac{A_1^2}{H_0} \cos(\vartheta)$$

25% increase in flow at constant cost

Quantifying phase shift in data

- Contraction wave as a discrete sample
- Filtering out the corresponding frequency bands
- Stepwise fitting of phase to the given waveform

 $\Rightarrow \Delta \vartheta$ in Physarum

Non-optimal pumping without light stimulus

non-optimal phase difference in line with forced elastic tube

Bäuerle, Alim, submitted (2019)

Phase-shift between modes drives optimal pumping

Light might allow mechanically for stress-stiffening

Bäuerle, Alim, submitted (2019)

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

Increase transport/flux/absorption

Topology

e	0.0 s	(11	
	2	2	5		7
N.	C	3		2	T
-		X		1	Pr-

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

- Increase transport/flux/absorption
- Self-organised optimization

Topology

-	0.0 s	l		
	J)	r	$\overline{\gamma}$
3		Y	7	T
-		2)\	P.

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

- Increase transport/flux/absorption
- Self-organised optimization

Topology

- Stabilize flow patterns
- Loops increase overall flow

a	0.0 s	U			
4	2	\mathcal{A}	5	1	7
	C	3			IL P
1		K			

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

- Increase transport/flux/absorption
- Self-organised optimization

Topology

- Stabilize flow patterns
- Loops increase overall flow

Encoding memory in morphology

Mirna Kramar

Encoding memory in morphology

Mirna Kramar

Stimulus encodes hierarchy

Dilation spreads by flow from stimulus site

Characteristic dynamics suggest tube softening

Model of tube softening by advected agent works!

- Stimulus releases softening agent
- Softening agent advected and degraded over time

$$E = E_0 - \delta E \frac{\langle c \rangle}{\langle c_0 \rangle + \langle c \rangle}$$

0.0) s	l	7- U	
1		Ì		=
1		5		R
-		2)(24

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

- Increase transport/flux/absorption
- Self-organised optimization

Topology

- Stabilize flow patterns
- Loops increase overall flow

Hierarchy

• Store information about history of events

e	0.0 s	l	75 N	
1	J)		\equiv
3	C	Y		R
-	-	Z)(

Flow control

- Flows scale with network size
- Long-ranged coordination via transport

Adaptability

- Increase transport/flux/absorption
- Self-organised optimization

Topology

- Stabilize flow patterns
- Loops increase overall flow

- Store information about history of events
- Memory to function, problem solving

Experiment C Theory

Post-docs

Natalie Andrew Jean-Daniel Julien Philipp Fleig Agnese Codutti

PhD students

Jason Khadka Felix Bäuerle Mirna Kramar João Ramos Komal Bhattacharyya

Master students

Franz Kaiser Felix Meigel Noah Ziethen Lisa Schick Björn Kscheschinski

Bachelor students

Nico Schramma Leonie Bastin Carl Becker Leonie Kemeter

Interns

Sophie Marbach Suzanne Lafon Stephan Mohr

